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Abstract

The probabilistic serial rule is one of the most well-
established and desirable rules for the random assignment
problem. We present the egalitarian simultaneous reservation
social decision scheme — an extension of probabilistic serial
to the more general setting of randomized social choice. We
consider various desirable fairness, efficiency, and strategic
properties of social decision schemes and show that egali-
tarian simultaneous reservation compares favorably against
existing rules. Finally, we define a more general class of so-
cial decision schemes called simultaneous reservation, that
contains egalitarian simultaneous reservation as well as the
serial dictatorship rules. We show that outcomes of simul-
taneous reservation characterize efficiency with respect to a
natural refinement of stochastic dominance.

Introduction
Whenever people form a society and need to coordinate their
actions, the problem of collective decision-making is close
at hand. Regardless of whether real, physical agents or soft-
ware agents in the context of a multi-agent system are in-
volved, they are likely to have different objectives or re-
sources, and thus prefer different collective actions (Brandt,
Conitzer, and Endriss 2013).

Hence, the group needs a clearly defined mechanism, like
an electoral system or a negotiation protocol, that queries the
agents’ preferences and produces a collective choice from a
given set of alternatives. Such a mechanism in turn is more
likely to be accepted if it can guarantee certain properties
of the outcome, such as efficiency (if all agents prefer one
outcome over another, the latter is never selected), strate-
gyproofness (no agent can manipulate the outcome in his
favour by misrepresenting his preferences) or fairness. The
aggregation of preferences respecting these requirements is
therefore considered one of the most fundamental problems
in both economics and computer science (Conitzer 2010).

As deterministic decisions can be inherently unfair (con-
sider the case of two alternatives and two agent with op-
posite preferences), randomized social choice investigates
mechanisms that return randomized decisions, i.e. probabil-
ity distributions over a set of alternatives (Procaccia 2010;
Conitzer and Sandholm 2006; Service and Adams 2012).
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Depending on the application these need not be real lotteries
from which only one alternative is chosen in the end. In-
stead, a fraction of the time available can be devoted to each
single alternative or a resource in question can be shared
among agents. In this paper, however, we will always talk
about the outcomes as lotteries where in the end one alter-
native is selected at random according to some distribution.

We can think of such mechanisms as functions that take
as input the agents’ preferences over a set A of alterna-
tives and return for each such preference profile a prob-
ability distribution, or lottery, over A. In randomized so-
cial choice, these functions are known as social decision
schemes (SDSs). We explicitly allow agents to express in-
differences between alternatives (for strict preferences, on
the other hand, random dictatorship (RD) is by many
accounts the single most appealing SDS (Gibbard 1977;
Aziz 2013)).

One particular setting that can be seen as a restricted sub-
class of randomized social choice is the random assign-
ment problem, one of the most important settings in re-
source allocation (Bogomolnaia and Moulin 2001; Katta
and Sethuraman 2006). Here, agents express preferences
over a set of objects and the alternatives between which the
mechanism has to chose are allocations of objects to the
agents. The output thus specifies for each agent the frac-
tion of each object that is allocated to the agent. A num-
ber of natural random assignment rules have previously
been proposed. These rules include random serial dicta-
torship (RSD) (Bogomolnaia and Moulin 2001), the pop-
ular assignment rule (Kavitha, Mestre, and Nasre 2011;
Aziz, Brandt, and Stursberg 2013) and the uniform assign-
ment rule (Chambers 2004). For the assignment problem in
which agents have strict preferences over objects, a particu-
lar elegant mechanism with superior fairness and efficiency
properties is the probabilistic serial rule (PS) (Bogomolnaia
and Moulin 2001; Kojima and Manea 2010; Manea 2009;
Saban and Sethuraman 2013). PS also has a very intuitive
description: Each agent eats his most preferred available ob-
ject at a uniform rate. The fraction of an object eaten by an
agent is the probability with which the object is allocated to
that agent. Katta and Sethuraman (2006) have generalized
PS to the extended probabilistic serial rule (EPS) for the
setting where agents may express ties between objects.

