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Abstract

We study the problem where a task (or multiple unrelated
tasks) must be executed, there are multiple machines/agents
that can potentially perform the task, and our objective is to
minimize the expected sum of the agents’ processing times.
Each agent does not know exactly how long it will take him
to finish the task; he only knows the distribution from which
this time is drawn. These times are independent across agents
and the distributions fulfill the monotone hazard rate condi-
tion. Agents are selfish and will lie about their distributions if
this increases their expected utility.
We study different variations of the Vickrey mechanism that
take as input the agents’ reported distributions and the play-
ers’ realized running times and that output a schedule that
minimizes the expected sum of processing times, as well as
payments that make it an ex-post equilibrium for the agents
to both truthfully report their distributions and exert full effort
to complete the task. We devise the ChPE mechanism, which
is uniquely tailored to our problem, and has many desirable
properties including: not rewarding agents that fail to finish
the task and having non-negative payments.

Introduction
Task (re)allocation is a crucial component of many multia-
gent systems. When these systems consist of multiple self-
interested agents, it is important to carefully consider the
incentives that agents are given to take on tasks. The wrong
incentives may, for example, lead an agent to report that it
will complete the task much faster than it actually can. As
a result, the task may not be allocated to the agent that can
complete the task most efficiently in actuality, resulting in a
loss of social welfare. Mechanism design provides the natu-
ral framework for considering such incentive questions. An-
other key issue is uncertainty: a cloud provider that is con-
sidering running a program provided by an unknown user
in general cannot perfectly predict how long the execution
will take. However, the cloud provider can reasonably have
a probability distribution over the length of execution.
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In this work, we construct mechanisms for scheduling a
single1 job, in the setting where each of the n selfish ma-
chines only knows the distribution from which its own run-
ning time is drawn. The mechanism then outputs a schedule
that determines which machine gets to compute when (al-
lowing preemption). It also outputs payments, which may
also be based on which machine completed the job and
when. We focus on efficient mechanisms, i.e., mechanisms
that schedule the machines to minimize the total expected
processing time, and require them to be truthful. We pro-
pose multiple such mechanisms, but our favorite is the ChPE
mechanism, which has the most desirable properties. It is a
type of Groves mechanism, but one in which an agent can
affect the h term of its own payment (while in the classical
Groves mechanism (see Section 9.3.3 of (Nisan et al. 2007)
for definition) the h part can only depend on the values of the
other players). This would seem problematic, except with a
neat technical trick we are able to prove that the agent cannot
affect the expectation of this h term.

Related work. (Nisan and Ronen 2001) proposed, among
other paradigmatic algorithmic mechanism design prob-
lems, a mechanism design version of the problem of
scheduling unrelated machines. In our work the payments
are sometimes based in part on performance, rather than
only on the machines’ reports. This relates to the litera-
ture on mechanism design with partial verification, where
the center can detect some, but not all of the lies. This
was first formalized by Green and Laffont (Green and Laf-
font 1986), and subsequently studied in a number of pa-
pers. (Nisan and Ronen 2001) as well as several follow-up
papers (e.g., (Auletta et al. 2006; Krysta and Ventre 2010;
Fotakis and Zampetakis 2013; Caragiannis et al. 2012)) con-
structed mechanisms with verification for scheduling and
auction settings. Our setting can be thought of as having
“noisy” verification, where we have only probabilistic evi-
dence that an agent was lying, because its performance is un-
likely (but not impossible) given the distribution it reported.

The general phenomenon of execution uncertainty in
mechanism design, a key concept in our work, has already
been addressed in a number of other papers (Porter et al.

