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Abstract

An important subclass of social choice functions, so-called
majoritarian (or C1) functions, only take into account the
pairwise majority relation between alternatives. In the ab-
sence of majority ties—e.g., when there is an odd number of
agents with linear preferences—the majority relation is anti-
symmetric and complete and can thus conveniently be rep-
resented by a tournament. Tournaments have a rich mathe-
matical theory and many formal results for majoritarian func-
tions assume that the majority relation constitutes a tourna-
ment. Moreover, most majoritarian functions have only been
defined for tournaments and allow for a variety of generaliza-
tions to unrestricted preference profiles, none of which can be
seen as the unequivocal extension of the original function. In
this paper, we argue that restricting attention to tournaments
is justified by the existence of a conservative extension, which
inherits most of the commonly considered properties from its
underlying tournament solution.

1 Introduction
Preference aggregation and voting are fundamental prob-
lems in multiagent systems research (see, e.g., Brandt,
Conitzer, and Endriss 2013). For example, a team of au-
tonomous agents or robots may use a voting rule to jointly
decide on a course of action. Perhaps one of the most natural
ways to aggregate binary preferences from individual agents
to a group of agents is simple majority rule, which prescribes
that one alternative is socially preferred to another whenever
a majority of agents prefers the former to the latter. Major-
ity rule has an intuitive appeal to democratic principles, is
easy to understand and—most importantly—satisfies some
attractive formal properties (May 1952). Moreover, almost
all common voting rules coincide with majority rule in the
two-alternative case. It would therefore seem that the exis-
tence of a majority of individuals preferring alternative a
to alternative b signifies something fundamental and generic
about the group’s preferences over a and b.

A majoritarian (or C1) social choice function is a func-
tion that maps a vector of individual preference relations to
a nonempty set of socially preferred alternatives and whose
output only depends on the pairwise majority relation. When
dealing with majoritarian functions, it is often assumed that
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there are no majority ties. For example, this can be guar-
anteed by insisting on an odd number of agents with lin-
ear preferences. Under this assumption, a preference pro-
file gives rise to a tournament and a majoritarian function
is equivalent to a tournament solution, i.e., a function that
associates with every complete and antisymmetric directed
graph a subset of the vertices of the graph. Examples of well-
studied tournament solutions are the Copeland set, the top
cycle, the uncovered set, or the Slater set (see, e.g., Laslier
1997).

Recent years have witnessed an increased interest in
the axiomatic and algorithmic aspects of tournament solu-
tions from the AI community (Brandt and Fischer 2008;
Faliszewski et al. 2009; Brandt et al. 2010; Brandt, Brill, and
Seedig 2011; Brandt et al. 2014; Aziz et al. 2012) as well as
from the theoretical computer science community (Woegin-
ger 2003; Alon 2006; Baumeister et al. 2013).

While technically convenient, the assumption that prefer-
ences do not admit majority ties is rather artificial. Particu-
larly if the number of agents is small, majority ties are likely
to occur. It is therefore natural to ask how a given majori-
tarian function can be generalized to the class of preference
profiles that may admit majority ties. Mathematically speak-
ing, we are looking for ways to apply a tournament solution
to a complete, but not necessarily antisymmetric, directed
graph—a so-called weak tournament. For many tournament
solutions, generalizations or extensions to weak tournaments
have been proposed. Often, it turns out that there are sev-
eral sensible ways to generalize a tournament solution and
it is unclear whether there exists a unique “correct” general-
ization. Even for something as elementary as the Copeland
set or the top cycle, there is a variety of extensions that are
regularly considered in the literature. A natural criterion for
evaluating the different proposals is whether the extension
satisfies appropriate generalizations of the axiomatic prop-
erties that the original tournament solution satisfies.

In this paper, we propose a generic way to extend any
tournament solution to the class of weak tournaments. This
so-called conservative extension of a tournament solution S
returns all alternatives that are chosen by S in some orienta-
tion of the weak tournament at hand. We show that many
of the most common axiomatic properties of tournament
solutions are “inherited” from S to its conservative exten-
sion (see Table 1 for an overview). We argue that these re-
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Property inherited by [S] Result

monotonicity Prop. 1
independence of unchosen alternatives Prop. 2
set-monotonicity Prop. 3
α̂ Prop. 4
stability (α̂ ∧ γ̂) Prop. 5
composition-consistency Prop. 6

Table 1: Properties that [S] inherits from S

sults provide a justification for restricting attention to tour-
naments when studying majoritarian functions.

