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Abstract

We present and analyze a mechanism for the Combina-
torial Public Project Problem (CPPP). The problem asks
to select k out of m available items, so as to maximize
the social welfare for autonomous agents with combi-
natorial preferences (valuation functions) over subsets
of items. The CPPP constitutes an abstract model for
decision making by autonomous agents and has been
shown to present severe computational hardness, in the
design of truthful approximation mechanisms. We study
a non-truthful mechanism that is, however, practically
relevant to multi-agent environments, by virtue of its
natural simplicity. It employs an Item Bidding interface,
wherein every agent issues a separate bid for the inclu-
sion of each distinct item in the outcome; the k items
with the highest sums of bids are chosen and agents are
charged according to a VCG-based payment rule. For
fairly expressive classes of the agents’ valuation func-
tions, we establish existence of socially optimal pure
Nash and strong equilibria, that are resilient to coordi-
nated deviations of subsets of agents. Subsequently we
derive tight worst-case bounds on the approximation of
the optimum social welfare achieved in equilibrium. We
show that the mechanism’s performance improves with
the number of agents that can coordinate, and reaches
half of the optimum welfare at strong equilibrium.

Introduction
Public project problems model situations where a central
authority (e.g., a government or municipality) aims at car-
rying out a project in the common interest of all members
of a community, such as a bridge or a new road (Mas-Colell,
Whinston, and Green 1995; Moore 2006). Several variations
have been considered in the literature, motivated by dif-
ferent applications, see e.g., (Moulin 1988)[Chapters 6-8].
Our focus is on the Combinatorial Public Project Problem
(CPPP), which was introduced in (Papadimitriou, Schapira,
and Singer 2008) as a prototypical model for decision mak-
ing by autonomous strategic agents with combinatorial pref-
erences. In the CPPP, an authority aims at combining at
most k components from a given set of m distinct items, to
build a composite service or facility, in favor of n strategic

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents. Each agent values different subsets of items accord-
ing to a private valuation function, defined over all subsets
of m items. The problem amounts to devising a mechanism,
through which the authority will determine an efficient out-
come – a welfare maximizing subset of items, along with the
payments that the agents should issue for the outcome.

We analyze the performance of a mechanism for the
CPPP, with respect to the approximation of the optimum
social welfare that it achieves in equilibrium. The mech-
anism employs a simple Item Bidding interface for elic-
iting the agents’ preferences and a natural rule for out-
come determination. Under the item bidding interface, each
agent issues a separate bid for the inclusion of each dis-
tinct item in the outcome. In effect, each agent “com-
presses” his combinatorial valuation function into an ad-
ditive bid vector. The mechanism then selects the k items
with the highest sums of bids. The agents’ payments are de-
termined by an adaptation of the familiar Vickrey-Clarke-
Groves (VCG) pricing scheme (Vickrey 1961; Clarke 1971;
Groves 1973) . To alleviate the agents’ strategic behavior,
Mechanism Design has traditionally advocated the imple-
mentation of truthful reporting of preferences in a dominant
strategies equilibrium. Our item bidding mechanism is not
truthful in general; nevertheless, its study is motivated by
several practical and theoretical considerations.

Item bidding mechanisms have received considerable
attention recently in the context of combinatorial auc-
tions (Christodoulou, Kovács, and Schapira 2008; Syrgka-
nis and Tardos 2013; de Keijzer et al. 2013), as a sim-
ple and practical means, that is already deployed success-
fully in real-world online markets. In contrast, most known
truthful mechanisms for agents with combinatorial prefer-
ences consist of complex algorithmic schemes for deter-
mining the outcome and payments; their complexity hin-
ders their practical deployment and discourages the agents
from participating in the underlying strategic game. Con-
cerning the CPPP in particular, a series of works (Papadim-
itriou, Schapira, and Singer 2008; Schapira and Singer 2008;
Buchfuhrer, Schapira, and Singer 2010) have established se-
vere computational inapproximability results for tractable
truthful mechanisms. On the other hand, for quite expressive
classes of the agents’ valuation functions, the optimization
problem underlying the CPPP is long known to be NP-hard,
yet approximable within a constant factor, by the greedy al-
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gorithm of (Nemhauser, Woolsey, and Fischer 1978). It is
compelling to examine whether other than truthful mecha-
nism models exist, with comparably favorable performance.