1It will be easy to see that if we have multiple unrelated tasks,
our results extend naturally by applying the mechanisms we pro-
pose to each one of the tasks, one after the other.
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2008; Johnson 2013; Ramchurn et al. 2009; Stein et al. 2011;
Feige and Tennenholtz 2011). For example, in (Porter et
al. 2008), each machine has a probability of failure and
has a cost for attempting the task. In fact, in all these pa-
pers, each machine has a fixed cost for attempting the task,
whereas in our case, the cost depends on how many time
steps we allow the machine to run (we assume the cost
is 1 per unit of time). (Porter et al. 2008; Johnson 2013)
also deal with the case where the machines are correlated.
In contrast to our work (Porter et al. 2008; Johnson 2013;
Ramchurn et al. 2009) only allow the task to be allocated
to a single machine The closest paper to our work is (Stein
et al. 2011), which does allow the task to be allocated to
multiple machines. However, in their work, once a machine
is invoked it cannot be stopped or preempted, and the only
reason to invoke multiple machines is to meet a deadline.
In contrast, we allow the schedule to re-assign the task to
different machines at different time steps, simply to mini-
mize expected total processing time. Although Vickrey-type
mechanisms with verification are also proposed in these pa-
pers, they do not obtain all the desirable properties of the
ChPE mechanism that we propose for our setting.

From an economic perspective, in our setting, an interest-
ing type of interdependence in the agents’ utility functions
emerges. That is, a machine’s expected utility depends not
only on its true type (=distribution) and all agents’ reported
types, but additionally on the true types of the other agents.
This is why we only obtain ex-post equilibrium rather than
dominant strategies. Interdependence arises in a very sim-
ilar manner as in our setting in (Stein et al. 2011), while
in (Ramchurn et al. 2009) interdependence exists due to a
different reason, namely agents reporting on each other’s
likelihood to succeed.

Model and definitions There is a single job that needs to
be processed and a setN = {1, . . . , n} of machines/players.
The objective is to minimize the expected processing time.
A machine does not know the exact time that it would need
to finish the task, but it does know a distribution over this
time; this distribution will be its private information in the
mechanism design problem. Note that this is not the distri-
bution over its type; the distribution is its type.

If machine i spends a unit of time on the task, it will either
finish, or learn that it has not finished. Formally, let the dis-
crete random variable Ti denote the running time of machine
i, which is the time it would need if it continued to run on the
job until its completion. We will use ti ∈ {1, 2, . . .} ∪ {∞}
to denote a realization of Ti. Let fi denote the probability
density function of Ti, i.e., P (Ti = ti) = fi(ti). Further-
more letFi denote the cumulative density function of Ti, i.e.,
P (Ti < ti) = Fi(ti). Let ζi(ti) = fi(ti)/(1 − Fi(ti)) de-
note player i’s hazard rate, i.e., the probability, conditional
on not having finished strictly before time ti, of finishing at
time ti. (The distributions of two different players i and j
are independent from each other.) The hazard rate function
is very often used in risk management and reliability theory
because it has been found useful and in clarifying the rela-
tionship between physical modes of failure.

We say player i’s distribution has a monotone hazard rate

(MHR) if ζi(ti) is non-increasing as a function of ti. That
is, the longer the machine has already run on the job, the
less likely it is that it will finish immediately. We assume
MHR throughout the paper. This reflects that, if player i
has multiple approaches that it can take towards solving the
problem—for example, it can attempt one heuristic in each
time unit—it is optimal for the player to try those that are
most likely to succeed first. Decreasing hazard rate distribu-
tions include the hyperexponential, Pareto, and some cases
of Weibull.

The objective is to minimize the expected processing cost.
We assume that the cost of processing per unit of time is 1
for all machines. The machines are selfish so they will not do
any processing if they are not given an incentive (payment)
to do so. A selfish player wants to maximize his expected
utility, which is payment minus processing cost. Under this
model, even though we allow the task to run on any num-
ber of machines at each time step, it is always suboptimal
to schedule two machines to run in parallel during any time
unit: one would be better off sequentializing the two units
of processing time, just in case the job gets completed dur-
ing the first time unit, so the second is no longer necessary.
Hence, only one machine will run in each time unit.

