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Abstract
We study techniques to incentivize self-interested agents to
form socially desirable solutions in scenarios where they ben-
efit from mutual coordination. Towards this end, we con-
sider coordination games where agents have different intrin-
sic preferences but they stand to gain if others choose the
same strategy as them. For non-trivial versions of our game,
stable solutions like Nash Equilibrium may not exist, or may
be socially inefficient even when they do exist. This motivates
us to focus on designing efficient algorithms to compute (al-
most) stable solutions like Approximate Equilibrium that can
be realized if agents are provided some additional incentives.
Our results apply in many settings like adoption of new prod-
ucts, project selection, and group formation, where a central
authority can direct agents towards a strategy but agents may
defect if they have better alternatives. We show that for any
given instance, we can either compute a high quality approx-
imate equilibrium or a near-optimal solution that can be sta-
bilized by providing small payments to some players. Our
results imply that a little influence is necessary in order to en-
sure that selfish players coordinate and form socially efficient
solutions.

1 Introduction
Historically, the term coordination game has been applied to
social interactions with positive network externalities. Typ-
ically, they are used to represent scenarios like the Battle of
the Sexes wherein self-interested agents benefit if and only
if they choose the same strategy. Such a model, however,
does not fully capture real-life situations like the adoption of
technologies or opinions and the selection of activities where
agents may eschew coordination if their personal preference
for an alternative is very strong. For instance, a company
may not adhere to common standards if the benefit from us-
ing their own proprietary technology far outweighs the gains
from coordinating. Bearing this in mind, we consider the fol-
lowing broader interpretation of coordination games as ‘a
class of games where agents’ utilities increase when more
people choose the same strategy as them’. Notice that this
does not preclude agents from having intrinsic preferences
for strategies.

Many social and economic interactions fall within our
framework (see Galeotti et al. for specific applications of
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coordination games) and it is not surprising that the kind
of games we are interested in have appeared in various
guises throughout literature. Researchers have studied simi-
lar kinds of games in several settings including opinion for-
mation (Chierichetti, Kleinberg, and Oren 2013), informa-
tion sharing (Kleinberg and Ligett 2013), coalition forma-
tion (Feldman, Lewin-Eytan, and Naor 2012) and party affil-
iation (Balcan, Blum, and Mansour 2009), largely focusing
on the existence and quality of stable solutions.

Given the significance of social coordination, a natural
question that arises is: Do instances of such games result in
stable outcomes that are comparable to the social optimum,
the solution maximizing social welfare. The somewhat neg-
ative answer to this question that we provide serves as the
starting point for our work as it highlights the need for in-
centivizing agents to form solutions that are beneficial for
society. We attempt to answer the above question by artic-
ulating two fundamental drawbacks of coordination games,
which naturally lead to the issue of influencing players to
form “good” solutions.

1. Coordination Failures. Coordination games suffer from
Coordination Failures (Cooper 1999) that result in agents
becoming trapped in inefficient equilibria despite the ex-
istence of high-welfare equilibria. These situations arise
when agents settle for less risky alternatives if they antici-
pate that other agents may not coordinate with them on
what are potentially “high-risk, high-reward” solutions.
As an example, consider N independent but complemen-
tary firms, each with a distinct preferred location, decid-
ing on where to locate. Suppose that each company re-
ceives unit utility for choosing their favorite location and
one more unit for every additional firm that choose to lo-
cate in the same area. Clearly an optimum and stable solu-
tion is one where all companies choose the same location.
However, the outcome where each chooses their preferred
location is also stable as no company could unilaterally
deviate and profit. There is a large body of theoretical and
experimental evidence (see Kosfeld for a survey) that sup-
ports the hypothesis that agents may coordinate on ineffi-
cient outcomes even when better alternatives exist.

2. Non-existence of Equilibrium. In instances where player
relationships are asymmetric (they receive different gains

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

508



from coordinating), a Pure Nash Equilibrium1 may not
even exist. The following example illustrates one such
simple instance with three players and three strategies.
Example: There are 3 players i1, i2, i3. Player ij receives
a utility of

√
2 if she chooses strategy j and unit utility

from strategy j + 1 (addition here is modulo 3). Also,
player ij receives coordination gains of 1 when player
ij+1 chooses the same strategy as her. Note that relation-
ships are asymmetric so player ij+1 receives no benefit
for choosing the same strategy as player ij .
It is not hard to verify that no Nash equilibrium exists for
this instance. The reader is asked to refer to the proof of
Proposition 2.5 for details.