Our approach follows (Lucier et al. 2013), where item
bidding and the simple outcome determination rule were
paired with a similarly natural “pay-as-bid” rule, to yield
a “first-price” type of mechanism for the CPPP. The au-
thors observed that their mechanism’s performance depends
largely on how well agents can coordinate their bidding
decisions. To this end, they proved favorable inefficiency
bounds for strong equilibria, that are resilient to coordinated
joint deviations of subsets of agents. We quantify this obser-
vation in a detailed manner, by analyzing the inefficiency of
`−strong equilibria of our mechanism, to show that its per-
formance improves gracefully with the “allowed” maximum
size, `, of agent subsets that can coordinate.

Contribution We describe a simple deterministic item
bidding mechanism for the CPPP, and analyze its perfor-
mance at equilibrium. For the fairly general class of fraction-
ally subadditive valuation functions (also termed XOS), we
prove existence of socially optimal pure Nash equilibria. We
also show that our item bidding mechanism admits strong
equilibria for at least a smaller – yet expressive – class of
capped-Linear valuation functions (cL). These results sig-
nify the importance of employing the VCG-based pricing
scheme; in contrast, the “pay-as-bid” rule used in (Lucier
et al. 2013), prevents existence of Nash equilibria in gen-
eral (Maskin and Riley 2000), even for a singleton “project”.

Subsequently, we quantify the mechanism’s performance
at `-strong equilibrium, by deriving bounds on the `-strong
Price of Anarchy (Andelman, Feldman, and Mansour 2009).
In doing so, we make a standard no-overbidding assump-
tion as, e.g., in (Christodoulou, Kovács, and Schapira 2008),
detailed in the next section. For agents with XOS valua-
tion functions we prove an upper bound of 1 + dn/`e; we
give a lower bound of max{2, n/`} even when agents have
cL valuation functions. For a more restricted class of val-
uation functions – termed Unit Demand (UD), we show an
improved upper bound of 1+min{dn/`e, (1+dn/(k ·`)e)}.
This bound is also attained in the worst case, even when
agents have uniform UD valuation functions; we prove a
lower bound of max{2, n/(k · `)} in this case. In effect, our
results suggest that the mechanism recovers half of the op-
timum social welfare at strong equilibrium. This along with
its simplicity makes it a natural choice for multi-agent envi-
ronments where coordination among agents is possible.

Due to space limitations, some of the proofs are deferred
to the full version of our work.

Related Work
Public project problems have been studied within the AI
community mainly in the context of truthful redistribution
mechanisms (Cavallo 2006; Guo et al. 2013; Naroditskiy
et al. 2012; Guo et al. 2011). The CPPP was introduced
in (Papadimitriou, Schapira, and Singer 2008); the authors
proved communication and computational complexity lower
bounds of Ω(

√
m) on the problem’s approximability by de-

terministic truthful mechanisms, when agents have submod-
ular valuation functions. These results established seminally
the increase in hardness of the underlying optimization prob-
lem, incurred by the requirement for truthfulness. Schapira
and Singer (2008) proved non-constant lower bounds for
more general valuation functions and devised a simple truth-
ful O(

√
m)-approximation mechanism for agents with sub-

additive valuation functions. A detailed study of the prob-
lem’s complexity for subclasses of subadditive valuation
functions appeared in (Buchfuhrer, Schapira, and Singer
2010). The only known constant-approximation mechanism
for the CPPP with submodular valuation functions is ran-
domized and truthful-in-expectation (Dughmi 2011).