We do allow preemption: e.g., the scheduler can let ma-
chine 1 run for two time units first, then let machine 2 run for
three time units, then machine 1 for one time unit, etc. We
emphasize that, with this schedule, the probability that we
finish in the sixth time unit given that we have not finished
earlier is ζ1(3), not ζ1(6), because this is only the third time
unit in which machine 1 is actively processing. We will gen-
erally use ti to denote time on i’s “clock”, that is, i’s local
time is t1 = 3 when the global time is t = 6 in the above
example. Once any machine finishes, all computation stops.

In a (direct-revelation) mechanism, each player i reports
f̂i (or, equivalently, ζ̂i) to the mechanism. The mechanism,
based on (f̂1, . . . , f̂n), produces as output a schedule s :
{1, 2, . . .} → N , where s(t) is the machine that is assigned
to process at (global) time t. s denotes the infinite vector
s := (s(1), s(2), . . .). Note that s does not contain the infor-
mation of when the computation finishes. Ω is the random
variable that denotes the (global) time at which the compu-
tation finishes (and ω for a realization of it).

Nothing we have said so far precludes the possibility that
there is a positive probability of never finishing, resulting in
infinite expected cost. For the sake of simplicity, in most of
the paper, we simply assume this away by assuming that all
hazard rates are bounded below by a positive constant. In the
full version of our paper we also abandon this assumption
and consider the possibility that it may be better to give up
on the task at some point, modeling that completion of the
task has a value of Φ.

Our Results
The optimal schedule with MHR players
The MHR assumption makes it easy to find the optimal
schedule given the machines’ true hazard rates: always
greedily use the machine that currently has the highest haz-
ard rate. In this subsection, which has no game-theoretic
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considerations, we prove this and discuss. Let ti(t, s) be the
number of occurrences of i in s before and at t. That is, it de-
notes i’s local time at global time t under schedule s. Then,
let ζs(t) = ζs(t)(ts(t)(t, s))) denote the hazard rate at time t
under schedule s.
Lemma 1. The probability that none of the machines has
completed the task before time t is given by the formula:
1− F s(t) =

∏t−1
t′=1(1− ζs(t′)).

Proof. Let T s be a random variable that corresponds to the
time at which we finish the task under schedule s. From
P (T s < t′ + 1) = P (T s < t′) + P (T s = t′) we get
F s(t′+1) = F s(t′)+f s(t′).Consequently, 1−F s(t′+1) =

1 − F s(t′) − (1 − F s(t′)) fs(t′)
1−F s(t′) = 1 − F s(t′) − (1 −

F s(t′))ζs(t′) = (1 − F s(t′))(1 − ζs(t′)). From this re-
currence we easily obtain the desired equality 1 − F s(t) =∏t−1

t′=1(1− ζs(t′)).

A greedy schedule g at each time step t assigns the ma-
chine that maximizes ζs(t)(ti(t, s))) by being so assigned.
Under the MHR assumption, this corresponds to obtaining
the schedule simply by sorting all the machines’ individual
hazard rates. We now prove it is optimal assuming MHR.
Proposition 1. Under the MHR assumption, for every t, g ∈
arg maxs F

s(t) (and, a fortiori, g ∈ arg minsE[T s]).

The proof is deferred to the full version of our paper.
Remark 1. Note that the greedy algorithm is not optimal
without the MHR assumption. Consider an example with two
machines whose hazard rates are given according to the ta-
ble below. The greedy schedule assigns the job to machine 2
forever, resulting in an expected completion time of 5. On the
other hand, assigning the job to machine 1 forever results in
an expected completion time of only 2.

ζi(1) ζi(2) ζi(t)(t ≥ 3)
machine i=1 0.1 0.9 0.9
machine i=2 0.2 0.2 0.2

The following property will help us with the analysis of
the ChpE mechanism and relies on MHR.
Remark 2 (Consistency Property). If s is optimal for
agentsN , then we can obtain an optimal schedule for agents
N \{i} simply by (1) removing i from the schedule, and (2) if
this results in a finite schedule (because the infinite tail end
of the schedule was assigned to i), sorting the previously un-
used hazard rates of N \ {i} and appending them to the end
of the finite schedule, as in the following example.