It is evident that even in fairly simple coordination games,
it may be necessary to guide agents to form desirable so-
lutions. From a central point of view, a high social welfare
is the most important requirement, but at the same time it
is necessary that selfish agents do not deviate from these
centrally promoted solutions. A key algorithmic challenge is
therefore, computing stable outcomes with good social wel-
fare that can be formed by providing each agent a small in-
centive. It is towards this end that we identify approximate
equilibria as our primary solution concept.

Approximate Equilibrium and Stability. An α-
Approximate Equilibrium is an outcome in which no player
can improve their utility by a factor more than α by uni-
laterally deviating. Observe from the definition that if each
player is provided additional benefits equaling a fraction
(α − 1) times their original utility, then no player would
wish to deviate and the Approximate Equilibrium becomes a
Nash Equilibrium. Alternatively, approximate stability cor-
responds to the addition of a switching cost that captures the
inertia players may have in changing strategies unless the
added benefit is large enough. In addition to being a sim-
ple generalization of Nash Equilibrium, approximate equi-
libria are also easily implementable or enforceable in natural
settings as opposed to non-deterministic generalizations like
Mixed Nash Equilibria.

We focus on computing approximate equilibria with high
social welfare establishing that although coordination games
may not admit Nash Equilibrium, the addition of a relatively
small amount of inertia to the game causes stable solutions
with high social welfare to exist. We also consider group de-
viations via approximate strong equilibrium (Feldman and
Tamir 2009), computing solutions which are resilient to de-
viations by sets of players.

Formalizing our Model of Coordination Games.We be-
gin by considering a non-transferable utility game with N
players and m distinct strategies. We assume that players
have access to all strategies, therefore in any outcome of the
game, a player’s strategy si ∈ {1, . . . ,m}. Generalizing our
examples from the previous section, we not only permit pre-
ferred strategies, but allow each player to have asymmetric
preferences over the strategy set. Formally, player i derives
a utility of wki if she chooses strategy 1 ≤ k ≤ m.

1We shall henceforth refer to Pure Nash Equilibrium as just
Nash Equilibrium

With regards to the coordination aspect, we now propose
a framework where the benefits of coordination between two
players do not depend on externalities. Specifically, suppose
that w(i, j) is the total coordination benefit when players i
and j choose the same strategy and that this benefit is di-
vided among the two players. Formally, player i derives a
utility of γijw(i, j) for coordinating with j and player j re-
ceives γjiw(i, j). For a given instance of our game, the val-
ues (γij , γji)∀(i, j) are fixed and add up to one. So given a
strategy vector s = (s1, · · · , sn), the utility of a player i has
two components,

ui(s) = wsii +
∑
sj=si

γijw(i, j).

We parameterize any instance on a factor γ that captures the
maximum asymmetry that exists in relationships. Formally
γ = max

γij
γji

over all pairs (i, j). We term this parameter, the
Maximum Relationship Imbalance (MRI). Since we are con-
cerned with the quality of stable solutions, we define a social
welfare function u(s) to be the sum of player utilities. Math-
ematically, u(s) =

∑
i ui(s) =

∑
i w

si
i +

∑
si=sj

w(i, j).

We define the optimum to be the solution maximizing so-
cial welfare and compare the quality of our solutions to the
optimum welfare OPT .

Our Contributions. In this work, we consider the follow-
ing well-motivated question: can we implement solutions
with high social welfare by providing each player some in-
centive to not deviate? Our main results answer this question
in the affirmative, and more importantly we show that this is
possible for every instance using one of our two incentiviz-
ing schemes. First, we present an algorithm based on greedy
dynamics to compute a good quality, almost-stable solution.
• (Theorem 3.2) There is a polynomial-time algorithm to

compute an α-Approximate Equilibrium (α ∈ [1.618, 2])
with a social welfare that is comparable to the optimum.

An approximate equilibrium corresponds to an easily realiz-
able solution in the presence of either incentives, switching
costs or players with inertia. Our second main result consid-
ers a complementary notion of stability: the minimum total
payment to be provided to players so that they do not deviate
from a desired high quality solution. For any given instance,
if the algorithm of Theorem 3.2 returns an α-Approximate
Equilibrium with social welfare ρα ·OPT , then we show
• (Theorem 3.5) The optimum solution can be stabilized

with a total payment of ρα
α−1OPT .