The very recent work of (Lucier et al. 2013) is the most re-
lated to ours. The authors studied arguably the simplest pos-
sible item bidding mechanism, using a “pay-as-bid” pricing
rule. They established a tight inefficiency ratio of Θ(log n)
for this mechanism at strong equilibrium, for arbitrary valu-
ation functions of the agents. For a restricted class of val-
uation functions, they showed that a sequential first-price
mechanism fully optimizes the social welfare.

A significant volume of recent research concerns the
study of item bidding mechanisms for combinatorial auc-
tions. This line of research was initiated by (Christodoulou,
Kovács, and Schapira 2008), and followed by (Bhawalkar
and Roughgarden 2011; Hassidim et al. 2011; Feldman et
al. 2013). (de Keijzer et al. 2013) studied the performance
of Multi-Unit item bidding auctions. (Syrgkanis and Tardos
2013) developed a unified framework for the analysis of item
bidding auctions, in the incomplete information model.

Definitions and Preliminaries
We consider a set [m] = {1, . . . ,m} of items and a set
[n] = {1, . . . , n} of agents. Each agent has private combina-
torial preferences over 2[m], expressed by a non-decreasing
valuation function vi : 2[m] 7→ R+. Given k ∈ Z+ and
in light of the agents’ private preferences, the aim is to
choose X ⊆ [m], |X| = k, maximizing the Social Welfare,
SW (X) =

∑
i vi(X).

We study an Item Bidding mechanism, wherein each agent
i ∈ [n] issues a separate bid bi(j) for each item j ∈ [m],
within a bid vector bi = (bi(1), . . . , bi(m)). As usual, we
use b−i to denote the profile (b1, . . . ,bi−1,bi+1, . . . ,bn).
Given a bidding profile b = (b1, . . . ,bn), the mechanism
determines an outcome Xk(b) ⊆ [m], consisting of the
k items with the highest sums of bids. It also determines
charges p(b) = (p1(b), . . . , pn(b)) to the agents. For this
purpose we use a direct adaptation of the VCG payment rule
that, for a profile b, determines pi(b) as:

pi(b) =
∑

j∈Xk(b−i)

∑
i′ 6=i

bi′(j)−
∑

j∈Xk(b)

∑
i′ 6=i

bi′(j) (1)

The utility of agent i under profile b is:

ui(b) = vi

(
Xk(b)

)
− pi(b)
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Additional Notation To facilitate succinctness in our
technical presentation, we define for any I ⊆ [n], X ⊆ [m]:

VI(X) ≡
∑
i∈I

vi(X) and: V−I(X) ≡
∑

i∈[n]\I

vi(X)

In effect, SW (X) = V[n](X), but we will use SW (X) in
this case. Moreover, for an item-bidding profile b, define:

SkI (b) ≡
∑
i∈I

∑
j∈Xk(b)

bi(j) and: Sk−I(b) ≡ Sk[n]\I(b)

For simplicity, we write Sk(b) instead of Sk[n](b) and
Sk−i(b) instead of Sk−{i}(b). To illustrate the use of this no-
tation, we can rewrite (1) as:

pi(b) = Sk(b−i)− Sk−i(b) (2)

Example We provide an example to clarify how the mech-
anism works. Assume m = 4, k = 2 and n = 3
agents, bidding as described in Figure 1. We have Xk(b) =
{1, 3}. If agent 1 does not participate, the outcome becomes
Xk(b−1) = {3, 4}. Similarly we can see that Xk(b−2) =
{1, 3} (agent 2 does not affect the outcome) and Xk(b−3) =
{1, 2}. Hence, the payment for agent 1 will be: p1(b) =
Sk(b−1)−Sk−1(b) = 21− 20 = 1. Clearly the payment of
agent 2 is 0 since Xk(b) = Xk(b−2). And finally, for agent
3 we have p3(b) = Sk(b−3)− Sk−3(b) = 17− 12 = 5.

1 2 3 4
5 8 0 0
3 1 4 2
4 0 9 6

Figure 1: A bidding profile with 3 agents and 4 items.

