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Motivation and Background
Models of planning under uncertainty, and in particular, MDPs and
POMDPs have received much attention in the AI and Decision-
Theoretic planning communities (Boutilier, Dean, and Hanks 1999;
Kaelbling, Littman, and Cassandra 1998). These models allow for
a richer and more realistic representation of real-world planning
problems, but lead to increased complexity. Recently, a new ap-
proach for handling certain simple classes of planning under uncer-
tainty was introduced (Palacios and Geffner 2009). This approach
works by reducing problems of planning under uncertainty to clas-
sical planning problems. The main benefit of this technique is that
it allows us to exploit techniques developed in classical planning,
and in particular, effective and sophisticated methods for comput-
ing heuristic functions. So far, this technique has been shown to
be effective for conformant and contingent planning (Albore, Pala-
cios, and Geffner 2009; Shani and Brafman 2011). A related ap-
proach was very successful in handling MDPs in the FF-Replan
planner (Yoon, Fern, and Givan 2007).

The goal of our research is to utilize the approach for proba-
bilistic planning problems. That is, we’d like to be able to repre-
sent and reason about probabilities within non probabilistic plan-
ning frameworks. To start this research direction, we focus on the
problem of conformant probabilistic planning (CPP) with deter-
ministic actions. Although this problem is somewhat narrow, much
like conformant planning, it provides a convenient initial step for
exploring this research direction. We believe that our techniques
can be extended to more general probabilistic planning problems.
The best current CPP planner is Probabilistic FF (PFF) (Domsh-
lak and Hoffmann 2007). Probabilistic-FF uses a time-stamped
Bayesian Networks (BN) to describe probabilistic belief states. In
most benchmarks, PFF’s results were improved by our results.

Conformant Probabilistic Planning (CPP)
We assume familiarity with the basic notation of classical planning
domains via STRIPS with conditional effects: (V,A, I,G), corre-
sponding to a set of propositions, actions, initial world state, and
goal. A CP problem, (V,A, bI , G), generalizes this framework, re-
placing the single initial state with a set of initially possible states,
called the initial belief state bI . A plan is an action sequence a such
that a(wI) ⊇ G for every wI ∈ bI . CPP extend CP by quantifying
the uncertainty regarding bI using a probability distribution bI . In
its most general form, CPP allows for stochastic actions, but we
leave this to future work, and assume all actions are deterministic.
CPP tasks are 5-tuples (V,A, bI , G, θ). As before, G is a conjunc-
tion of propositions. bI denotes a probability distribution over the
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world states, where bI(w) is the probability that w is the true initial
world state. In many settings, achieving G with certainty is impos-
sible. θ specifies the required lower bound on the probability of
achieving G. A sequence of actions a is called a plan if the weight
of the initial states from which a reaches the goal is at least θ.

My Work Until Now
During my Msc. and PhD. studies until now I’ve developed a few
compilation based algorithms for CPP. Our initial results, published
in (Brafman and Taig 2011) summarized my Msc. work. My recent
results were published at (Taig and Brafman 2012) and (Taig and
Brafman 2013). Our work in the last year is summarized in a paper
accepted for AAAI 14’. Below is a concise summary of the work:

The translation approach - background and required
modifications Our initial work is based on a modified version
of the translation-based method by (Palacios and Geffner 2009).
The essential idea behind the approach to is to reason by cases.
The different cases correspond to different conditions on the initial
state, or, equivalently, different sets of initial states. These sets of
states, or conditions, are captured by tags. That is, a tag is identi-
fied with a subset of bI . The simplest way for understanding tags is
just considering one tag per each possible initial state (e.g an initial
state w s.t bI(w) > 0).

The set of propositions with new propositions of the form p/t,
where t is one of the possible tags for p. p/t holds the current value
of p given that the initial state satisfies the condition t. The value of
each proposition p/t is known initially – it reflects the value of p in
the initial states represented by t, and since we focus on determin-
istic actions only, then p/t ∨ ¬p/t is a tautology throughout. The
actions are transformed accordingly to maintain our state of knowl-
edge by propagating this conditioned knowledge, if the CPP had an
action a which consist some conditional effect C → p then in the
compiled problem we’ll add conditional effect: C/t → p/t for ev-
ery possible tag t for p, this propagates our conditioned knowledge
throughout the planning process.