Example 1. For the following instance:

ζi(1) ζi(2) ζi(t)(t ≥ 3)
machine i = 1 0.9 0.7 0.6
machine i = 2 0.8 0.5 0.3
machine i = 3 0.4 0.2 0.1

The ordered hazard rates are (0.9,0.8, 0.7, 0.6, 0.6, . . .)
and the corresponding optimal schedule is (1,2, 1, 1, 1, . . .).
If we then take out player 1, the ordered hazard rates be-
come (0.8, 0.5, 0.4, 0.3, 0.3 . . .) and the corresponding op-
timal schedule is (2, 2, 3, 2, 2, . . .).

In examples like this, it can be helpful to, in a slight abuse
of notation, insert all of the hazard rates into the schedule
from the outset: (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1) and
s = (1, 2, 1, 2, 3, 2, 3), where x denotes an infinite number
of occurrences of x. The next machine after i will take over
the computation only in the case that machine i is absent.

Additional notation
Now that we have a better understanding of optimal schedul-
ing in our context, we introduce some further notation. Let
random variable Ri denote the time that player i actually
gets to run (and ri to denote a value to which it realizes). We
always have Ri ≤ Ti; it is strictly smaller if another player
finishes before player i would have finished. Thus, it is a
function of the time at which the task is completed as well
as the schedule; we will use ri(ω, s) to denote this where it
is not clear from context.

For any subset of the players S ⊆ N , let TS denote the
time at which we would have finished if we had only had
the players in S available. We also define RS as the sum of
the realized times of a group of players S until the task gets
completed, if it can only be assigned to players in S. Note
that RS = TS . Let ζS(t) denote the corresponding sorted
hazard rates, which define the distribution fS over TS . We
will refer to this distribution as the group distribution of S.

Solution Concept and Revelation Principle
In this section, we review the solution concept we need and
prove the corresponding revelation principle for our setting.
We note that the players’ strategies allow them not only to lie
about their types, but also to decide at each time step if they
want to process or not, and whether they wish to announce
having found a solution.

In an ex-post equilibrium, every agent plays a strategy that
is optimal for any type it may have and for any types that
the other agents may have, as long as the other agents tell
the truth. This solution concept is stronger than Bayes-Nash
equilibrium but weaker than dominant strategies.
Definition 1. We say that a direct-revelation scheduling
mechanism m is (ex-post) truthful if it is an ex-post equi-
librium for the machines to truthfully report f̂i = fi, always
process when asked, and always announce a solution imme-
diately when it is found.
Theorem 1 (Revelation Principle). Suppose that the
scheduling game defined by payment rule r has an ex-post
equilibrium given by behavioral strategies σ1, . . . , σn. Then
there exists an equivalent ex-post truthful direct-revelation
scheduling mechanism m.

We defer the technical definition of scheduling games and
the proof of Theorem 1 to the full version.

Failure of Straightforward Adaptations of VCG
It is natural to try to adapt VCG mechanisms (Vickrey 1961;
Groves 1973; Clarke 1971). In this section we present the
most obvious way to adapt such mechanisms and show that
the resulting mechanisms fail to be truthful. The payments
do not depend on the execution (realizations of the process-
ing times), as we will see later, this is their weakness.
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Expected Pure Groves (EPG): The basic idea behind
Groves mechanisms is to add to player i’s payment a term
that corresponds to the (reported) welfare of the other play-
ers, aligning the player’s utility with the social welfare. (A
term h, that does not depend on player i’s report, can be
added; we will refer to the mechanism where this h term is
set to 0 as “Pure Groves.”) In the context we are consider-
ing here, this would mean that the payment that machine i
receives is −ET1∼f̂1,...,Tn∼f̂n [RN − Ri] (Note that this is
negative.) That is, machine i pays the expected social cost,
omitting the term that corresponds to its own cost. The idea
is to align the machine’s utility with the social welfare.