The conservative extension also leads to interesting com-
putational problems that are strongly related to the possible
winner problem (Lang et al. 2012). In fact, computing the
conservative extension of a tournament solution is equiva-
lent to solving its possible winner problem when pairwise
comparisons are only partially specified. Of course, there
is an exponential number of orientations of a weak tour-
nament in general. Early results, however, indicate that for
many well-known tournament solutions, the corresponding
conservative extensions can be computed efficiently by ex-
ploiting individual peculiarities of these concepts.

The paper is organized as follows. After introducing the
necessary notation in Section 2, we define the conservative
extension in Section 3 and show that it inherits many de-
sirable properties in Section 4. Furthermore, we compare
the conservative extension to other generalizations that have
been proposed in the literature (Section 5) and study its
computational complexity (Section 6) for a number of com-
mon tournament solutions. Due to the space constraint, most
proofs are omitted. They can be found in the full version of
this paper.

2 Preliminaries
Let U be a universe of alternatives. For notational conve-
nience we assume that N ⊆ U . Every nonempty finite subset
of U is called a feasible set. For a binary relation % on U and
alternatives a, b ∈ U , we usually write a % b instead of the
more cumbersome (a, b) ∈ %. A weak tournament is a pair
W = (A,%), where A is a feasible set and % is a complete
binary relation on U , i.e., for all a, b ∈ U , we have a % b or
b % a (or both).1 Intuitively, a % b signifies that alternative
a is (weakly) preferred to b. Note that completeness implies
reflexivity, i.e., a % a for all a ∈ U . We write a � b if a % b
and not b % a, and a ∼ b if both a % b and b % a. We
denote the class of all weak tournaments byW .

The relation % is often referred to as the dominance re-
lation. One of the best-known concepts defined in terms of
the dominance relation is that of a Condorcet winner. Al-
ternative a is a Condorcet winner in a weak tournament

1This definition slightly diverges from the common graph-
theoretic definition where % is defined on A rather than on U .
However, it facilitates the definition of tournament solutions and
their properties.

W = (A,%) if a � b for all alternatives b ∈ A \ {a}.
A tournament is a weak tournament (A,%) whose dom-

inance relation % is also antisymmetric, i.e., for all distinct
a, b ∈ A, we have that a % b and b % a imply a = b.2 For
a tournament T = (A,%) and distinct alternatives a, b ∈ A,
a % b if and only if a � b. We therefore often write
T = (A,�) instead of T = (A,%). We denote the class
of all tournaments by T . Obviously, T ⊆ W .

For a pair of weak tournaments W = (A,%) and W ′ =
(A′,%′), we say that W is contained in W ′, and write W ⊆
W ′, if A = A′ and a % b implies a %′ b for all a, b ∈ A.
We will often deal with the set of all tournaments that are
contained in a given weak tournament W .

Definition 1. For a weak tournament W ∈ W , the set of
orientations of W is given by [W ] = {T ∈ T : T ⊆W}.

Every orientation of a weak tournament W = (A,%) can
be obtained from W by eliminating, for all distinct alterna-
tives a and b such that a ∼ b, one of (a, b) and (b, a) from %.

The relation % can be raised to sets of alternatives and we
write A % B to signify that a % b for all a ∈ A and all b ∈
B. For a weak tournament W = (A,%) and a feasible set
B ⊆ A, we will sometimes consider the restriction W |B =
(B,%) of W to B.

A tournament solution is a function S that maps each tour-
nament T = (A,�) to a nonempty subset S(T ) of its alter-
natives A called the choice set. It is generally assumed that
choice sets only depend on �|A and that tournament solu-
tions cannot distinguish between isomorphic tournaments.

Two examples of well-known tournament solutions are
the top cycle and the Copeland set. The top cycle TC (T )
of a tournament T = (A,�) is defined as the smallest set
B ⊆ A such that B � A \ B. The Copeland set CO(T )
consists of all alternatives whose dominion is of maximal
size, i.e., CO(T ) = argmaxa∈A |{b ∈ A \ {a} : a � b}|.

3 The Conservative Extension
In order to render tournament solutions applicable to gen-
eral preference profiles, we need to generalize them to weak
tournaments. A generalized tournament solution is a func-
tion S that maps each weak tournament W = (A,%) to a
nonempty subset S(W ) of its alternatives A. A generalized
tournament solution S is called an extension of tournament
solution S′ if S(W ) = S′(W ) wheneverW is a tournament.
For several tournament solutions, extensions have been pro-
posed in the literature (e.g., Dutta and Laslier 1999; Peris
and Subiza 1999). Of course, there are many ways to ex-
tend any given tournament solution, and there is no definite
obvious way of judging whether one proposal is better than
another one.