The resulting problem is a classical planning problem defined
on a larger set of variables. The size of this set depends on the
original set of variables and the number of tags we need to add.
Hence, an efficient tag generation process is important. Some of
our work focused on defining the theoretical properties of such a
generation process or more accurately, how to modify PG’s pro-
cess to the probabilistic planning, please refer to our ICAPS paper
for details, I cannot detail here due to lack of space. Based on the
above, we developed a few compilation methods for CPP as fol-
lows:
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Method 1: Compiling CPP into Metric Planning
Metric planning is an extension of the classical planning frame-
work where some of the variables can get real values in addition to
the finite domain variables. Our method, described in our ADT’11

paper, utilized these variables to monitor the probabilities of each
variable by adding a numerical variable Prp for each original vari-
able p, this variable is initialized with the initial probability of p
given by bI . Actions are modified to update these variables w.r.t
the conditioned knowledge on p. That is, if the compiled proposi-
tions p/t1,p/t2 are true in some stage we can deduce the current
probability of p by calculating the joint initial probability of t1 and
t2. In addition a special fluent Prg is added to monitor the cur-
rent probability of the goal and actions are modified accordingly.
The only goal is then just Prg ≥ Θ. The resulting compiled met-
ric problem is then being fed to the state-of-the-art metric plan-
ner Metric − FF , we prove in the paper that the resulting plan,
after simple modification, is a plan for the original CPP and the
algorithm is sound. We also give conditions for completeness. Re-
sults for this algorithm were good but for a limited, simple, set of
benchmarks. The main reasons are the inherited limitations of the
underlying planner to handle the nature of our compiled problems
in terms of size and many conditional effects.

Method 2: CPP as cost-bounded sub optimal
planning problem
In cost bounded classical planning a classical planning problem is
extended with a constant parameter c ∈ R > 0. The task is to find
a plan with cost ≤ c as fast as possible. In this setting the optimal
plan cost and the distance of the resulting plan from optimal does
not matter. This compilation was motivated by recent advances in
the research of this field resulted in efficient cost bounded plan-
ners (Thayer et al. 2012).

The basic rational in the method we present now is the under-
standing that we can solve a CPP problem by identifying a set b� of
initial states whose joint probability is greater or equal to θ, such
that there exists a conformant plan for b�. This plan is a solution to
the CPP problem, too. We let a classical planner to decide which
states to ignore, and also generates a conformant plan for all other
states. We must ensure that the joint probability of ignored states
does not exceed 1−θ. Technically, this is done by introducing spe-
cial actions that essentially tell the planner to ignore a state (or set
of states). The cost of each such action is equal to the probability
of the state(s) it allows us to ignore.

In the compiled problem we generate, knowledge is added by
applying merge actions. Once a state has been ”ignored” by an ”ig-
nore” action, special inference actions we add effectively ignore it,
and deduce the information as if this state is not possible.

A solution to the generated problem will make assumptions
whose cost does not exceed the bound. Hence, it will work on a
sufficiently large set of initial states and thus will correspond to a
valid plan for the original CPP. We refer the reader to our ICAPS’13

paper for more details.

Method 3: Relevance Based compilation into
Conformant planning
Our recent method, although lies on the same rational, suggests dif-
ferent approach. Our planner starts with a preprocessing relevance
analysis phase that determines a promising set of initial states on
which to focus. It then calls an off-the-shelf conformant planner to
solve the resulting problem. This approach has a number of advan-
tages. First, we can introduce specific, efficient relevance reasoning
techniques for selecting the set of initial states, rather than depend
on the heuristic function used by the planner. Second, we can ben-
efit from various optimizations used by conformant planners that

are unsound when applied to the original CPP. Finally, we have
the freedom to select among different existing CP solvers. Conse-
quently, the new planner dominates previous solvers on almost all
domains and scales to instances that were not solved before. We
proved the soundness of the method. This method is incomplete.
We note that since CPP is at least as hard as CP, which is PSPACE-

COMPLETE, ensuring completeness seems ill advised. We refer
the reader to our AAAI’14 paper for more details.

Research Plan
We intend to focus on the following main research thrusts: First, we
hope to extend our compilation techniques to handle richer settings.
As a first step, we will focus on CPP with stochastic actions be-
ginning with simply consider deterministic version of these actions
while verifying that the solution addresses a sufficiently large prob-
ability mass. Another possibility we consider is to create partition
of the problem, based on the relevance analysis, which will allow
to plan and reason about probabilities over a compact portion of the
belief space. Later, we hope to handle stochastic observations, mo-
tivated by the work done at (Albore, Palacios, and Geffner 2009;
Shani and Brafman 2011) where the approach was used to handle
contingent planning with non-deterministic observations.

On the longer term, we’d like to improve the ability of classical
planners to handle our compiled problems. Currently, we use the
planners as black boxes. We’ve identified weaknesses of the plan-
ners w.r.t to the properties of our problems.
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