It is natural to add an h term to obtain:

Expected Clarke (EC): In the Clarke mechanism, the hi
term is set to reflect the welfare that the other players would
have had experienced without i, so that i’s total payment is
the difference i causes in the welfare of the other players. In
the context considered here, this would play out as follows.
Player i receives the EPG term−ET1∼f̂1,...,Tn∼f̂n [TN−Ti],
plus the following h term: hi(f̂−i) = ET−i∼f̂−i

[TN\{i}].

Its total payment is now nonnegative. Note that i cannot
do anything to affect its hi term.

Misreporting and miscomputing examples
We now show that under EPG and EC, a machine may have
an incentive to misreport its distribution. Moreover, they
generally have an incentive to “miscompute”, that is, not ac-
tually process on the task when they are supposed to.
Proposition 2. Under both EPG and EC, a machine can
sometimes benefit from misreporting its distribution (even
when the others report and compute truthfully).

Proof. We consider the case where the true types of the
players are given by the following table:

ζi(1) ζi(t)(t ≥ 2)
machine i = 1 0.4 0.1
machine i = 2 0.3 0.1
machine i = 3 0.2 0.2

The optimal schedule is (1, 2, 3, 3, . . .).
Now suppose that machine 1 decides to overreport its

probability of finishing in the first time slot, which does not
change the allocation. The intuition is that by lying and over-
reporting, player 1 makes the expected sum of processing
times of the other players seem smaller.

ζ̂i(1) ζ̂i(t)(t ≥ 2)
machine i=1 0.5 0.1
machine i=2 0.3 0.1
machine i=3 0.2 0.2

The expected utility of machine 1 then becomes equal to
−1−[(1−0.5)·0.3·1+(1−0.5)(1−0.3)0.2·2+. . .], where
the part in brackets is the payment, which is larger than the
same expression where 0.5 is replaced by 0.4. This shows
that player 1 has an incentive to misreport. The exact same
example works to show the same for EC. (There will be an
additional h term in 1’s utility, but this term will be the same
with or without misreporting.)

In fact, these mechanisms suffer from an even more basic
problem: because the payments do not depend on perfor-
mance, there is no incentive to actually process when asked.

Proposition 3. Under both EPG and EC, a machine can
benefit from failing to process when it is supposed to (even
when the others report and compute truthfully).

Proof. Consider again the example from the previous proof.
If player 1 never computes, the first (−1) term in his utility
will disappear, and his payment will be unaffected.

Good mechanisms
As we have seen, some adaptations of VCG mechanisms
have poor incentive properties in our context. However, as
we will now show, VCG mechanisms can be adapted in other
ways that do have desirable incentive properties. We intro-
duce three specific mechanisms. All these mechanisms, ex-
cept for ChPE, can be defined without assuming MHR.

Realized Pure Groves (RPG) The payment that player i
receives is−(rN−ri) (a negative amount). That is, once the
job has been completed, machine i pays the realized social
cost, omitting the term that corresponds to its own cost. The
idea is to align the machine’s utility with the social welfare.

As we will see later, this mechanism is in fact truthful.
Unfortunately, it has other undesirable properties: machines
always have to make payments, in addition to performing
work, so their utility is always negative. In standard mech-
anism design contexts, this can be addressed by adding an
h term to the payment function which depends only on the
others’ reports, to obtain the Clarke mechanism or one of its
cousins. In our context, however, it is not immediately clear
whether this h term should depend only on the reports, or
also on the realized processing times. Our next mechanism
does the former.

Clarke, h in Expectation (ChE): Player i receives the
RPG term−(rN−ri), plus the following h term: hi(f̂−i) =
ET−i∼f̂−i

[TN\{i}] That is, the h term is the expected pro-
cessing time that would result without i, taking the others’
reports at face value.