We are interested in a generic way to extend any tourna-
ment solution to the class of weak tournaments. In particular,
our goal is to extend tournament solutions in such a way that

2Defining tournaments with a reflexive dominance relation is
non-standard. The reason we define tournaments in such a way is
to ensure that every tournament is a weak tournament. Whether
the dominance relation of a tournament is reflexive or not does not
make a difference for any of our results.
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common axiomatic properties are “inherited” from a tour-
nament solution to its extension. This task is not trivial, as
even the arguably most cautious approach has its problems.
Let the trivial extension of a tournament solution S be de-
fined as the generalized tournament solution that always se-
lects the whole feasible setAwhenever the weak tournament
W = (A,%) is not a tournament. It is easy to see that the
trivial extension does not satisfy Condorcet-consistency, i.e.,
the requirement that a Condorcet winner should be uniquely
selected whenever it exists. Indeed, for the weak tournament
({a, b, c},%) with a � {b, c} and b ∼ c, the trivial extension
of any tournament solution selects {a, b, c}. The trivial ex-
tension also fails to inherit composition-consistency, which
will be defined in Section 4.4.

We therefore propose to extend tournament solutions in a
slightly more sophisticated way. The conservative extension
of a tournament solution S returns all alternatives that are
chosen by S in some orientation of the weak tournament at
hand.
Definition 2. Let S be a tournament solution. The conser-
vative extension [S] of S is the generalized tournament so-
lution that maps a weak tournament W ∈ W to

[S](W ) =
⋃

T∈[W ]

S(T ).

This definition is reminiscent of the parallel-universes tie-
breaking approach in social choice theory (Conitzer, Rogn-
lie, and Xia 2009; Brill and Fischer 2012) and corresponds
to selecting the set of all possible winners of W when
ties are interpreted as missing edges (Lang et al. 2012;
Aziz et al. 2012).

For example, the weak tournament depicted in Figure 1
has four orientations. It can be checked that {CO(T ) : T ∈
[W ]} = {{a}, {a, b}, {a, c}} and {TC (T ) : T ∈ [W ]} =
{{a}, {a, b, c, d}}. Therefore, [CO ](W ) = {a, b, c} and
[TC ](W ) = {a, b, c, d}.

a b

dc

Figure 1: Weak tournament W = ({a, b, c, d},%) with
[CO ](W ) = {a, b, c} and [TC ](W ) = {a, b, c, d}. An edge
from vertex x to vertex y represents x % y.

4 Inheritance of Properties
The literature on (generalized) tournament solutions has
identified a number of desirable properties for these con-
cepts. In this section, we study which properties are inher-
ited when a tournament solution is generalized via the con-
servative extension. After stating a useful lemma, we con-
sider four classes of properties: dominance-based proper-
ties (Section 4.2) that deal with changes in the dominance

W f(W )

[W ] f([W ]) = [f(W )]

Figure 2: Orientation-consistency

relation, choice-theoretic properties that deal with varying
feasible sets (Section 4.3), composition-consistency (Sec-
tion 4.4), and regularity (Section 4.5).

4.1 A General Lemma
Many properties express the invariance of alternatives be-
ing chosen (or alternatives not being chosen) under certain
type of transformation of the weak tournament. That is, they
have the form that if an alternative a is chosen (not chosen)
from some weak tournament W , then a is also chosen (not
chosen) from f (W ), where f is an operation that transforms
weak tournaments in a particular way.

Formally, a tournament operation is a mapping f from the
class of all weak tournaments to itself. A tournament oper-
ation f is orientation-consistent if applying the operation to
any orientation of a weak tournament W results in a tourna-
ment that is an orientation of f (W ).
Definition 3. A tournament operation f is orientation-
consistent if for all weak tournaments W and all T ∈ [W ],

f ([W ]) = [f (W )],

where f([W ]) = {f(T ) : T ∈ [W ]}. Furthermore, a
class F of tournament operations is orientation-consistent
if each operation in F is orientation-consistent.

In other words, f is orientation-consistent if the diagram
in Figure 2 commutes. Observe that a necessary condition
for f to be orientation-consistent is that f(T ) ⊆ T .