For almost all previously mentioned random assignment
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rules, a generalization to randomized social choice is known.
RSD for instance, just as the uniform rule, generalizes very
naturally (Aziz, Brandt, and Brill 2013a).1 Recently, the
popular random assignment rule has been generalized to the
social choice setting under the name of strict maximal lottery
rule (SML) (Aziz, Brandt, and Brill 2013b). For PS, how-
ever, no generalization to the social choice domain is known.
In this paper, we present a generalization of PS that consti-
tutes a new and interesting SDS with desirable axiomatic
properties for the general social choice setting.

Contributions We present a new SDS called egalitarian
simultaneous reservation (ESR). We show that it is equiv-
alent to EPS, PS, and the egalitarian assignment rule (Bo-
gomolnaia and Moulin 2004) for their respective subdo-
mains. Our proof for the equivalence result relies on a
recent characterization of EPS (Heo and Yilmaz 2012).
ESR also generalizes the egalitarian SDS defined solely
for dichotomous preferences by Bogomolnaia, Moulin, and
Stong (2005).

We show that from an axiomatic point of view,ESR com-
pares favorably to RSD and SML — two prominent SDSs
for the general preference domain. We prove that ESR is
DL-efficient and hence SD-efficient. It is monotonic (rein-
forcing an alternative in the agent’s opinions can only in-
crease its probability), a ‘clearly desirable condition’ (Fish-
burn 1982), and satisfies the fair outcome share property.
ESR is weak SD-strategyproof for strict preferences, but
not for dichotomous preferences.

Finally, based on a parametrization of the ESR mecha-
nism, we define a more general class of SDSs called simul-
taneous reservation (SR), the outcomes of which character-
ize all DL-efficient outcomes. Our characterization provides
a new perspective on DL-efficiency, a concept that has re-
cently attracted interest in randomized social choice (Schul-
man and Vazirani 2012; Saban and Sethuraman 2013; Cho
2012). We show that serial dictatorship is a special class of
SDSs within the class of SR.

Preliminaries
Social choice and lotteries Consider the social choice set-
ting in which there is a set of agents N = {1, . . . , n}, a
set of alternatives A = {a1, . . . , am} and a preference pro-
file %= (%1, . . . ,%n) such that each %i is a complete and
transitive relation over A. We write a %i b to denote that
agent i values alternative a at least as much as alternative b
and use�i for the strict part of %i, i.e., a �i b iff a %i b but
not b %i a. Finally, ∼i denotes i’s indifference relation, i.e.,
a ∼i b iff both a %i b and b %i a. The relation %i results in
equivalence classes E1

i , E
2
i , . . . , E

ki
i for some ki such that

a �i a
′ iff a ∈ El

i and a′ ∈ El′

i for some l < l′. Often, we
will use these equivalence classes to represent the preference
relation of an agent as a preference list i : E1

i , E
2
i , . . . , E

ki
i .

For example, we will denote the preferences a ∼i b �i c by

1For social choice with strict preferences, this generalization is
equivalent to RD .

the list i : {a, b}, {c}. We denote the set of all equivalence
classes of agent i by Ei and the union over all agents by E .

An agent i’s preferences are dichotomous iff he partitions
the alternatives into just two equivalence classes, i.e., ki =
2. An agent i’s preferences are strict iff %i is antisymmetric,
i.e. all equivalence classes have size 1.

Let ∆(A) denote the set of all lotteries (or probability
distributions) over A. The support of a lottery p ∈ ∆(A),
denoted by supp(p), is the set of all alternatives to which
p assigns a positive probability, i.e., supp(p) = {x ∈ A |
p(x) > 0}. We will write p(a) for the probability of alterna-
tive a and we will represent a lottery as p1a1 + · · ·+ pmam
where pj = p(aj) for j ∈ {1, . . . ,m}. For A′ ⊆ A, we will
(slightly abusing notation) denote

∑
a∈A′ p(a) by p(A′).

A social decision scheme is a function f : Rn → ∆(A).
If f yields a set rather than a single lottery, we call f a cor-
respondence. Two minimal fairness conditions for SDSs are
anonymity and neutrality. Informally, they require that the
SDS should not depend on the names of the agents or alter-
natives respectively.