Since there is nothing that machine i can do to affect its
h term, the incentives are the same as for RPG. This is a fa-
miliar argument in mechanism design. What is perhaps more
surprising is that in our next mechanism, the h term does de-
pend on the realization, and player i will be able to affect it.

Clarke, h Partially in Expectation (ChPE): A natural
thought at this point would be that we should use the re-
alized value of h instead of its expectation. However, some
reflection reveals that this does not make sense: at the point
where the task is finished, we generally will not be able
to determine how much longer the other machines would
have taken. By forcing them to continue to run on the task
in order to determine this, we would jettison efficiency.
However, we do know something about how long the other
agents would have taken. If agent i was the one to finish,
and the other agents had incurred rN\{i} at that point, then
we know that the other agents would have taken longer
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than rN\{i} without agent i. This follows from the con-
sistency property: all of the computations that the other
agents did, they also would have done in the world with-
out i. What we do not know is how much more time
they would have needed from that point on. The idea be-
hind ChPE is to take the expectation only over this part.
Specifically, if machine i is the one to complete the job,
it receives the RPG term −(rN − ri), plus the h term:
hi(rN\{i}, f̂−i) = ET−i∼f̂−i

[TN\{i}|TN\{i} > rN\{i}] =

rN\{i}+ET−i∼f̂−i
[TN\{i}−rN\{i}|TN\{i} > rN\{i}]. On

the other hand, if machine i is not the one to complete the
job, its payment is 0, because in this case, the h term is
hi(rN\{i}, f̂−i) = ET−i∼f̂−i

[TN\{i}|TN\{i} = rN\{i}] =

rN\{i} = (rN − ri), which cancels out the RPG term.

No Dominant-Strategies Truthfulness
In this section, we show that our mechanisms do not attain
dominant-strategies truthfulness. Intuitively, this is because
if a player knows that another player has (for whatever rea-
son) misreported, the former can have an incentive to misre-
port as well to “correct” for the latter’s misreport.

Proposition 4. None of RPG, ChE, and ChPE is truthful in
dominant strategies.

Proof. To show that a mechanism is not truthful in dominant
strategies, it suffices to find an instance where the following
holds. Given that one player decides to deviate and lie, the
best response for another player is to deviate as well.

We assume that the true distributions of the machines are
the same as described in the proof of Proposition 2. Suppose
that machine 2 (for whatever reason) lies and reports a dis-
tribution with hazard rate ζ2(1) = 0.5. In doing so, it gets
to compute before machine 1, but otherwise the schedule is
unchanged. If machine 1 is aware of this, it has an incentive
to also lie and report ζ1(1) = 0.6, so that the mechanism
again produces the allocation that is optimal with respect to
the true distributions. This is precisely because the mecha-
nisms in the statement of the proposition align the machine’s
utility with the social welfare.

ζ̂i(1) ζ̂i(t)(t ≥ 2)
machine i=1 0.4 0.1
machine i=2 0.5 0.1
machine i=3 0.2 0.2

→

ζ̂i(1) ζ̂i(t)(t ≥ 2)
machine i=1 0.6 0.1
machine i=2 0.5 0.1
machine i=3 0.2 0.2

Under RPG, the situation on the left-hand side results in
an expected utility for machine 1 of−(1−0.3) ·1− [0.3 ·1+
(1−0.3)0.4·1+(1−0.3)(1−0.4)0.2·2+. . .], where again the
first term corresponds to 1’s processing cost and the second
to its payment. Note that, because this is RPG rather than
EPG, this expression uses the actual probabilities used in the
proof of Proposition 2 rather than any misreported ones; all a
machine can affect by changing its report is the schedule. On
the other hand, the situation on the right-hand side results in
an expected utility for machine 1 of−1− [(1−0.4) ·0.3 ·1+

(1−0.4)(1−0.3)0.2 ·2+ . . .]. This is exactly as if everyone
had reported truthfully. Because−(1−0.3)·1−[0.3·1+(1−
0.3)0.4 · 1] = −0.7− 0.3− 0.28 = −1.28 and −1− [(1−
0.4) ·0.3 ·1] = −1.18, and the remaining terms are the same
in the expressions, machine 1 prefers the second scenario,
and thus has an incentive to misreport under RPG. The same
example works for ChE because it adds the same h term
in both cases; it also works for ChPE because the expected
value of h will be the same in both cases (by Lemma 2).