Let F be a class of tournament operations and C a sub-
class of weak tournaments. We then say that a generalized
tournament solution S is inclusion-invariant under F on C
if, for all weak tournaments W in C,

a ∈ S(W ) implies a ∈ S(f (W )) for all f ∈ F .

Similarly, we say that S is exclusion-invariant under F on C
if, for all weak tournaments W in C,

a /∈ S(W ) implies a /∈ S(f (W )) for all f ∈ F .

We are now in a position to formulate a very useful lemma.
Lemma 1. Let F be an orientation-consistent class of tour-
nament operations and S a tournament solution. Then,
(i) if S is inclusion-invariant under F on T , so is [S] onW ,
(ii) if S is exclusion-invariant under F on T , so is [S] onW .

Proof. We give the proof for (i); the proof for (ii) runs
along analogous lines. Assume that S is inclusion-invariant
under F on T , i.e., for all T ∈ T and all alternatives a,

a ∈ S(T ) implies a ∈ S(f(T )).
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Consider an arbitrary weak tournament W inW and an al-
ternative a ∈ [S](W ). By definition of [S],

a ∈ S(T ) for some T ∈ [W ]. (∗)

We show that a ∈ [S](f(W )) for all f ∈ F . For a con-
tradiction assume a /∈ [S](f(W )) for some f ∈ F . Then,
a /∈ S(T ) for all T ∈ [f(W )]. By orientation-consistency
of f , then also a /∈ S(T ) for all T ∈ f([W ]). Recall that
f([W ]) = {f(T ) : T ∈ [W ]}. Hence, a /∈ S(f(T ))
for all T ∈ [W ]. Our initial assumption then finally yields
a /∈ S(T ) for all T ∈ [W ], which contradicts (∗).

4.2 Dominance-Based Properties
We first look at three properties that deal with changes in the
dominance relation, namely monotonicity, independence of
unchosen alternatives, and set-monotonicity.

A tournament solution is monotonic if a chosen alterna-
tive remains in the choice set when it is strengthened against
some other alternative, while leaving everything else un-
changed. Here, strengthening a versus b refers to replac-
ing b � a with a � b. In weak tournaments, we can also
strengthen a against b by replacing a ∼ b with a � b.3 In
order to formalize monotonicity, let W = (A,%) be a weak
tournament and define Wa�b = (A,%′), where

%′ = % \{(b, a)} ∪ {(a, b)}.

Definition 4. A generalized tournament solution S is mono-
tonic if for all W = (A,%) and b ∈ A,

a ∈ S(W ) implies a ∈ S(Wa�b).

It is easy to see that monotonicity can be phrased as an
inclusion-invariance condition. Invoking Lemma 1, we then
obtain the following result.

Proposition 1. If a tournament solution S is monotonic
on T , so is [S] onW .

Proof sketch. Let fa�b be the tournament operation that
maps each weak tournament W to Wa�b and define

FMON
a (W ) = {fa�b : b ∈ A \ {a}}.

It can then easily be appreciated that a generalized tourna-
ment solution is monotonic if and only if it is inclusion-
invariant under FMON

a . Observe that FMON
a is orientation-

consistent. Lemma 1 then gives the result.

Independence of unchosen alternatives (IUA) prescribes
that the choice set is invariant under any changes in the dom-
inance relation among unchosen alternatives.

Definition 5. A generalized tournament solution S is in-
dependent of unchosen alternatives (IUA) if for all W =
(A,%) and a, b ∈ A \ S(A),

S(W ) = S(Wa�b).
3A subtler way to strengthen a against b consists in replacing

b � a with a ∼ b. Although this case is not covered by our defi-
nition of monotonicity, it can be shown that [S] satisfies this addi-
tional property as long as S is monotonic.

Reasoning along similar lines as for monotonicity, we find
that IUA is inherited from S to [S].

Proposition 2. If a tournament solution S is independent of
unchosen alternatives on T , so is [S] onW .

Proof sketch. Let F IUA(W ) = {fa�b : a, b ∈ A \ S(W )}
and observe that a generalized tournament solution satis-
fies IUA if and only if it is both inclusion-invariant and
exclusion-invariant under F IUA. To appreciate this observe
that inclusion-invariance under F IUA implies that S(W ) ⊆
S(Wa�b) and exclusion-invariance under F IUA implies
S(W ) ⊇ S(Wa�b), the other direction being straightfor-
ward. Moreover, F IUA(W ) is orientation-consistent. An ap-
plication of Lemma 1 then yields the result.