Another desirable property is monotonicity: An alterna-
tive preference profile %′ reinforces a compared to % iff for
some agent i ∈ N and alternative a we have %j=%′j for all
agents j 6= i and %′i is a transitive and complete relation with
b %′i b

′ ⇔ b %i b
′ for all b, b′ 6= a and a % b ⇒ a %′ b. A

correspondence f is monotonic iff whenever %′ reinforces
a compared to % then for every p ∈ f(%) we can find
p′ ∈ f(%′) with p′(a) ≥ p(a).2

Lottery extensions In order to reason about the outcomes
of SDSs, we need to determine how agents compare lotter-
ies. A lottery extension extends preferences over alternatives
to (possibly incomplete) preferences over lotteries. Given %i

over A, a lottery extension X extends %i to %Xi over the set
of lotteries ∆(A). We now define some particular lottery ex-
tensions that we will later refer to.

• Under stochastic dominance (SD), an agent prefers a lot-
tery that, for each alternative x ∈ A, has a higher proba-
bility of selecting an alternative that is at least as good as
x. Formally, p %SD

i q iff ∀y ∈ A :
∑

x∈A:x%iy
p(x) ≥∑

x∈A:x%iy
q(x).

• In the downward lexicographic (DL) extension, an agent
prefers the lottery with higher probability for his most pre-
ferred equivalence class, in case of equality, the one with
higher probability for the second most preferred equiva-
lence class, and so on. Formally, p %DL

i q iff for the small-
est (if any) l with p(El

i) 6= q(El
i) we have p(El

i) > q(El
i).

• The sure thing (ST) extension is defined as follows. Let
δ(p, q) = {x ∈ A:p(x) 6= q(x)}. Then, p %ST

i q iff p = q
or ∀x 6= y ∈ A : ({x, y} ∩ δ(p, q) 6= ∅ and p(x)q(y) >
0)⇒ x �i y.

2Note that monotonicity by this definition implies monotonicity
with respect to the reinforcement of a in more than one agent’s
preference relation (by reinforcing a in the agents’ preferences one
after the other).
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SD (Bogomolnaia and Moulin 2001) is particularly im-
portant because p %SD q iff p yields at least as much ex-
pected utility as q for any von-Neumann-Morgenstern utility
function consistent with the ordinal preferences (Cho 2012).
DL refines SD to a complete relation based on the natu-
ral lexicographic relation over lotteries (Schulman and Vazi-
rani 2012; Abdulkadiroğlu and Sönmez 2003; Cho 2012)
whereas ST (Aziz, Brandt, and Brill 2013b) is even coarser
than SD . Based on the lottery extensions, we define corre-
sponding notions of efficiency and strategyproofness.

Efficiency and strategyproofness Let X be any lottery
extension. A lottery p is X -efficient iff there exists no lottery
q such that q %Xi p for all i ∈ N and q �Xi p for some
i ∈ N . An SDS is X -efficient iff it always returns an X -
efficient lottery. A standard efficiency notion that cannot be
phrased in terms of lottery extensions is ex post efficiency.
A lottery is ex post efficient iff it is a lottery over Pareto
optimal alternatives. It is the case that DL-efficiency =⇒
SD-efficiency =⇒ ex post efficiency =⇒ ST -efficiency.

An SDS f is X -manipulable iff there exists an agent
i ∈ N and preference profiles % and %′ with %j=%′j
for all j 6= i such that f(%′) �Xi f(%). An SDS is
weakly X -strategyproof iff it is not X -manipulable, it is X -
strategyproof iff f(%) %Xi f(%′) for all % and %′ with
%j=%′j for all j 6= i. Note that SD-strategyproofness is
equivalent to strategyproofness in the Gibbard sense. It is
known that SD-strategyproof =⇒ DL-strategyproof =⇒
weak SD-strategyproof =⇒ weak ST -strategyproof.

Egalitarian Simultaneous Reservation
Starting from the entire set ∆(A), the ESR algorithm pro-
ceeds by gradually restricting the set of possible outcomes.
The restrictions enforced are lower bounds for the prob-
ability of certain equivalence classes while it is always
maintained that a lottery exists that satisfies all these lower
bounds. Each equivalence class E is represented by a tower
where at any time t, the height of this tower’s ceiling `t(E)
represents the lower bound in place for the probability of
this subset at that time. During the course of the algorithm,
agents will climb up these towers and try to push up the ceil-
ings, thereby increasing the lower bounds for certain subsets.