Valuation Functions We evaluate the mechanism’s per-
formance for agents with valuation functions belonging to
the rich class of Fractionally Subadditive functions (Feige
2009). This class was also defined syntactically in the sem-
inal work of (Lehmann, Lehmann, and Nisan 2006), under
the name XOS. The XOS class is a strict superset of the
widely studied (in Mechanism Design and in optimization
at large) class of Submodular functions (SM), which ex-
press decreasing marginal value of each additional item to
an agent. We also consider the class of Unit Demand func-
tions (UD) and special versions of the SM and UD classes –
referred to as capped-Linear (cL) and uniform UD (uUD) –
for which we show that they are worst-case for the mecha-
nism’s performance.

Definition 1. A function v : 2[m] 7→ R+ belongs to the class
- XOS, if there exists a family of r additive functions
{αt : [m] 7→ R+ | t = 1, . . . , r}, such that v(X) =
maxt=1,...,r αt(X), for every X ⊆ [m].

- SM, if for any two sets X ⊆ Y ⊆ [m], and for any j ∈
[m]: v(X ∪ {j})− v(X) ≥ v(Y ∪ {j})− v(Y ).

- UD, if v(X) = max{v({j})| j ∈ X}, for everyX ⊆ [m].

uniform Unit Demand (uUD)

capped-Linear (cL) Unit Demand (UD)

Submodular (SM)

Fractionally Subadditive (XOS)

Figure 2: “Contained in” relations among the considered
combinatorial valuation function classes.

- cL, if there exist S ⊆ [m], c ∈ {1, . . . ,m} and τ > 0 such
that v(X) = τ ·min{|S ∩X|, c}, for every X ⊆ [m].

- uUD, if v belongs to UD and there exists ν > 0 such
that, for every j ∈ [m], v({j}) ∈ {ν, 0}; equivalently, if
v belongs to cL, with c = 1.
It is easy to verify that if v is cL or uUD, then it is sym-

metric over the referenced subset S, but not necessarily over
[m]. That is, for every X ⊆ [m]:

v(X ∪ {j}) = v(X ∪ {j′}), for any two j, j′ ∈ S \X

The containment relations among the considered function
classes are depicted in Figure 2. By the results of (Buch-
fuhrer, Schapira, and Singer 2010) [cf. THEOREM 2.1],
the CPPP remains NP-hard even for uUD valuation func-
tions. Moreover, no tractable truthful o(

√
m)-approximation

mechanism is known for this class; a computational hardness
result by (Buchfuhrer, Schapira, and Singer 2010) [cf. THE-
OREM 2.2] suggests an Ω(

√
m) approximation lower bound

for a wide category of truthful mechanisms.

Solution Concepts We study the Item Bidding mecha-
nism’s performance at `−Strong Equilibrium, a solution
concept due to (Aumann 1959), which specifies pure Nash
equilibria that are resilient to coordinated deviations of sub-
sets of at most ` agents, for any ` = 1, . . . , n. Formally:
Definition 2. A bidding profile b is an `−Strong Equilib-
rium if and only if, for every subset I of at most ` ≥ 1 agents
and for every joint deviation b′I of I , there exists at least one
agent i ∈ I such that ui(b′I ,b−I) ≤ ui(b).

For ` = 1 this definition coincides with that of a pure
Nash equilibrium. We use the term strong equilibrium when
` = n. To quantify the mechanism’s inefficiency, we will
derive upper and lower bounds on the `−Strong Price of An-
archy (Andelman, Feldman, and Mansour 2009), that is, the
worst case ratio of the optimum social welfare over the wel-
fare achieved at `−strong equilibrium.

Following previous works on item-bidding mechanisms,
we make a standard no-overbidding assumption. That is, we
assume that for any subset of items, the sum of bids sub-
mitted by an agent for this subset does not exceed his value
for it:

∑
j∈X bi(j) ≤ vi(X) for any X ⊆ [m]. This as-

sumption is justified by the fact that overbidding strategies
are weakly dominated in general; they can be made strictly
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dominated by seamless modifications of the mechanism, see,
e.g. (Christodoulou, Kovács, and Schapira 2008).