Set-monotonicity is a strengthening of both monotonicity
and IUA and is the defining property in a characterization of
group-strategyproof social choice functions (Brandt 2011).
A tournament solution is set-monotonic if the choice set re-
mains the same whenever some alternative is strengthened
against some unchosen alternative.

Definition 6. A generalized tournament solution S is set-
monotonic if for all W = (A,%), a ∈ A, and b ∈ A\S(A),

S(W ) = S(Wa�b).

Set-monotonicity can be characterized in terms of
inclusion-invariance and exclusion-invariance with respect
to an orientation-consistent class of tournament operations
given by FSMON (W ) = {fa�b : a ∈ U, b ∈ A \ S(W )}.
Thus, Lemma 1 also yields the following result.

Proposition 3. If a tournament solution S is set-monotonic
on T , so is [S] onW .

4.3 Choice-Theoretic Properties
We now turn to a class of properties that relate choices from
different feasible sets to each other. For all of these prop-
erties, the dominance relation % is fixed. We can therefore
simplify notation and write S(A) for S((A,%)).

The central property in this section is stability (Brandt and
Harrenstein 2011), which requires that a set is chosen from
two different sets of alternatives if and only if it is chosen
from the union of these sets.

Definition 7. A generalized tournament solution S is stable
if for all feasible sets A,B and X ⊆ A ∩B,

X = S(A) = S(B) if and only if X = S(A ∪B).

Stability can be factorized into conditions α̂ and γ̂ by
considering each implication in the above equivalence sepa-
rately.4

X = S(A ∪B) implies X = S(A) = S(B) (α̂)
X = S(A) = S(B) implies X = S(A ∪B) (γ̂)

4Property α̂ is also known as Chernoff’s postulate 5∗ (Chernoff
1954), the strong superset property (Bordes 1979), or outcast (Aiz-
erman and Aleskerov 1995) (see Monjardet (2008) for a more thor-
ough discussion of the origins of this condition).
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Lemma 1 is not directly applicable to the choice-theoretic
properties α̂ and γ̂. For α̂, however, we can utilize the fol-
lowing characterization: S satisfies α̂ if and only if

S(A) ⊆ B ⊆ A implies S(A) = S(B)

for all feasible sets A,B. This characterization allows us to
reformulate α̂ as the conjunction of two invariance proper-
ties. For a feasible set B, we let fB denote the tournament
operation that maps a weak tournament W = (A,%) with
B ⊆ A to its restriction to B, i.e., fB(W ) =W |B . Further-
more, define F α̂ = {fB : S(A) ⊆ B ⊆ A}. Observe that a
generalized tournament solution S satisfies α̂ if and only if S
is both inclusion-invariant under F α̂ and exclusion-invariant
under F α̂. Since F α̂ is orientation-consistent, we can apply
Lemma 1.
Proposition 4. If a tournament solution S satisfies α̂ on T ,
so does [S] onW .

For γ̂, no characterization similar in spirit to the refor-
mulation of α̂ above is known. In fact, we were not able to
prove that γ̂ is inherited from a tournament solution S to its
conservative extension [S]. However, it is inherited if S also
satisfies α̂.
Proposition 5. Let S be a tournament solution that satis-
fies α̂. If S satisfies γ̂ on T , so does [S] onW .

Since stability is equivalent to the conjunction of α̂ and γ̂,
the following statement follows as an immediate conse-
quence of Propositions 4 and 5.
Corollary 1. If S is stable on T , so is [S] onW .

Interestingly, requiring α̂ so that γ̂ is inherited is less re-
strictive than it might seem because all common tournament
solution satisfy α̂ if and only if they satisfy γ̂.5 In gen-
eral, however, it is the case that α̂ and γ̂ are independent
from each other, even though this requires the construction
of rather artificial tournament solutions.

4.4 Composition-Consistency
We finally consider a structural property that deals with sets
of similar alternatives. A component of a tournament is a
subset of alternatives that bear the same dominance relation-
ship to all alternatives not in the set. A decomposition is
a partition of the alternatives into components. A decom-
position induces a summary tournament with the compo-
nents as alternatives. A tournament solution is then said to be
composition-consistent if it selects the best alternatives from
the components it selects from the summary tournament.

In order to extend the definition of composition-
consistency to weak tournaments, we need to generalize the
concept of a component. By a component of a weak tourna-
mentW = (A,%) we understand a feasible setX ⊆ A such
that X is a singleton or for all y ∈ A \X , either X � y or
y � X . We have the following lemma.
Lemma 2. Let W = (A,%) be a weak tournament and
X ⊆ A. Then, X is a component of W if and only if X is a
component of every orientation T ∈ [W ].