Informally, this result tells us that if we can provide cer-
tain players supplementary utility, then with a finite budget
we can stabilize the optimum solution. Given any instance,
we first run the algorithm of Theorem 3.2 to compute an
α-Approximate Equilibrium with social welfare ρα· OPT.
If ρα is large, then we have an almost-stable solution with
high social welfare; else, if ρα is small, then with a budget
of ≈ ρα·OPT, we can force even the optimum solution to be
stable. Together our two theorems imply something much
stronger: we can always either compute almost-stable solu-
tions with high welfare, or directly stabilize a good quality
solution with small payments.
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α = 2 α = 1.618
γ m = 4 m→∞ m = 4 m→∞
1 0.57OPT 0.5OPT 0.424OPT 0.35OPT
2 0.47 0.4 0.37 0.29
10 0.25 0.15 0.18 0.12

Table 1: Performance of our algorithm: The social welfare of
our computed solution as a fraction of the optimum welfare
for different values of m and γ (MRI).

We obtain tight lower bounds for the social welfare of the
solution computed by the algorithm of Theorem 3.2 in terms
of γ (Maximum Relationship Imbalance). When γ is not too
large, we show that this social welfare is comparable to the
optimum. For instance, if relationships are not too asymmet-
ric and γ = 2, we can compute a 2-Approximate Equilib-
rium whose social welfare is always at least forty percent
of OPT and a 1.618-Approximate Equilibrium whose social
welfare is one-third of OPT. If γ < 2, then we can do much
better. Table 1 captures the social welfare of the solution re-
turned by our algorithm for different values of m and γ.

In the process, we also establish that every instance of
our Social Coordination Game admits a 1.618-Approximate
Equilibrium and that this result is almost tight: ∃ instances
where no α-Approximate Equilibria exist for any α <
1.414. For the special case ofm = 3 however, we present an
algorithm that always returns a 1.414-Approximate Equilib-
rium. In any coordination game, it is important to also ensure
that groups of players do not jointly deviate from the cen-
trally enforced solution. Keeping this in mind, we give an
algorithm to compute a 2-Approximate Strong Equilibrium
with a social welfare that is at least half of ρα for α = 2.

Finally, we focus on settings where a central designer may
not be able to provide additional incentives to players but
can control the parameters of the game. For such cases, we
identify a general set of conditions that guarantee the ex-
istence of a Nash Equilibrium. These conditions capture a
broad sub-class of coordination games where the benefits
of coordination among players may be asymmetric but are
closely correlated.

Related Work. Our model of social coordination is
closely linked to two well known classes of games: non-
transferable utility coalition formation and party affiliation.
We begin by surveying the substantial literature in both these
fields and examine the ties between our model and the games
in these frameworks.

Hedonic games model players forming coalitions such
that a player’s utility depends only on the members of her
own coalition. Our model can be embedded in this setting
by considering a fixed number of non-anonymous coalitions
and a set of players who are anchored, i.e., constrained to
join only one particular group. Much of the work in this do-
main has focused on identifying conditions for the existence
of stable solutions (Banerjee, Konishi, and Sönmez 2001;
Bogomolnaia and Jackson 2002). It is known, for instance,
that if relationships are symmetric then the existence of Nash
Equilibrium can be guaranteed by means of a potential func-
tion. Augustine et al. (2013) consider a model similar to

ours with the coordination benefits being submodular and
characterize settings where Nash Equilibrium always exist.
Although our games do not admit Nash Equilibrium, our re-
sults imply the existence of a stability concept that is slightly
weaker than Nash stability for a large class of hedonic games
with asymmetry.

Another line of work has focused on quantifying the in-
efficiency of stable solutions (Brânzei and Larson 2009)
and on the computation of stable solutions (Aziz, Brandt,
and Seedig 2013; Darmann et al. 2012; Gairing and Savani
2010). Although there have been a number of positive al-
gorithmic results, the focus on approximating both stability
and optimality has been limited. With regards to influencing,
the recent work on stabilizing desired coalitions via supple-
mentary payments (the Cost of Stability) (Bachrach et al.
2009) is similar to our direct payments technique, albeit in a
transferable utility setting.