Pure Nash and Strong Equilibria
In this section we examine existence of stable configurations
under the item bidding mechanism. In particular, we show
that socially optimal pure Nash equilibria do exist, for agents
with the most general type of preferences among the ones
we consider, i.e., XOS valuation functions. Subsequently,
we examine existence of `−strong equilibria.
Theorem 1. The Item Bidding mechanism with VCG-based
Pricing for the CPPP admits socially optimal pure Nash
equilibria, when agents have XOS valuation functions.

This state of affairs ceases to hold, when we allow co-
ordinated deviations of subsets of agents and consider the
associated stability notion of strong equilibria. Consider an
instance of the CPPP with n = 3 agents, m = 2 items and
k = 1. Define v1(1) = v2(1) = v3(1) = 1 and v1(2) = 0,
v2(2) = v3(2) = 1 + ε. The socially optimal outcome is
X∗ = {1}, with social welfare of 3. As long as agent 1
does not overbid, he may be bidding at b∗1(1) ≤ 1 in sup-
port of X∗; agents 2 and 3 can bid b2 = (0, 1 + ε) and
b3 = (0, 1 + ε), to force {2} as an outcome, at zero price
for each of them. Then (b∗1,b2,b3) is a strong equilibrium.

We show however, that socially optimal strong equilibria
do exist in item bidding mechanisms, when agents have cL
valuation functions.
Theorem 2. The Item Bidding mechanism with VCG-based
Pricing for the CPPP admits socially optimal strong equilib-
ria, when agents have cL valuation functions.

The cL and uUD classes prove to be general enough, to
provide essentially tight worst-case lower bounds for the in-
efficiency upper bounds that we develop for XOS and UD
valuation functions in the next section. Although we do
not concern ourselves with how agents converge to equilib-
rium, we have recently verified that an iterative best response
procedure – similar to the one studied in (Christodoulou,
Kovács, and Schapira 2008) – converges in finite time. We
defer the details to the full version of our work.

Inefficiency Bounds for Strong Equilibria
We quantify the inefficiency of Item Bidding with VCG-
based Pricing at `−strong equilibrium. We develop upper
bounds on the `−strong Price of Anarchy of the mechanism,
for agents with XOS and UD valuation functions. We also
provide matching lower bounds, for agents with valuation
functions in the classes cL and uUD respectively. First we
state a Lemma that we use in our proofs of upper bounds.
Lemma 1. Let b denote an `−strong equilibrium of the Item
Bidding mechanism for the CPPP, with VCG-based Pricing.
For every subset I of ρ ≤ ` agents and for every joint non-
overbidding deviation b′I of I , there exists a sequence I =
I1 ⊃ I2 ⊃ · · · ⊃ Iρ ⊃ Iρ+1 = ∅ of subsets of agents,
satisfying |Iq \ Iq+1| = 1 for q = 1, . . . , ρ, such that:

1. Sk
(
b′Iq+1

,b−Iq

)
+VIq\Iq+1

(
Xk(b)

)
≥ Sk

(
b′Iq ,b−Iq

)

2. Sk
(
b′Iq+1

,b−Iq+1

)
+VI\Iq+1

(
Xk(b)

)
≥ Sk

(
b′I ,b−I

)
where Iq \ Iq+1 = {q}, for q = 1, . . . , ρ, without loss of
generality.

Fractionally Subadditive Agents
Theorem 3. In `−Strong Equilibrium, the Item Bidding
mechanism for the CPPP with VCG-based Pricing recovers
at most 1 +

⌈
n
`

⌉
times less welfare than the socially optimal

outcome, when agents have XOS valuation functions.