Each tower starts with the height of its ceiling set to 0.
Every agent starts climbing up the tower that corresponds
to his most preferred equivalence class. Whenever an agent
hits the ceiling, he tries to push it up. He continues climb-
ing, pushing up the ceiling at the same time. Note that the
ceiling will only be pushed up as fast as the agent pushing it
can climb. Two agents pushing up a ceiling at the same time
therefore does not increase the speed of it being pushed up.
When it cannot be pushed up any further without compro-
mising the existence of a lottery satisfying all current lower
bounds, we say that set E is tight and has been frozen. At
this point, the agent bounces off the ceiling and drops back
to the floor, moving on to the tower corresponding to his
next most preferred equivalence class. We can think of the
algorithm proceeding in stages where a stage ends when-
ever some agent bounces off the ceiling. The algorithm ends

when all the equivalence classes have been frozen at which
point some lottery satisfying the lower bounds is returned.
A formal description of ESR is given as Algorithm 1.3 In
general, the result is not unique, although often it is.

Example 1. Consider the following preference profile:

1 : {a}, {b}, {e}, {c, d} 2 : {a}, {c}, {d}, {b, e}
3 : {b, d}, {a, c, e} 4 : {c, e}, {a, b, d}
5 : {c}, {a, b, e}, {d}

At time 1/3, all agents bounce off their respective ceilings.
The lower bounds in place at this time are `({a}) = 1/3;
`({b, d}) = 1/3; `({c, e}) = 1/3; `({c}) = 1/3. All agents
move to their next equivalence class. After an additional 1/3
time, the following lower bounds have been added: `({b}) =
1/3; `({a, c, e}) = 1/3; `({a, b, d}) = 1/3; `({a, b, e}) = 1/3.
Note that during this period, agent 2 could not push up the
ceiling in tower {c} any further, nor did he bounce off as
he first had to reach the ceiling. Eventually, ESR(%) =
1
3a+ 1

3b+ 1
3c.

Observation 1. For strict preferences, ESR returns the
uniform lottery over all alternatives that are most preferred
by some agent. Hence,ESR is not equivalent to random dic-
tatorship (RD) for strict preferences (Gibbard 1977) where
RD is defined as RD(%) =

∑
i∈N

1
n max%i

(A).

Although ESR is technically a correspondence, each
agent is completely indifferent between all possible out-
comes. A correspondence is called essentially single-valued
iff for every agent i, equivalence class E of i and lotteries
p and q that are outcomes of the correspondence, p(E) =
q(E). Furthermore,ESR is computable in polynomial time.

Theorem 1. ESR is essentially single-valued.

Proof. Let p and q be two outcomes and E any equiva-
lence class of some agent i where p and q differ, w.l.o.g.
let p(E) > q(E). Consider the point in time t when i
bounced off the ceiling in tower E. As q is an outcome,
`t(E) ≤ q(E) < p(E). As p is an outcome, it does ful-
fill all other guarantees, in particular those guarantees that
are present at time t. But this contradicts with i bouncing off
the ceiling of E at time t (as p is a feasible lottery that yields
a higher probability for E).

Theorem 2. The ESR algorithm runs in polynomial time.

Proof. First, consider computeLambda. The function
solves |N | + 1 linear programs where each constant in
each LP is either zero, one, or a polynomial-size ratio-
nal computed from a previous LP. These LPs (and thus
computeLambda) can be solved in polynomial time. Fur-
thermore, optimality of λ∗ ensures that N∗ contains at least
one element. Thus, during each iteration of Algorithm 1 in
line 11, at least one agent moves to his next equivalence