Party affiliation games are a generalization of pure coordi-
nation games where players wish to coordinate with friends
and anti-coordinate with enemies. On the other hand, in our
model the friction is provided by the interplay between a
player’s individual preference and coordination. Party affili-
ation games with only two strategies and symmetric relation-
ships have received considerable attention as Nash Equilib-
rium always exists in these settings although computing it is
PLS-Complete (Christodoulou, Mirrokni, and Sidiropoulos
2006). As a positive algorithmic result, Bhalgat et al. (2010)
gave a polynomial time algorithm to compute a (3 + ε)-
Approximate Equilibrium for such games. Even though we
look at only one aspect of party affiliation, our model is quite
general as we do not impose any restriction on the number
of strategies or player relationships.

Other models of coordination in strategic settings.
There has been a renewed interest in characterizing the ef-
fect of several parameters on the kind of equilibrium out-
comes that emerge in coordination games. These include the
the cost of forming links (Goyal and Vega-Redondo 2005;
Jackson and Watts 2002), network structure (Chwe 2000),
level of interaction (Morris 2000) and incomplete informa-
tion (Galeotti et al. 2010). The literature on coordination
games is too vast and the reader is asked to refer to the paper
by Galeotti et al. for a detailed survey.

2 Preliminaries and Warm-up Results
In this section, we address some fundamental questions re-
garding stability and optimality in our Social Coordination
Game (SCG) in order to gain a better understanding of our
model. We then present algorithms to compute stable solu-
tions for special classes of games where players only have
two and three strategies to choose from respectively. We be-
gin by casting our game in graph theoretic framework to
compare our problem to existing optimization problems.

Social Coordination as a Network Game. We can view
our model as a game played on a complete graph G =
(V,E) where the nodes include the players andm additional
anchored nodes (which are constrained to choose only one
strategy). Each directed edge (i, j) has a weight γijw(i, j),
the utility player i derives from coordinating with j. Now,
it is not hard to see that the problem of maximizing social
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welfare is equivalent to the problem of dividing the graph
into m clusters to maximize the weight inside the clusters.
The latter problem was referred to in (Langberg, Rabani, and
Swamy 2006) as the Multiway Uncut Problem and shown to
be NP-Hard. The hardness result therefore, extends to our
problem of maximizing social welfare.
Proposition 2.1 For m > 2, computing OPT for an in-
stance of the Social Coordination Game is NP-Hard.

Langberg et al. also exhibited a 0.8535 approximation algo-
rithm for the Multiway Uncut problem on undirected graphs,
which we now extend to the directed version via a simple re-
duction. The reader is asked to refer to the full version of this
paper for detailed proofs of all our results (Anshelevich and
Sekar 2014).
Proposition 2.2 There exists a polynomial-time algorithm
to compute a solution of the SCG such that its social welfare
is at least a fraction 0.8535 of OPT .

However, in settings with selfish players, it becomes imper-
ative to compute solutions which are not only comparable
to OPT but also ensure individual stability. We first con-
sider the most natural stability concept in such games: Nash
Equilibrium, and formalize our intuition about Coordination
Failures from the previous section. That is, we show that
even when Nash Equilibrium exist, all stable solutions may
have a social welfare that is only a small fraction of OPT.
Proposition 2.3 If Nash Equilibrium exists, both the Price
of Anarchy(PoA) and the Price of Stability(PoS) for the SCG
can be as large as m, the number of strategies.
Recall that the PoA is the ratio of the social welfare of the
optimum to that of the worst Nash Equilibrium and the PoS
is the same for the best Nash Equilibrium. Proposition 2.3
also tells us that if we are able to limit the number of choices
available to agents, then all stable solutions exhibit high so-
cial welfare. Of particular interest to us in this regard is the
special case when players only have two available options
(m = 2). For this case, we are able to guarantee the ex-
istence of a Nash Equilibrium by actually constructing one
for any given instance. We present the following algorithm
to compute a Nash Equilibrium when m = 2 that is at least
half as good as OPT.

Algorithm 1: Pick a strategy and allow all players
who want to deviate from this strategy to perform best-
response until no player wants to deviate. Now allow
all players who want to deviate from the other strategy
to perform best-response.

Proposition 2.4 The above algorithm returns a Nash Equi-
librium from any given starting state such that its social wel-
fare is at least half of OPT .

Finally, before moving on to our main results, we also briefly
consider the case of three strategies, i.e., m = 3. We have
already established the non-existence of Nash Equilibrium
for this case. Instead, we give an algorithm to compute a
1.414-Approximate Equilibrium for every single instance
with three strategies. This factor of 1.414 is tight: there exist
instances where for any α <

√
2, no α-Approximate Equi-

librium exists.