Proof. Let b denote an `−strong equilibrium and I ⊆ [n]
be any subset of agents of size `. Let X∗ denote the so-
cially optimal outcome. We will consider a particular joint
deviation strategy b′I , so as to apply Lemma 1. For ev-
ery i ∈ I , consider the representation of vi by a set of
additive valuation functions, {αi,1, . . . , ai,ri}; let αi de-
note one particular additive function from this set, satisfy-
ing vi(X∗) =

∑
j∈X∗ αi({j}). Then, define the following

strategy for each i ∈ I: b′i(j) = αi({j}), for every j ∈ X∗
and b′i(j) = 0 otherwise (i.e., if j 6∈ X∗).

Let us apply inequality 2 of Lemma 1, for q = `:

Sk
(
b′I`+1

,b−I`+1

)
+ VI\Iq+1

(
Xk(b)

)
≥ Sk

(
b′I ,b−I

)
Because I`+1 = ∅, the first term of the left-hand side equals
Sk(b); moreover, by our no-overbidding assumption we
have Sk(b) ≤ SW (Xk(b)), thus:

SW
(
Xk(b)

)
+ VI

(
Xk(b)

)
≥ Sk

(
b′I ,b−I

)
Next, we observe that for every item j′ ∈ X∗\Xk(b′I ,b−I),
there exists an item j ∈ Xk(b′I ,b−I) \ X∗, with a higher
sum of bids; that is, because b′i(j) = 0 for all i ∈ I ,∑
i6∈I bi(j) ≥

∑
i∈I b

′
i(j
′). Thus, we derive:

SW
(
Xk(b)

)
+ VI

(
Xk(b)

)
≥

∑
i∈I

∑
j∈X∗

b′i(j)

=
∑
i∈I

∑
j∈X∗

αi(j) = VI(X
∗)

Summing the latter inequality over at most dn/`e disjoint
subsets I of agents, yields the stated result.

Next, we give a matching lower bound on the inefficiency
of `−Strong Equilibria in item bidding mechanisms for the
CPPP, for the class of cL valuation functions.

Theorem 4. The Item Bidding mechanism with VCG-based
Pricing for the CPPP recovers in `-Strong Equilibrium at
least max

{
2, n`

}
times less welfare than the socially opti-

mal outcome in the worst-case, even when agents have cL
valuation functions.

Proof. Given integers k, n, and ` ≤ n, consider m = 2k
items, that we partition in two sets, J = {j1, j2, . . . , jk},
J ′ = {j′1, j′2, . . . , j′k}. Consider a subset L ⊂ [n], contain-
ing r ≡ min{`, dn/2e} agents. For every agent i ∈ L, let vi
be a cL function, with parameters τi = 1, Si = J ∪ J ′ and
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ci = m. For every agent i ∈ [n] \ L, let vi be a cL function,
with parameters τi = 1, Si = J and ci = m.

The socially optimal outcome is J , with social welfare
equal to n ·k. Consider the bidding configuration b, wherein
for every agent i ∈ L, we have bi(j) = 1 for every item
j′ ∈ J ′, and bi(j) = 0 for j ∈ J . Also, bi(j) = 0, for
every i ∈ [n] \ L and j ∈ J ∪ J ′. Then, Xk(b) = J ′ and
SW (b) = r ·k. We claim that b is a `−Strong Equilibrium.
First, we notice that every agent i ∈ L obtains the largest
utility possible under b, equal to k – because the payments
equal 0. Thus, no such agent may take part in any subset
of jointly deviating agents. We therefore have to argue only
about subsets among the remaining agents in [n] \ L, who
receive zero utility under b.

Consider first the case that ` ≤ dn/2e. Then r = `. Note
that any subset of agents of size strictly less than ` cannot
change the current outcome. This is due to the assumption
that agents do not bid above their real value and by the fact
that the currently selected items under b have score equal
to `. Consider now a subset T , with |T | = `. The members
of T can manage to at most match exactly the total bid on
items in J with those in Xk(b) = J ′. Suppose that if there
are such ties in a potential deviation by T , the tie-breaking
rule favors a number of s items from J , which are selected
in the new outcome, combined with k−s items from J ′. But
in that case, it is straightforward to verify from (2) that the
payment for each i ∈ T is exactly s. Thus, the deviation will
not raise the utility of any member of T beyond 0.