3A few variants of ESR naturally come into mind, but neither
the variant in which the ceiling of an equivalence class moves at
the speed proportional to the number of agents pushing it nor the
variant in which agents do not enter a new tower at the bottom but
at the current height of its ceiling is monotonic.
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Input: (N,A,%)
Output: lottery p over A.
`(k) : E → R: height of ceiling in tower S ∈ E at the

end of stage k
E(k) : N → E : tower that i ∈ N is in at stage k
h
(k)
i : height of agent i ∈ N at stage k
λ(k): length (duration) of stage k
N (k) ⊆ N : agents bouncing off after stage k
t(k): total time passed at the beginning of

stage k

1 `(0)(S) = h
(0)
i = t(0) = k = 0 for all S ⊂ A, i ∈ N

2 E(0)(i) = i’s first equivalence class for all i ∈ N
3 while t(k) < 1 do % get time when first agent bounces

off
4 (λ(k), N (k))← computeLambda(k) % Alg. 2
5 t(k+1) = t(k) + λ(k)

6 h
(k+1)
i ← h

(k)
i + λ(k) for all i ∈ N % climb on

7 for all S ∈ E do % set new ceiling levels
8 `(k+1)(S)

← max{`(k)(S),max{h(k+1)
i |E(k)(i) = S}}

9 for all i ∈ N do % move agents that bounced off
10 if i ∈ N (k) then
11 E(k+1)(i)← i’s next equivalence class
12 h

(k+1)
i ← 0

13 else
14 E(k+1)(i)← E(k)(i)
15 k ← k + 1
16 return lottery p with p(S) ≥ `(k+1)(S) for all S ⊂ A

Algorithm 1: The ESR algorithm.

Input: k
Output: λ∗, N∗

1 N∗ ← {}
2 solve the following Linear Program (LP):

λ∗ ← max λ∑
a∈S

pa ≥ `(k)(S) ∀S ⊂ A∑
a∈E(k)(i)

pa ≥ h(k)i + λ ∀i ∈ N

∑
a∈A

pa ≤ 1

∀a ∈ A : pa ≥ 0, λ ≥ 0

3 for all i ∈ N do
4 run the LP again imposing λ = λ∗ and maximizing

the slack in the inequality corresponding to i
5 if objective function value = 0 then
6 N∗ ← N ∪ {i}

Algorithm 2: The function computeLambda.

class. This can happen at most |N | · |A| times, which means

that the while-loop will be executed no more than |N | · |A|
times. All the statements inside the loop only take polyno-
mial time. Thus, every iteration and hence the entire algo-
rithm runs in polynomial time.

For dichotomous preferences, Bogomolnaia, Moulin, and
Stong (2005) defined the egalitarian rule as the SDS that
maximizes the leximin ordering (the lexicographic ordering
over utility profiles, i.e. probabilities for each agent’s ap-
proved equivalence class, rearranged increasingly). We point
out that ESR generalizes their egalitarian rule to the case of
general preferences.

Theorem 3. For dichotomous preferences, ESR is equiv-
alent to the egalitarian rule of (Bogomolnaia, Moulin, and
Stong 2005).

Proof. Let p be a lottery maximizing the leximin or-
dering. Denote the corresponding utility profile by
u(p) = (u1, . . . , u1︸ ︷︷ ︸

n1

, u2, . . . , u2︸ ︷︷ ︸
n2

, . . . , uk, . . . , uk︸ ︷︷ ︸
nk

) where

n =
∑k

i=1 ni and u1 < u2 · · · < uk. We prove by in-
duction on the number of stages of ESR that the guarantees
of equivalence classes in ESR are fulfilled exactly by all
leximin orderings.

Consider the point in time t1 := u1. At this point, no
agent was forced to move away from his most preferred
equivalence class (as p certifies that an assignment exists
where every agent gets at least u1 probability for his most
preferred equivalence class). By the same argument, for no
agent i /∈ {1, . . . , n1} can the maximal equivalence class get
tight at t1.

On the other hand, for all agents i ∈ {1, . . . , n1} their
maximal equivalence classes must get tight at t1. Otherwise
there would exist a lottery with at least u1 probability for all
agents in {1, . . . , n1} where some agent i∗ ∈ {1, . . . , n1}
(and all agents > n1) gets strictly more than u1, this lottery
would leximin-dominate p.

We can now remove the agents 1, . . . , n1 from consider-
ation (as the guarantees that they accumulate for their last
equivalence class don’t restrict the set of possible lotteries)
and iteratively repeat the argument for all points in time
tj := uj for j ≤ k.