5For example, this statement holds for all tournament solutions
considered in Section 5: TC , BP , and MC satisfy both α̂ and γ̂,
and CO , UC , BA, and TEQ satisfy neither α̂ nor γ̂.

Given the definition of a component, decompositions and
summaries of weak tournaments, as well as composition-
consistency of generalized tournament solutions, are then
defined analogously to the case of tournaments. We find that
composition-consistency is inherited to the conservative ex-
tension.

Proposition 6. If a tournament solution S is composition-
consistent on T , so is [S] onW .

The literature on tournaments also distinguishes the con-
cept of weak composition-consistency (see, e.g., Laslier
1997). We find that, rendering it applicable to weak tourna-
ments in a way much similar as above, weak composition-
consistency is also inherited by [S] from S.

4.5 Regularity
A tournament solution is regular if it selects all alternatives
from regular tournaments, i.e., tournaments in which the in-
degree and outdegree of every alternative are equal. Reg-
ularity extends naturally to weak tournaments, but we find
that it is not generally inherited from S to [S]. A weaker,
but likewise conservative, extension of the notion of regu-
larity, which we call weak regularity, requires a generalized
solution concept to choose all alternatives from regular weak
tournaments of odd order only. Weak regularity is inherited
from S to [S].

5 Comparison to Other Generalizations
For many tournament solutions, generalizations or exten-
sions to weak tournaments have been proposed in the lit-
erature. In this section, we compare these extensions to the
conservative extension for a number of well-known tourna-
ment solutions (for definitions, see Laslier 1997). For gen-
eralized tournament solutions S and S′, we write S′ ⊂ S if
S 6= S′ and S′(W ) ⊆ S(W ) for all weak tournaments W .
In this case, we say that S′ is a refinement of S.

Copeland Set The Copeland set CO gives rise to a whole
class of extensions that is parameterized by a number α be-
tween 0 and 1. The generalized tournament solution COα

selects all alternatives that maximize the variant of the
Copeland score in which each tie contributes α points to an
alternative’s score (see, e.g., Faliszewski et al. 2009). Hen-
riet (1985) axiomatically characterized CO

1
2 , arguably the

most natural variant in this class. While it is easy to check
that [CO ] 6⊂ COα for all α ∈ [0, 1], the inclusion of COα

in [CO ] turns out to depend on the value of α.

Proposition 7. COα ⊂ [CO ] if and only if 1
2 ≤ α ≤ 1.

Top Cycle Schwartz (1972; 1986) defined two generaliza-
tions of the top cycle TC (see also Sen 1986 and Brandt,
Fischer, and Harrenstein 2009). GETCHA (or the Smith set)
contains the maximal elements of the transitive closure of %
whereas GOCHA (or the Schwartz set) contains the maximal
elements of the transitive closure of�. The conservative ex-
tension [TC ] coincides with GETCHA.

Proposition 8. GOCHA ⊂ GETCHA = [TC ].
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Bipartisan Set Dutta and Laslier (1999) generalized the
bipartisan set BP to the essential set ES , which is given by
the set of all alternatives that are contained in the support of
some Nash equilibrium of the underlying weak tournament
game. The essential set does not coincide with the conserva-
tive extension [BP ]. Whether ES ⊂ [BP ] holds is an open
problem.

Uncovered Set Duggan (2013) surveyed several exten-
sions of the covering relation to weak tournaments. Any
such relation induces a generalization of the uncovered set.
The so-called deep covering and McKelvey covering rela-
tions are particularly interesting extensions. Duggan (2013)
showed that for all other generalizations of the covering re-
lation he considered, the corresponding uncovered set is a
refinement of the deep uncovered set UCD . Another inter-
esting property of UCD is that it coincides with the conser-
vative extension of UC .

Proposition 9. UCD = [UC ].

It follows that all other UC generalizations considered by
Duggan (2013) are refinements of [UC ].

Minimal Covering Set The generalization of MC is only
well-defined for the McKelvey covering relation and the
deep covering relation. The corresponding generalized tour-
nament solutions are known to satisfy stability. We have con-
structed a weak tournament in which [MC ] is strictly con-
tained in both the McKelvey minimal covering set MCM

and the deep minimal covering set MCD . There are also
weak tournaments in which MCM is strictly contained
in [MC ].