Next, let ` > dn/2e. Then, r = dn/2e and, obviously, the
only possibility for a deviation that can change the outcome
is when n is even, and all the agents of [n]\L deviate jointly
within a subset of n/2 agents. But in that case we can again
apply exactly the same argument as above and argue that the
utility of each i ∈ [n] \ L cannot rise beyond 0.

Notice that the most efficient `−strong equilibrium is
always socially optimal, as was shown in Theorem 2. In
contrast, the least efficient one can be at least a factor
max

{
2, n`

}
less efficient than the social optimum.

Unit Demand Agents
We present an improved upper bound for agents with UD
valuation functions. Our final upper bound on the mecha-
nism’s inefficiency for this class of valuation functions will
emerge from a consolidation of this improved upper bound
with the one that we derived in the previous subsection. Sub-
sequently, we give a matching worst-case lower bound for
agents with uUD valuation functions.

Theorem 5. In `−Strong Equilibrium, the Item Bidding
mechanism for the CPPP with VCG-based Pricing recovers
at most 2 + n

`·k times less welfare, than the socially optimal
outcome, when agents have UD valuation functions.

Proof. Let b denote a `−strong equilibrium and X∗ be the
socially optimal outcome. Fix any single item j ∈ X∗ and
define Nj = { i ∈ [n] | vi(j) = maxr∈X∗ vi({r}) } and
nj = |Nj |. If j ∈ X∗ ∩ Xk(b), then VNj (Xk(b)) ≥

VNj (X
∗) and, after summing over all j ∈ X∗ ∩ Xk(b):∑

j∈X∗∩Xk(b)

VNj

(
Xk(b)

)
≥

∑
j∈X∗∩Xk(b)

VNj (X
∗) (3)

For the sequel, assume that j ∈ X∗ \ Xk(b). Consider
any subset of agents I ⊆ Nj , with |I| = ρ = min{nj , `}.
For each agent i ∈ I , we define a bidding strategy b′i with:
b′i(j) = vi(j) and b′i(r) = 0, for all r 6= j. Lemma 1 now
holds for I and b′I . Before proceeding, consider the succes-
sion of coailitions I1, . . . , Iρ+1 specified in the Lemma:

t = min
{
s = 0, . . . , ρ

∣∣∣ j 6∈ Xk
(
b′Is+1

,b−Is+1

)}
(4)

Notice that, because j ∈ X∗ \ Xk(b), t is well defined; in-
deed, j 6∈ Xk(b) = Xk(b′∅,b−∅) = Xk(b′Iρ+1

,b−Iρ+1
),

thus, t ≤ ρ. Moreoever, if j 6∈ Xk(b′I ,b−I) =
Xk(b′I1 ,b−I1), we have t = 0. We will omit a separate treat-
ment of this latter case; for the sequel we assume t ≥ 1.

We analyze the first term of the left-hand side of in-
equality 1 of Lemma 1, for when q = t. We have j 6∈
Xk(b′It+1

,b−It+1
); then, either j 6∈ Xk(b′It+1

,b−It), or
j ∈ Xk(b′It+1

,b−It). We handle here only one of these
cases; they both lead to the same result. Consider the case
j ∈ Xk(b′It+1

,b−It). Then, we have:

Sk
(
b′It+1

,b−It

)
= Sk

(
b′It ,b−It

)
− b′t(j)

= Sk
(
b′It ,b−It

)
−
∑
i∈It

b′i(j) +
∑
i∈It+1

b′i(j)

≤ Sk
(
b′It ,b−It

)
−
∑
i∈It

b′i(j) +
1

k
SW

(
Xk(b)

)
(5)

To justify the last inequality, define c = (b′It+1
,b−It+1

).
Then, because j 6∈ Xk(b′It+1

,b−It+1
), we have:

∑
i∈It+1

b′i(j) ≤
∑
i∈[n]

ci(j) ≤ min

∑
i∈[n]

ci(j
′)

∣∣∣∣∣j′ ∈ Xk(c)


≤ 1

k
Sk
(
b′It+1

,b−It+1

)
≤ 1

k
SW

(
Xk(b′It+1

,b−It+1
)
)

where the latter is at most 1
kSW (Xk(b)).