Axiomatic Properties
We first observe that ESR satisfies the minimal require-
ments of anonymity and neutrality. Another very important
property of an SDS is efficiency, i.e. the outcome should be
such that no other outcome is preferred by all agents. For
strict preferences, the arguably most desirable mechanism
RD is DL-efficient. However, RSD and the maximal recur-
sive rule (MR) (Aziz 2013) — the two known generaliza-
tions of RD to non-strict preferences — are not even SD-
efficient. We show that ESR is DL-efficient.

Theorem 4. ESR is DL-efficient.

Proof. Let p be a lottery obtained by ESR. Suppose, p is
DL-dominated by another lottery q. Denote by t the time
when an equivalence class E is frozen to a value smaller
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than q(E) for the first time. As E was frozen at t, there is
no assignment p′ with p′(E) > `t(E) and p′(T ) ≥ `t(T )
for all other equivalence classes T . This means that q(E′) <
`t(E

′) ≤ p(E′) for some equivalence class E′ of a agent
i that is weakly preferred by i to the equivalence class that
he is currently pointing to. As no equivalence class i has
previously pointed to gets a higher probability in q (E was
the first such equivalence class), q is a DL-disimprovement
for i, contradicting our original assumption.

The only other SDS for the general preference domain
that is known to be SD-efficient is SML. However, this SDS
is not monotonic (see Proposition 7 in (Aziz, Brandt, and
Brill 2013b)), a property that is fulfilled by ESR. We omit
the proof due to space constraints.
Theorem 5. ESR is monotonic.

Turning to fairness, a common requirement in many set-
tings is fair outcome share4: Each agent should get at least
1/n of the total utility it can get from any lottery. ESR satis-
fies the fair outcome share property.
Lemma 1. If p is an outcome ofESR andE is some agent’s
most preferred equivalence class, then p(E) ≥ 1/n.
Corollary 1. ESR satisfies the fair outcome share property.

Finally, we investigate the robustness of ESR to strategic
behavior. Here, the results are mixed:ESR satisfies the very
basic notion of weak ST -strategyproofness but fails on the
stronger (and more common) SD-based notions.5

Theorem 6. For |N | ≤ 2, ESR is SD-strategyproof. For
|N | ≥ 3, the following holds: (i) ESR is weak SD-
strategyproof but not SD-strategyproof for strict preferences
(ii) ESR is not weak SD-strategyproof for dichotomous
preferences (and thus not for the general domain) (iii) ESR
is weak ST -strategyproof.

Proof. We omit the easy two-agent case. (i) follows easily
from Observation 1 and Gibbard’s characterization of RD-
schemes as ex-post-efficient and SD-strategyproof (Gibbard
1977). Statement (ii) is proven by the following example:

1 : {a, b}, {c, d} 2 : b, {a, c, d} 3 : d, {a, b, c}

The outcome ofESR is 1
2b+

1
2d. However if agent 1 reports,

a, {b, c, d}, then the outcome is 1
3a+ 1

3b+ 1
3d.

Finally, for (iii) let p be an outcome of ESR and i some
agent. Denote i’s most preferred equivalence class by E.
Then, by Lemma 1, p(E) ≥ 1/n. But by the characterization
of ST in Proposition 2 of (Aziz, Brandt, and Brill 2013b),
no lottery assigning positive probability to i’s most preferred
equivalence class can be dominated by any other lottery.

4For dichotomous preferences, fair outcome share was defined
by Bogomolnaia, Moulin, and Stong (2005). In the context of
cake cutting, fair outcome share is also known as ‘proportional-
ity’ (Brams and Taylor 1996).

5However, Aziz, Brandt, and Brill (2013b) suggest that these
results are likely to be due to a more fundamental incompatibility of
SD-efficiency and SD-strategyproofness if anonymity is required.
At least, as the above argument also holds for weak ST -group-
strategyproofness, ESR joins SML as the only SDSs known to be
both SD-efficient and weak ST -group-strategyproof.