Proposition 2.5 The following algorithm returns a
√

2-
Approximate Equilibrium for all instances with three strate-
gies.

“Run Algorithm 1 for any two strategies (say 1 and
2). Now allow any player whose utility improves by
at least a

√
2 factor to deviate to 3. Every time a player

deviates to strategy 3, run Algorithm 1 to ensure that
players in 1 and 2 are stable w.r.t each other.”

3 General Social Coordination Games
In the previous sections, we showed that Nash Equilibrium
may not exist for Social Coordination Games and even when
it does, its quality may not be close to the optimum. This
motivates us to relax our notion of stability and consider ap-
proximately stable solutions in order to obtain better guaran-
tees on the social welfare. Our first main result in this section
is a quadratic algorithm to compute an α-Approximate Equi-
librium for α ∈ [φ, 2] (φ ≈ 1.618) and a 2-Approximate
Strong Equilibrium with good social welfare. As we showed
that α-Approximate Equilibria for α < 1.414 do not exist
for general SCGs, our stability results are nearly tight.Recall
that in an α-Approximate Equilibrium, no player can devi-
ate from one strategy to another and increase her utility by
more than α times her previous utility.

We obtain tight bounds on the social welfare of our so-
lution. Using this, we characterize the near-linear trade-off
between stability and optimality by showing how the social
welfare decreases when we decrease the stability factor from
α = 2 to α = φ (See Figure 1(a)). Our bounds for social
welfare depend on γ, the Maximum Relationship Imbalance
(MRI), that measures the maximum asymmetry over all re-
lationships. We explicitly use this factor γ in our welfare as
often real-life relationships are bounded in their asymmetry;
if one player receives large gains from coordinating with an-
other, then the second player derives at least some fraction
of that benefit. Observe that γ = 1 denotes a special case of
interest wherein the rewards of all relationships are shared
equally and as γ increases, reward sharing becomes more
and more asymmetric.

We begin by presenting a simple algorithm called one-
shot α-BR, which allows each player to play her best-
response at most once as long as the improvement in utility
is by a factor α ≥ 1. We then make use of this algorithm
and propose a hybrid procedure that takes the best solution
returned by two separate instances of the algorithm, in order
to compute a solution which is both approximately stable
and is a good approximation to OPT . First, we show the
following lemma.

Algorithm 1 One-shot α-BR
Require: A starting strategy k0.

1: Begin with all players in the initial strategy k0.
2: While there exists a player whose current strategy is k0,

who can improve her utility by at least a factor α by
deviating to another strategy, allow her to perform best-
response.
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Lemma 3.1 The One-shot α-BR algorithm returns a(
max

(
α, 1

α + 1
))

-Approximate Equilibrium, for any start-
ing strategy k0.

That is, for α ∈ [φ, 2], the One-Shot α-BR algorithm returns
an α-Approximate Equilibrium. We are now in a position
to show our main result. For the purpose of the following
algorithm, we use k∗ to denote the strategy that players have
the maximum preference for, k∗ = arg maxk(

∑
i w

k
i ). We

also use AT to denote the total utility that all players derive
from their preferred strategy (AT =

∑
i maxk(wki )) and PT

the maximum coordination benefit (PT =
∑

(i,j) w(i, j)).

Theorem 3.2 The following algorithm returns an α-
Approximate Equilibrium for α ∈ [φ, 2] whose social wel-
fare is approximately at least a fraction ≈ max( α

γ+3 ,
1
m ) of

the optimum social welfare.

Algorithm: “For a given α, run One-shot α-BR and
One-shot 1

α−1 -BR with k∗ as the starting strategy. Let
the returned solutions be s1 and s2. Return the solution
among these two with greater social welfare.”

(Proof Sketch) By Lemma 3.1, we are guaranteed that
both s1 and s2 are α-Approximate equilibria as 1

1
α−1

+ 1 =

α. Moving on to social welfare, since each player is allowed
to perform best-response exactly once, the total utility of s1
is at least the total utility players derive from their preferred
strategy (discounted by α), that is AT

α . Similarly, the algo-
rithm results in a solution whose social welfare is not too far
from that of the starting state. It is also not hard to see that
the starting state (all players choosing k∗) has a welfare of at
least ATm +PT . We now have two lower bounds on the social
welfare of our solution. Using the fact that OPT is no more
than AT +PT , and finding the point where the maximum of
the two lower bounds is minimized, we get our final welfare.
�

Discussion. We attempt to break-down the dependence of
social welfare on different parameters. First, notice from the
approximate formula α

γ+3 that the social welfare increases
almost linearly with α. As is usually the case, sacrificing a
little individual stability results in greater overall well be-
ing. At the same time, we see that social welfare decreases
when γ becomes larger, i.e., when relationships become
more asymmetric. Therefore, for a designer, there are two
possible measures to ensure socially efficient outcomes: (i)
imposing a higher switching cost on agents, (ii) splitting the
rewards of coordination almost equally.