Proposition 10. [MC ] ⊂ MCD , [MC ] 6⊂ MCM , and
MCM 6⊂ [MC ].

Corollary 1 implies that [MC ] satisfies the very demand-
ing stability property. Hence, we have found a new sensible
generalization of MC which is a refinement of MCD and
sometimes yields strictly smaller choice sets than MCM .

Banks Set Banks and Bordes (1988) discussed four dif-
ferent generalizations of the Banks set BA to weak tour-
naments, denoted by BA1, BA2, BA3, and BA4. Each of
those generalizations is a refinement of the conservative ex-
tension [BA].

Proposition 11. BAm ⊂ [BA] for all m ∈ {1, 2, 3, 4}.

Tournament Equilibrium Set Finally, Schwartz (1990)
suggested six ways to extend the tournament equilibrium
set TEQ—and the notion of retentiveness in general—to
weak tournaments. However, all of those variants can easily
be shown to lead to disjoint minimal retentive sets even in
very small tournaments, and none of the variants coincides
with [TEQ ].

It is noteworthy that, in contrast to the conservative exten-
sion, some of the extensions discussed above fail to inherit
properties from their corresponding tournament solutions.
For instance, GOCHA violates α̂ and BA3 and BA4 violate
the weak superset property (Banks and Bordes 1988).

6 Computational Complexity
When a tournament solution S is generalized via the conser-
vative extension to [S], it is natural to ask whether the choice
set of [S] can be computed efficiently. Since the number of
orientations of a weak tournament can be exponential in the
size of the weak tournament, tractability of the winner de-
termination problem of S is a necessary, but not a sufficient,
condition for the tractability of [S].
Proposition 12. There is a tournament solution S such that
the winner determination problem is in P for S, and NP-
complete for [S].

In light of Proposition 12, it is interesting to check for
each tractable tournament solution S, whether the choice set
of [S] can be computed efficiently. This question is mathe-
matically equivalent to the problem of computing the set of
possible winners for a partially specified tournament. The
latter problem has been studied for the Copeland set CO ,
the top cycle TC , and the uncovered set UC .
Proposition 13 (Cook et al. 1998). Computing [CO ] is in
P.
Proposition 14 (Lang et al. 2012). Computing [TC ] is in
P.
Proposition 15 (Aziz et al. 2012). Computing [UC ] is in P.

While the proof of Proposition 13 consists in a
polynomial-time reduction to maximum network flow, [TC ]
and [UC ] can be computed by greedy algorithms. It is a
very interesting open problem whether the conservative ex-
tensions of more elaborate tournament solutions such as the
minimal covering set or the bipartisan set can be computed
efficiently.

If computing winners is NP-complete for a tournament
solution, the same is true for its conservative extension.
Lemma 3. If winner determination for S is NP-complete,
then winner determination for [S] is NP-complete.

Proof. Hardness of computing [S] immediately follows
from hardness of computing S, because [S] and S agree
whenever the weak tournament is in fact a tournament. For
membership in NP, suppose that x ∈ [S](W ). Then we can
guess an orientation T ∈ [W ] and an efficiently verifiable
witness of the fact that x ∈ S(T ).

Since the winner determination problem is NP-complete
for the Banks set BA (Woeginger 2003), we have an imme-
diate corollary.
Corollary 2. Computing [BA] is NP-complete.

7 Conclusion
We have shown that the conservative extension inherits
many desirable properties from its underlying tournament
solution (see Table 1). In general, the conservative exten-
sion [S] of tournament solution S is rather large and there
might be more discriminating extensions of S that still sat-
isfy its characterizing properties. However, the conservative
extension may serve as “proof of concept” to show that gen-
eralizing a tournament solution in a meaningful way is pos-
sible. Whether there are more discriminating solutions that
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are equally attractive is a different issue that needs to be set-
tled for each tournament solution at hand.

Acknowledgements
This work was supported by the Deutsche Forschungsge-
meinschaft under grant BR 2312/7-2, by a Feodor Lynen
research fellowship of the Alexander von Humboldt Foun-
dation, and by the ERC under Advanced Grant 291528
(“RACE”). We thank Vincent Conitzer, Christian Geist, and
Hans Georg Seedig for helpful discussions.