Assignment Domain
Our central result in this section is that for the assignment
domain, ESR is equivalent to EPS, the generalization of
PS to the domain where agents may express ties between
objects. Given a set of objects O with |O| = |N | the set of
alternatives is the set of deterministic assignments of objects
to agents, or in other words the set of permutations of the set
|O|. We assume that agents have (complete and transitive)
preferences over objects and denote an agent i’s upper con-
tour set byUi(o) := {o′ ∈ O | o′ % o} for all objects o ∈ O.
This implies natural preferences over assignments: An agent
prefers an assignment in which he gets an object o over an
assignment in which he gets o′ iff he prefers o over o′. We
denote the set of assignments where agent i obtains object
o by A(i, o). Note that this yields a 1-to-1-correspondence
of equivalence classes of objects to equivalence classes of
deterministic assignments.

We denote by Ei(o) the (unique) equivalence class of
agent i that contains assignments where he receives object
o. Denote by Ui(E) the set of alternatives that is weakly
preferred by agent i to all alternatives in E.

Next we prove that ESR is equivalent to EPS for the
assignment domain. Instead of dealing directly with the def-
inition of EPS, we will use the result of Heo and Yil-
maz (2012) that a correspondence is a subcorrespondence of
EPS if and only if it satisfies SD-efficiency, limited invari-
ance, and SD-envy-freeness. An assignment satisfies SD-
envy-freeness iff each agent weakly SD-prefers his alloca-
tion to any other agent’s allocation. A rule satisfies limited
invariance iff for each agent i ∈ N and object o ∈ O,
the total probability of his receiving the objects in Ui(o)
doesn’t change if in his preference relation only the pref-
erences among elements not in Ui(o) are changed.
Theorem 7. For the assignment domain, the ESR corre-
spondence is SD-envy-free and fulfills limited invariance.

Proof. We deal with both parts of the statement separately.
Limited invariance. Due to limited space, we omit the
straightforward argument for limited invariance.
SD-envy-free Let i, j ∈ N and p a lottery that results from
the application ofESR. Suppose i’s allocation does not SD-
dominate j’s. Then there exists an object o ∈ O such that

p(
⋃

o′%io

A(j, o)) > p(
⋃

o′%io

A(i, o)). (1)

Denote by t∗ the point in time when equivalence class Ei(o)
is frozen and note that

p(
⋃

o′%io

A(i, o)) =
∑
E∈Ei

E%iEi(o)

p(E) ≥
∑
E∈Ei

E%iEi(o)

`t∗(E) = t∗

as all equivalence classes E of i with E %i Ei(o) are al-
ready frozen. The sum of lower bounds for all sets from
Ej at time t∗ is also equal to t∗, thus (1) implies that, for
some object o∗ %i o, we can choose ε > 0 such that
p(A(j, o∗))− ε ≥ `t∗(Ej(o

∗)).
Now, consider the fractional assignment that is induced by

lottery p. Note that for every agent i′ and object o′ the prob-
ability of receiving o′ is exactly p(A(i′, o′)). We construct
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a new fractional assignment where the probability of agent
j receiving object o is reduced by ε and this probability is
transferred to agent i receiving object o. By the Birkhoff-
von-Neumann-Theorem (Lovász and Plummer 2009), we
can represent this new fractional assignment as a lottery q
over discrete assignments. Note, that for all (i′, o′) ∈ N ×
O \ {(i, o∗), (j, o∗)} we have p(A(i′, o′)) = q(A(i′, o′)), in
particular that means that q, just as p fulfills all guarantees
at time t∗ except those for Ei

o∗ and Ej
o∗ . But q(Ej(o

∗)) =
p(Ej(o

∗)) − ε ≥ p(A(j, o∗)) − ε ≥ `t∗(Ej(o
∗)). Finally,

we have q(Ei(o
∗)) = p(Ei

o∗) + ε ≥ `t∗(E
i
o∗) + ε which is

a contradiction to the fact that Ei(o
∗) was frozen at time t∗

(if o∗ ∼i o) or before (if o∗ �i o).

Corollary 2. The ESR correspondence is equivalent to
(i) the EPS correspondence for the assignment setting;
(ii) PS to for the assignment problem with strict prefer-
ences over objects; (iii) the egalitarian mechanism of Bo-
gomolnaia and Moulin (2004) for the assignment problem
with dichotomous preferences over objects.