Our algorithm provides good guarantees when γ is not
too large. For instance, when the benefits from coordination
are off by at most a factor of 2 (γ ≤ 2), our algorithm re-
turns a 1.618-Approximate Equilibrium that is almost one
third of OPT even if the number of available alternatives
is arbitrarily large. Contrast this with the result in Proposi-
tion 2.3 that states as m→∞, the social welfare of equilib-
ria becomes infinitely worse off than the optimum. Finally,
the social welfare is bounded by ≈ 1

m , which indicates that
even when γ is large, our solutions are at least as good as
that of the Nash Equilibrium (when they exist). Figure 1(b)
illustrates how the social welfare drops when relationships
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Figure 1: Social Welfare as a function of α and γ.

become more asymmetric. We also remark here that our al-
gorithm provides particularly good guarantees on social wel-
fare when the setting is symmetric (γ = 1).

Corollary 3.3 For the special case when coordination ben-
efits are split equally (γ = 1), our algorithm returns a 2-
Approximate Equilibrium that is more half than as good as
the optimum and a 1.618-Approximate Equilibrium that is
at least a fraction 0.35 of OPT.

Strong Equilibrium. In any game involving coordina-
tion, it becomes important to consider Strong Nash stabil-
ity as coalitions of players may be able to cooperate when
switching to different strategies. For our SCG, we focus on
computing solutions where for any group of players who can
deviate and improve their utility, at least one player’s util-
ity increases by a factor no greater than α. We term this α-
Approximate Strong Equilibrium. Our main computational
result here is that running the One-shot α-BR algorithm re-
turns a (α+ 1)-Approximate Strong Equilibrium.

Proposition 3.4 For α ≥ 1, the One-shot α-BR returns a
(1 + α)-Approximate Strong Equilibrium.

We remark here that for α = 1, we get a 2-Approximate
Strong Equilibrium whose social welfare is at least half of
that mentioned in Theorem 3.2. Therefore, our One-shot α-
BR algorithm also offers resilience against group deviations.

Direct Payments as Incentives
So far, we have looked at approximate equilibria for our
game, which become fully stable when there are some in-
centives or when there is limited inertia in switching. We
now consider a more explicit incentivizing technique where
a central authority can provide arbitrary payments to any
subset of players in order to enforce a desired solution. Ide-
ally, this desired solution is the social optimum although we
later consider other high welfare solutions which are eas-
ily computable. In such situations, there are often budgets
constraints which determine the total payments that can be
made and we wish to obtain bounds on the minimum budget
required for any given instance.
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We now define our incentive scheme: we are interested in
‘stabilizing’ a given solution s by providing each player i a
payment of νiOPT , where 0 ≤ νi ≤ 1, such that her to-
tal utility is now ui(s) + νi ·OPT . More precisely, players
are provided this additional utility if and only if they stick
to their prescribed strategy under s. A solution is said to
be successfully stabilized if after the additional payments,
∀i, no player wishes to deviate from strategy si. Our goal
is to bound ν, the total payment that is required as a frac-
tion of the optimum welfare, i.e., ν ·OPT =

∑
i νi ·OPT .

Now suppose for that for a given instance of the coordina-
tion game, the α-Approximate Equilibrium returned by our
Algorithm of Theorem 3.2 has a social welfare of ρα·OPT
for ρα ≤ 1. Our second main result is the following.

Theorem 3.5 For any given instance, the optimum solution
can be stabilized by providing direct payments to players
such that the total payment is at most a fraction ν ≤ ρα

(α−1)

times the social welfare of OPT.

The above result indicates that if we run our algorithm from
Theorem 3.2 and get a solution with low social welfare (ρα
is small), then we can stabilize the optimum solution with
a total payment that is approximately equal to ρα·OPT. We
previously observed that when both γ and m are large, the
solution returned by our algorithm may not be too efficient.
In such cases, we can do much better by implementing the
optimal solution and providing small incentives to players.