References
Aizerman, M., and Aleskerov, F. 1995. Theory of Choice,
volume 38 of Studies in Mathematical and Managerial Eco-
nomics. North-Holland.
Alon, N. 2006. Ranking tournaments. SIAM Journal on
Discrete Mathematics 20(1):137–142.
Aziz, H.; Brill, M.; Fischer, F.; Harrenstein, P.; Lang, J.; and
Seedig, H. G. 2012. Possible and necessary winners of par-
tial tournaments. In Conitzer, V., and Winikoff, M., eds.,
Proc. of 11th AAMAS Conference, 585–592. IFAAMAS.
Banks, J. S., and Bordes, G. A. 1988. Voting games, indiffer-
ence, and consistent sequential choice rules. Social Choice
and Welfare 5:31–44.
Baumeister, D.; Brandt, F.; Fischer, F.; Hoffmann, J.; and
Rothe, J. 2013. The complexity of computing minimal
unidirectional covering sets. Theory of Computing Systems
53(3):467–502.
Bordes, G. 1979. Some more results on consistency, ratio-
nality and collective choice. In Laffont, J. J., ed., Aggrega-
tion and Revelation of Preferences. chapter 10, 175–197.
Brandt, F., and Fischer, F. 2008. Computing the minimal
covering set. Mathematical Social Sciences 56(2):254–268.
Brandt, F., and Harrenstein, P. 2011. Set-rationalizable
choice and self-stability. Journal of Economic Theory
146(4):1721–1731.
Brandt, F.; Fischer, F.; Harrenstein, P.; and Mair, M. 2010.
A computational analysis of the tournament equilibrium set.
Social Choice and Welfare 34(4):597–609.
Brandt, F.; Brill, M.; Fischer, F.; and Harrenstein, P. 2014.
Minimal retentive sets in tournaments. Social Choice and
Welfare 42(3):551–574.
Brandt, F.; Brill, M.; and Seedig, H. G. 2011. On the fixed-
parameter tractability of composition-consistent tournament
solutions. In Walsh, T., ed., Proc. of 22nd IJCAI, 85–90.
AAAI Press.
Brandt, F.; Conitzer, V.; and Endriss, U. 2013. Computa-
tional social choice. In Weiß, G., ed., Multiagent Systems.
MIT Press, 2nd edition. chapter 6, 213–283.
Brandt, F.; Fischer, F.; and Harrenstein, P. 2009. The com-
putational complexity of choice sets. Mathematical Logic
Quarterly 55(4):444–459.
Brandt, F. 2011. Group-strategyproof irresolute social
choice functions. In Walsh, T., ed., Proc. of 22nd IJCAI,
79–84. AAAI Press.

Brill, M., and Fischer, F. 2012. The price of neutrality for the
ranked pairs method. In Hoffmann, J., and Selman, B., eds.,
Proc. of 26th AAAI Conference, 1299–1305. AAAI Press.
Chernoff, H. 1954. Rational selection of decision functions.
Econometrica 22:422–443.
Conitzer, V.; Rognlie, M.; and Xia, L. 2009. Preference
functions that score rankings and maximum likelihood esti-
mation. In Proc. of 21st IJCAI, 109–115.
Cook, W. J.; Cunningham, W. H.; Pulleyblank, W. R.; and
Schrijver, A. 1998. Combinatorial Optimization. Wiley and
Sons.
Duggan, J. 2013. Uncovered sets. Social Choice and Welfare
41:489–535.
Dutta, B., and Laslier, J.-F. 1999. Comparison functions
and choice correspondences. Social Choice and Welfare
16(4):513–532.
Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L.; and
Rothe, J. 2009. Llull and Copeland voting computationally
resist bribery and constructive control. Journal of Artificial
Intelligence Research 35:275–341.
Henriet, D. 1985. The Copeland choice function: an
axiomatic characterization. Social Choice and Welfare
2(1):49–63.
Lang, J.; Pini, M. S.; Rossi, F.; Salvagnin, D.; Venable,
K. B.; and Walsh, T. 2012. Winner determination in vot-
ing trees with incomplete preferences and weighted votes.
Journal of Autonomous Agents and Multi-Agent Systems
25(1):130–157.
Laslier, J.-F. 1997. Tournament Solutions and Majority Vot-
ing. Springer.
May, K. 1952. A set of independent, necessary and suffi-
cient conditions for simple majority decisions. Economet-
rica 20:680–684.
Monjardet, B. 2008. Statement of precedence and a com-
ment on IIA terminology. Games and Economic Behavior
62:736–738.
Peris, J. E., and Subiza, B. 1999. Condorcet choice corre-
spondences for weak tournaments. Social Choice and Wel-
fare 16(2):217–231.
Schwartz, T. 1972. Rationality and the myth of the maxi-
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