Proof. Part (i) follows from the characterization of Heo and
Yilmaz (2012) and the fact that ESR outputs a complete
class of essentially equivalent lotteries. Parts (ii) and (iii)
follow from the fact that EPS is equivalent to PS for strict
preferences and to the egalitarian mechanism of Bogomol-
naia and Moulin (2004) for dichotomous preferences.

Generalizing ESR
In this section, we consider the generalization of ESR that
we call simultaneous reservation (SR) in which each agent
i has a (piecewise) continuous climbing speed function si.
The lower bound `(E) of a class E is increased at a rate
according to the maximal climbing speed among the agents
currently touching the ceiling of E.

Characterizing efficiency notions has been an active of
area of research (Manea 2008; McLennan 2002; Bogomol-
naia and Moulin 2001; Abdulkadiroğlu and Sönmez 2003).
We show that outcomes of SR characterize all DL-efficient
lotteries. By the fact that all serial dictator rules (Aziz,
Brandt, and Brill 2013b; Svensson 1994) are DL-efficient,
they are thus a subclass of SR.

Theorem 8. A lottery is DL-efficient if and only if it is the
outcome of SR.

Proof. The argument for DL-efficiency from Theorem 4 of
ESR generalizes to SR immediately. For the converse, as-
sume that a lottery p is DL-efficient. We claim that climbing
speed functions si for all i ∈ N exist such that p is the
outcome of SR. We prove the claim by construction: The
functions si that we construct will only take values 0 and
|N | and be such that for all t ∈ [0, 1] all but one function
will be 0, the agent whose function is non-zero at t will be
called active.

We will call an agent selectable if he either hasn’t been
selected yet or if he cannot climb any further without bounc-
ing off the ceiling. Whenever a selectable agent is activated,
he will thus bounce off the ceiling immediately and move
to his next equivalence class E (or to his first, if he hasn’t

been active before). As soon as he reaches height p(E), he
will deactivate. Note that he might be able to climb higher
in the tower E just yet, so he will only become selectable
again as soon as other lower bounds have risen high enough
to make it impossible for him to climb any higher. This pro-
cedure makes sure that no agent can ever guarantee more
probability than p(S) for any equivalence class S, this also
guarantees that all agents can always reach height p(E) as p
certifies the existence of a suitable lottery.

We proceed by activating selectable agents until they de-
activate, then a new selectable agent is activated. It only re-
mains to be shown that there is always a selectable agent.
For contradiction, suppose the opposite: All agents i ∈ N
can climb higher in their current towers Ei without bounc-
ing off the ceiling. This means that there is a lottery q with
q(E) ≥ p(E) for all equivalence classes E previously vis-
ited by the agents and q(Ei) > p(Ei) for all i ∈ N . Thus, q
DL-dominates p which is a contradiction.

Note that for SR, instead of selecting a single alternative,
we can consider selecting a set (committee) of alternatives.
The only change required is to increase the probability guar-
antees until the total probability weight over A is the size of
the committee.

Conclusions

In this paper, we presented the ESR correspondence. ESR
is interesting for a number of reasons: It simultaneously gen-
eralizes a number of very prominent mechanisms for re-
stricted preference domains. On the complete preference do-
main, its properties compare well to other known SDSs: It is
essentially single-valued and polynomial-time computable.
It satisfies DL-efficiency (and thus SD-efficiently), mono-
tonicity, fair outcome share and weak ST -strategyproofness.
While in terms of strategyproofness, both RSD and MR
perform much better, none of these mechanisms is even
SD-efficient and furthermore, RSD is not polynomial-time
computable (Aziz, Brandt, and Brill 2013a). SML on the
other hand, the only other well-known SD-efficient SDS,
performs no better in terms of strategyproofness (and even
worse for strict preferences), is not DL-efficient and fails on
monotonicity and fair outcome share.

One may point out that in the context of voting, ESR
is too egalitarian: it gives as much weight to any minority
as to the majority. In this sense, it constitutes the other ex-
treme to SML which is oblivious to minority opinions. It will
be interesting to identify subdomains other than assignment
where ESR is an especially desirable rule. Finally, charac-
terizing ESR is another direction for future work.
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