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Within the field of Artificial Intelligence (AI) research,
the subfield of Computational Social Choice considers
the application of AI techniques to problems in Social
Choice (a.k.a. Voting Theory) (Chevaleyre et al. 2007).
Starting in the early 1990’s, computer scientists began to
take an interest in social choice. Initial work was con-
cerned with circumventing the impossibility results implied
by earlier work, using computational hardness. This work
showed that, in many voting systems, a strategic voter
would need to solve an NP-Hard problem to determine
how best to cast its ballot (Bartholdi III and Orlin 1991).
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Figure 1

More recently, interest in this field has
broadened with the growth of multia-
gent systems in AI. Topics like multia-
gent resource allocation, public goods
games, and recommender systems can
all be understood as forms of so-
cial choice problems. My research ad-
dresses an unresolved problem in so-
cial choice and proposes the use of
machine learning techniques, to arrive
at a principled solution. The problem I
address is deciding the outcome of an
election with partial preference ballots, and my proposed so-
lution could lead to an important linkage between machine
learning and social choice theory.

As is conventional in social choice, I model an election
as a choice among a set of alternatives C. This model is
broad enough to encapsulate a wealth of problems in arti-
ficial intelligence, where individuals’ preferences must be
aggregated to make a decision. A set of voters V constitutes
the electorate. Each voter is assumed to have preferences
over C which can be represented as a linear ordering. For
example, a voter who prefers candidate X to candidate Y ,
and candidate Y to candidate Z would write their prefer-
ences X � Y � Z. Voters may each cast a ballot, which is
also represented as a linear order over C, and a voting rule
S is used to map sets of ballots to outcomes, deciding the
election. For example, the ballots in Figure 1 show a situa-
tion where 8 voters have submitted the ballot X � Y � Z,
7 the ballot Y � Z � X , and 6 the ballot Z � Y � X .
Different voting rules, like plurality or Single Transferable
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Vote (STV) select winners from sets of ballot. For example,
under plurality candidate X has won this election by virtue
of having being at the top of the largest number of ballots.
Under STV Y would win instead.

In this work, we model voters as having partial order-
ings over the candidates for their preferences, instead of lin-
ear orderings. For instance, a voter who is certain that they
like X, but unsure which of Y or Z is better would have the
preferences X � Y , X � Y , Y ∼ Z. When voters cast
their ballots, they may represent this ambiguity by including
recording the partial ordering directly, taking the form of a
directed acyclic graph where the vertices are candidates, and
there is an edge from X to Y iff X � Y in the voter’s prefer-
ences. Some voting systems are unable to support this gen-
eral format however. A simpler format assumes that voters
have good knowledge about their top t most preferred can-
didates, and are unsure about the relative orderings of the
remainder. Thus, a top-t ballot is a linear ordering over the
voter’s top-t most preferred alternatives, with the remainder
of the ordering left blank, indicating the remaining |C| − t
candidates are below all those listed, in an uncertain order.

The problem with allowing for partial preferences lies in
deciding the outcome of an election. Voting rules must ad-
dress the missing information in ballots with a consistent
policy, and must select the alternative that would have won
if all the voters had specified their complete preferences.

Existing approaches to the problem of elections with par-
tial preference ballots treat missing information in the bal-
lots in a number of different ways. Many of the systems
used in practice simply treat it as absent. For instance, in
the ‘single transferable vote’ system ballots that run out of
candidates are discarded, and the remainder of the election
proceeds as though they had never been cast. Recent interest
in avoiding this has led to more principled approaches.

Other approaches looked at different ways to interpret
the missing information in the ballots, using optimization
techniques or statistical inference. Approaches include as-
suming the missing pairwise preferences are uniformly dis-
tributed (Xia and Conitzer 2011), or selecting the winner
based on a worst-case completion of the ballots (e.g. min-
imax regret) (Lu and Boutilier 2011). My approach is in-
stead to assume that the missing preferences are distributed
similarly to the preferences that were observed. Specifically,
I assume that voters are similar to one another, given that
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whatever information is contained on their ballots is simi-
lar. I then utilize machine learning techniques to impute the
missing information, and decide the election on the basis of
the completed ballots. In this way, my aim is to complete
the missing information with the true preferences that users
would have specified, had they been able.