(Proof Sketch) We give intuition for why the fractional in-
centive ν is no more than 2 ρα

α−1 here. Some additional opti-
mization gives us a better bound. Let s∗ be the optimum so-
lution and ki denote player i’s best-response. Then, the min-
imum incentive that we must provide player i to not deviate
is ui(ki, s∗−i)−ui(s∗). The above term has two components,
added utility due to intrinsic preference(A(X)), and that
due to coordination(P (X)). We claim that A(s∗) ≥ P (X),
where A(s∗) is the intrinsic utility in OPT . If this were not
true then the solution where all players choose k∗ would
have a utility greater than P (X) +P (s∗) > A(s∗) +P (s∗),
which is a contradiction. We also observe that both (α −
1)A(X) and (α − 1)A(s∗) are less than ρα · OPT , which
means A(X) + P (X) ≤ A(X) +A(s∗) ≤ 2 ρα

α−1 . �
The bottom line for a central enforcer is that a little incen-

tivizing goes a long way in ensuring socially efficient out-
comes. For every given instance, we can either apply the al-
gorithm of Theorem 3.2 to compute a good quality approxi-
mate equilibrium or enforce even the optimum solution with
a small total budget, thereby always ensuring high welfare,
stable outcomes. Unfortunately, computing the optimum is
NP-hard. Therefore, we consider the 0.8535 approximation
to OPT from Proposition 2.2 and show that it can be stabi-
lized with the same total payments.

Corollary 3.6 There exists a solution computable in poly-
nomial time whose social welfare is at least 0.8535 times
OPT, which can be stabilized by providing total payments ν
no greater than ρα

α−1 times OPT.

Incentivizing without payments. Both the influencing
techniques that we have looked at at so far involve provid-
ing additional utility to players in the form of payments or

other equivalent incentives. For completeness, we also con-
sider settings where the central designer may not be able
to provide any direct incentives but can exert some con-
trol over the parameters of the game. If the players can-
not be guided towards good solutions, then it is important
that natural game play (best-response dynamics) results in
stable solutions. Identifying special classes of games where
best-response converges to a Nash Equilibrium is therefore
a problem of considerable interest. Towards this end, we il-
lustrate a condition that guarantees that the benefits of co-
ordination received by a single player are correlated across
relationships and then show that this is a sufficient condition
for the existence of a potential function.

(Correlated Coordination Condition) A given instance
of the SCG is said to satisfy this condition if ∃ a vector γ =
(γ1, · · · , γN ) such that ∀(i, j) with w(i, j) > 0, we have
γij = γi

γi+γj
and γji =

γj
γi+γj

.
The γi associated with each player defines the level of in-

fluence that she commands over her relationships. For any
two players i and j, if γi ≥ γj , then player i receives a
greater benefit due to coordinating with player j. Notice
that this definition does not impose any restriction on how
asymmetric relationships can be. We now claim that games
which obey this condition admit an ordinal (inexact) poten-
tial function (Monderer and Shapley 1996) that ensures that
best-response always converges to an equilibrium.
Theorem 3.7 Social Coordination Games which obey the
Correlated Coordination Condition admit a potential func-
tion. Therefore, best-response dynamics always converge to
a Nash Equilibrium in such games.
(Proof Sketch) The following is an ordinal potential for any
SCG that obeys the Correlated Coordination Condition.

Φ(s) =
∑
i

wsii
γi

+
∑
si=sj

w(i, j)

γi + γj
.

It is not hard to verify that every better-response move re-
sults in an increase in this function and vice-versa.�

4 Conclusions and Future Work
In this work, we take a first step towards influencing players
in games where they benefit from mutual coordination. At
a high level, we showed that with limited incentives, selfish
players can always be made to form good solutions, i.e., we
can either compute an almost-stable solution with high wel-
fare or provide small payments to implement the optimal
solution. From an algorithmic perspective, we present an ef-
ficient algorithm to compute a 1.618-Approximate Equilib-
rium. A natural direction forward would be to model more
complex coordinations between players with the benefit be-
ing supermodular in the set of players coordinating. Some
preliminary results on the existence and computation of sta-
ble solutions for SCGs with supermodularities are presented
in the full version (Anshelevich and Sekar 2014).

5 Acknowledgements
This work was supported in part by NSF awards
CCF-0914782, CCF-1101495, CNS-1017932, and CNS-
1218374.