Ex-Post Truthfulness
We now show that RPG, ChE, and ChPE are ex-post truthful,
that is, it is an ex-post equilibrium for each machine to report
truthfully, to process when it is supposed to, and to announce
a solution as soon as it is found. We first need the following
lemma in order to deal with the case of ChPE.

Lemma 2. In the ChPE mechanism, assuming truthful be-
havior by the other machines, machine i cannot affect the
expected value of its h term, E[hi(rN\{i}, f̂−i)], whether by
lying, failing to compute, or withholding the solution.

Proof. Recall that in ChPE, hi(rN\{i}, f̂−i) = rN\{i} +
ET−i∼f̂−i

[TN\{i} − rN\{i}|TN\{i} > rN\{i}] if i finishes,

and hi(rN\{i}, f̂−i) = rN\{i} otherwise. (We can ignore the
RPG payment term throughout this proof.) Machine i in fact
can do things to affect the realization of its hi payment. For
example, if it has finished the task, it can announce it at that
point and get the corresponding hi payment; alternatively,
it can choose to never announce it and wait for another ma-
chine to finish, in which case it might get a lower hi payment
if another machine finishes the task shortly after, or a higher
hi payment if it takes the other machines much longer. That
is, it can interrupt the other agents’ processing and receive
the expected value of their remaining processing time, or it
can let them continue to process and receive the realization
of their remaining processing time.

It is straightforward to check that in fact any manipulation
that i has available can only affect the hi payment by chang-
ing the distribution over the time at which i would interrupt
the others’ processing by announcing it has finished the task
(thereby receiving the expectation of the others’ remaining
processing time rather than the realization). Let us grant our
manipulator i even more power, allowing it to choose the
precise point t at which to interrupt the others’ processing. (t
here is according to the other machines’ combined “clock”,
i.e., it measures how much time the other machines have
processed, but not i itself..) Let πt

i denote the hi payment i
receives given that it interrupts at t. We obtain:

πt
i(T−i) =

{
T−i if T−i ≤ t
t+ E[T−i − t|T−i > t] otherwise

.

The first case materializes if another player finishes the
computation before t, and the second otherwise. (Note that
this notation is implicitly using the fact that the others re-
port truthfully—otherwise the expectation in the second case
should be taken according to the reported distribution.) Now,
we note that for any t, we have E[πt

i(T−i)] = P (T−i ≤
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Efficient DS truthful Ex-post truthful No incentive to miscompute ZPUF IR NNP NNEP
EPG 4 5 5 5 5 5 5 5
EC 4 5 5 5 5 4 4 4
RPG 4 5 4 4 5 5 5 5
ChE 4 5 4 4 5 4 5 4
ChPE 4 5 4 4 4 4 4 4

Figure 1: The properties attained by the various mechanisms.

t)E[T−i|T−i ≤ t] +P (T−i > t)E[T−i|T−i > t] = E[T−i].
Hence, i cannot affect the expectation of its hi payment.

We can now prove the main positive result.
Theorem 2. Any direct-revelation scheduling mechanism
where i receives the RPG payment plus an h term whose
expectation i cannot affect is ex-post truthful. Hence, RPG,
ChE, and ChPE are all ex-post truthful.

Proof. Because machines are assumed to be risk-neutral,
they care only about the expectation of their hi term, and
since they cannot affect this, the hi term does not affect their
incentives at all. Hence, it suffices to prove that RPG is ex-
post truthful. In RPG, machine i’s utility is−ri−(rN−ri) =
rN . Hence, the best that i can hope for is the social planner’s
solution that minimizes the expected processing time. But,
machine i can achieve exactly this by behaving truthfully,
because the mechanism chooses the social planner’s solution
for the reported distributions, and in ex-post equilibrium, ev-
eryone else can be assumed to behave truthfully.