More formally, my approach consists of re-phrasing the
problem of deciding an election with partial preference bal-
lots as a classification prediction task. Given the preferences
that a particular voter has written on their ballots, we want
to predict their true values for the missing information on
the ballot. To do this, we break the problem into a number
of sub-tasks. In the first task, we take all ballots with at least
two preferences, and train a classifier to predict the second
preference from the first. I then use this classifier to predict
the missing second preferences of any ballot with just one
preference recorded. Repeating this process, we can learn to
predict third preferences from all ballots with at least three
recorded values, and impute any missing third preferences
on the remainder of the ballots. The process is iterated until
all ballots are completed, and the complete ballots are then
used to decide the final outcome of the election.

My initial work on this approach consisted of both a the-
oretical and experimental component. I first showed that un-
der the top-t preference model, applying classifiers to predict
the missing components of the ballots was equivalent to us-
ing the ballots themselves as votes under a specific election
rule, to select from among the set of possible completions.
That is, using machine learning to impute the missing pref-
erence is itself a form of social choice. This exciting result
facilitates future theoretical work, making it possible to ana-
lyze my treatment of missing information using established
tools from computational social choice, and hints at a pos-
sible bridging theory that connects the two fields tightly, It
is this topic I hope to expand on in great detail. Beyond this
exciting theoretical result, I was able to show that the pro-
posed technique is useful in practice, with a detailed em-
pirical evaluation which established the ability of machine
learning models to impute missing information from real-
world human preferences. In particular, I evaluated the per-
formance of the new approach across ballots from ten real-
world elections and found that it compares well with state-
of-the-art techniques. Performance was also quite good in
absolute terms. The correct winner was recovered in more
than 90% of runs, and the overall ranking of the candidates
matched that obtained by aggregating the ground-truth bal-
lots to a very high degree. Error rates for the scores of in-
dividual candidates under the commonly used Borda Count
voting rule were typically less than 1%. Overall, these re-
sults indicate very strong performance from my initial mod-
els, and suggest great promise for further refinement.

By July 2014, I anticipate the completion of a machine
learning model tailored specifically to the problem of im-
puting missing preferences. I hope to benchmark that model,
and to perform a more rigorous axiomatic analysis of it as a
voting rule, including interpretations of Arrow’s conditions
in the context of learning missing preference information. I
also hope to provide a performance guarantee under certain
assumptions about the way in which missingness is gener-

ated in the data. These proofs would show that, when the
assumptions underlying the model are satisfied, the prefer-
ences of specific users will be recovered with high probabil-
ity. I also hope to characterize the assumptions underlying
the model as analogous to specific, known, properties of so-
cial choice functions (e.g. Neutrality, anonymity, etc.).

Looking further ahead, I plan to consider the following
possible research paths: a detailed axiomatic analysis of
broader classes of machine learning methods when applied
in this context; a characterization of the conditions under
which specific machine learning techniques will converge to
accurate models of voters’ preferences; an examination the
applicability of this technique to domains with very sparse
preferences, like resource allocation (especially challeng-
ing for problems with combinatorial valuations); and a look
at incorporating techniques like Bagging and Boosting that
could improve the performance in real-world problems. The
topic of manipulation (i.e. the strategic behaviors of both
the voters and the electioneer) would also be valuable to ex-
plore. Ultimately I hope to make substantial contributions
toward connecting machine learning models to social choice
functions, providing benefits for both fields.

The potential value of this research is to offer a princi-
pled solution for selecting winners when voting with partial
preference ballots, which should provide important progress
in a number of central MAS research areas, including social
choice, multiagent resource allocation, and areas of game
theory like public goods games. Beyond the possible appli-
cations however, my topic is useful insofar as it draws an
explicit link between machine learning and computational
social choice in this domain. I am not merely applying ma-
chine learning methods to social choice problems, but show-
ing that the application of machine learning models is really
itself a form social choice, where participants are implic-
itly voting on how missing preference information should
be treated. Fleshing out the details of this connection would
be a major contribution to both fields, and offers tantalizing
potential for deep insights. For example, showing that par-
ticular classification techniques are equivalent to particular
classes of voting rules would tie the fields together strongly,
and would allow many existing theoretical results in both to
be merged.
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