513



References
Anshelevich, E., and Sekar, S. 2014. Approximate equilib-
rium and incentivizing social coordination. arXiv preprint
arXiv:1404.4718.
Augustine, J.; Chen, N.; Elkind, E.; Fanelli, A.; Gravin, N.;
and Shiryaev, D. 2013. Dynamics of profit-sharing games.
Internet Mathematics (just-accepted).
Aziz, H.; Brandt, F.; and Seedig, H. G. 2013. Computing
desirable partitions in additively separable hedonic games.
Artificial Intelligence 195:316–334.
Bachrach, Y.; Elkind, E.; Meir, R.; Pasechnik, D.; Zuck-
erman, M.; Rothe, J.; and Rosenschein, J. S. 2009. The
cost of stability in coalitional games. In Proceedings of the
2nd International Symposium on Algorithmic Game Theory
(SAGT), 122–134. Springer.
Balcan, M.-F.; Blum, A.; and Mansour, Y. 2009. Improved
equilibria via public service advertising. In Proceedings of
the twentieth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 728–737.
Banerjee, S.; Konishi, H.; and Sönmez, T. 2001. Core in a
simple coalition formation game. Social Choice and Welfare
18(1):135–153.
Bhalgat, A.; Chakraborty, T.; and Khanna, S. 2010. Ap-
proximating pure nash equilibrium in cut, party affiliation,
and satisfiability games. In Proceedings of the 11th ACM
conference on Electronic Commerce (EC), 73–82. ACM.
Bogomolnaia, A., and Jackson, M. O. 2002. The stability of
hedonic coalition structures. Games and Economic Behavior
38(2):201–230.
Brânzei, S., and Larson, K. 2009. Coalitional affinity games
and the stability gap. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
79–84.
Chierichetti, F.; Kleinberg, J.; and Oren, S. 2013. On dis-
crete preferences and coordination. In Proceedings of the
fourteenth ACM conference on Electronic Commerce (EC),
233–250. ACM.
Christodoulou, G.; Mirrokni, V. S.; and Sidiropoulos, A.
2006. Convergence and approximation in potential games.
In Proceedings of the 18th Annual Symposium on The-
oretical Aspects of Computer Science (STACS), 349–360.
Springer.
Chwe, M. S.-Y. 2000. Communication and coordination in
social networks. The Review of Economic Studies 67(1):1–
16.
Cooper, R. 1999. Coordination games. Cambridge Univer-
sity Press.
Darmann, A.; Elkind, E.; Kurz, S.; Lang, J.; Schauer, J.; and
Woeginger, G. 2012. Group activity selection problem. In
Proceedings of the 8th Intl. Workshop Internet & Network
Economics (WINE). Springer. 156–169.
Feldman, M., and Tamir, T. 2009. Approximate strong equi-
librium in job scheduling games. Journal of Artificial Intel-
ligence Research 36(1):387–414.

Feldman, M.; Lewin-Eytan, L.; and Naor, J. S. 2012. He-
donic clustering games. In Proceedinbgs of the 24th ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), 267–276. ACM.
Gairing, M., and Savani, R. 2010. Computing stable out-
comes in hedonic games. In Proceedings of the 3rd Inter-
national Symposium on Algorithmic Game Theory (SAGT).
Springer. 174–185.
Galeotti, A.; Goyal, S.; Jackson, M. O.; Vega-Redondo, F.;
and Yariv, L. 2010. Network games. The Review of Eco-
nomic Studies 77(1):218–244.
Goyal, S., and Vega-Redondo, F. 2005. Network forma-
tion and social coordination. Games and Economic Behav-
ior 50(2):178–207.
Jackson, M. O., and Watts, A. 2002. On the formation of
interaction networks in social coordination games. Games
and Economic Behavior 41(2):265–291.
Kleinberg, J., and Ligett, K. 2013. Information-sharing in
social networks. Games and Economic Behavior 82:702–
716.
Kosfeld, M. 2004. Economic networks in the laboratory: A
survey. Review of Network Economics 3(1).
Langberg, M.; Rabani, Y.; and Swamy, C. 2006. Approx-
imation algorithms for graph homomorphism problems. In
Proceedings of the 9th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Prob-
lems (APRPOX), 176–187. Springer.
Monderer, D., and Shapley, L. S. 1996. Potential games.
Games and economic behavior 14(1):124–143.
Morris, S. 2000. Contagion. The Review of Economic Stud-
ies 67(1):57–78.

514