Additional Properties of Proposed Mechanisms
The desirable properties that we consider here are:
• No negative payments (NNP): the agents receive pay-

ments that are never negative.
• No negative expected payments(NNEP): for any profile of

(true) distributions, each agent’s expected payment is non-
negative assuming truthful behavior (even if the realiza-
tion can sometimes be negative).

• Individual rationality (IR): for any profile of (true) dis-
tributions, each agent’s expected utility is nonnegative
assuming truthful behavior (even if the realization can
sometimes be negative).

• Zero payment upon failure (ZPUF): a machine that is not
the one to finish the job always gets payment 0.

Naturally, NNP implies NNEP. IR also implies NNEP: con-
trapositively, if an agent has a negative expected payment for
some profile, its expected utility must also be negative, be-
cause its processing costs can only bring its expected utility
down further. A stronger version of IR—where an agent’s
realized utility is never negative—seems too much to ask for,
for the following reason. Presumably, Clarke-type mecha-
nisms should give an agent who has extremely low hazard
rates, and thus will never be asked to process, an expected
utility of zero. But if the mechanism satisfies this stronger
notion of IR, such an agent would have nothing to lose, and
presumably something to gain, from reporting higher haz-
ard rates and participating in the processing. The same issue

would occur for a stronger notion of truthfulness where an
agent never regrets telling the truth even after learning TN .

Proposition 5. (a) EPG and RPG do not satisfy any of NNP,
NNEP, IR, and ZPUF.
(b) EC and ChPE satisfy NNP (and hence NNEP). ChE sat-
isfies NNEP, but not NNP.
(c) EC, ChE, and ChPE satisfy IR.
(d) ChPE satisfies ZPUF; EC and ChE do not.

Proof. (a) Any machine that is not sure to finish the job com-
pletely by itself will have a negative expected payment, im-
plying that NNEP (and hence NNP and IR) are violated. A
machine that does not finish must also have a negative pay-
ment, so ZPUF is violated.

(b) For EC, because the schedule that minimizes expected
processing time is always chosen, i’s being present can never
increase the expected processing time of the other agents−i.
For ChPE, i’s payment is either 0, or −rN\{i} + rN\{i} +
ET−i∼f̂−i

[TN\{i} − rN\{i}|TN\{i} > rN\{i}] which must
be positive. Finally, for any given profile, assuming truthful
behavior, ChE has the same expected payments as EC and
ChPE. ChE can have negative realized payments when pro-
cessing happens to take much longer than expected, which
increases rN − ri but does not affect hi(f−i).

(c) For any given profile, assuming truthful behavior, an
agent i gets the same expected utility in all three of these
mechanisms. Hence, WLOG, we can focus on ChE. The ex-
pected utility for agent i satisfies ui(f1, . . . , fn) =
ET1∼f1,...,Tn∼fn [−Ri − (RN −Ri)] + hi(f−i) =
ET1∼f1,...,Tn∼fn [−TN ] + ET−i∼f−i [TN\{i}] ≥ 0.

The last inequality holds because the schedule always
minimizes expected processing time, so having an additional
agent never increases the expected running time.

(d) It is immediate that ChPE satisfies ZPUF. EC results
in positive payments for all machines, as long as each one
reduces the expected processing time. For ChE, if the job
gets finished in the first round by some machine, the others
will receive positive payments.

Future Research
Our work leaves several directions for future research. One
is to fully characterize of the class of mechanisms that are
ex-post truthful: is it the case that in every such mechanism,
each machine receives the RPG payment, plus an h term
whose expectation it cannot affect? Another is to find an ax-
iomatic characterization of the ChPE mechanism. We con-
jecture that dominant-strategies truthfulness is unattainable
under minimal assumptions.
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