Using (5) in inequality 1 of Lemma 1 (with q = t) gives:

1

k
· SW

(
Xk(b)

)
+ vt

(
Xk(b)

)
≥
∑
i∈It

b′i(j) = VIt(X
∗)

(6)
Using inequality 2 of Lemma 1, for q = t− 1, we obtain:

VI\It

(
Xk(b)

)
≥ Sk

(
b′I ,b−I

)
− Sk

(
b′It ,b−It

)
= SkI\It

(
b′I ,b−I

)
= VI\It(X

∗) (7)

The previous-to-last equality is due to Xk(b′I ,b−I) =
Xk(b′It ,b−It), by definition of t in (4). Now we sum (6)
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and (7) to obtain (also by using VI\It+1
(Xk(b)) ≤

VI(Xk(b)) ):

1

k
· SW

(
Xk(b)

)
+ VI

(
Xk(b)

)
≥ VI(X∗) (8)

We sum up (8) over at most dnj/`e disjoint subsets of agents
per j ∈ X∗ \Xk(b), and over all j ∈ X∗ \Xk(b), to obtain:∑
j∈X∗\Xk(b)

[
1

k
·
⌈nj
`

⌉
· SW

(
Xk(b)

)
+ VNj

(
Xk(b)

)]

≥
∑

j∈X∗\Xk(b)

VNj (X
∗) (9)

The final result emerges by combination of (3) with (9); the
latter is clearly worst-case, so that we may assume X∗ ∩
Xk(b) = ∅. Then, from (9) we deduce:

SW (X∗) ≤

1 +
1

k

∑
j∈X∗

dnj/`e

 · SW(Xk(b)
)

≤
(

2 + n/(` · k)
)
· SW

(
Xk(b)

)
which proves the theorem.

Observe that the upper bound obtained by Theorem 5 can
be worse than 1 + dn/`e, that we obtained in Theorem 4 for
XOS ⊃ UD valuation functions. For example, when ` =
n, the two results yield bounds 2 + 1/k and 2 respectively.
It can be verified that the bound of Theorem 5 is the better
one, when ` < n(k−1)

k for any k ≥ 2, thus, definitely when
` < n

2 . By consolidating the two bounds we obtain:
Corollary 1. In `−Strong Equilibrium, the Item Bidding
mechanism for the CPPP with VCG-based Pricing recovers
at most 1 + min

{⌈
n
`

⌉
,
(
1 + n

`·k
)}

times less welfare than
the socially optimal outcome, when agents have UD valua-
tion functions.
We prove an almost matching lower bound on the mecha-
nism’s performance, even for uUD valuation functions.
Theorem 6. For any k = o(n), the Item Bidding mecha-
nism for the CPPP with VCG-based Pricing recovers in `-
Strong Equilibrium at least max

{
2, n

k·`
}

times (asymptoti-
cally in n) less welfare than the socially optimal outcome,
when agents have uUD valuation functions.

Proof. Given k, `, consider a CPPP instance with m =
2k items and n = ω(k) agents. We index the items by
j1, j2 . . . , jk, j

∗
1 , j
∗
2 , . . . , j

∗
k . We partition the n agents into k

subsets, A1, . . . , Ak, each containing at least bn/kc agents;
each subset also contains at most 1 of the remaining (at
most) k−1 agents, so that all n agents are distributed among
these k subsets. Thus, dn/ke ≥ |At| ≥ bn/kc. Next we
make another k subsets of agents, B1, . . . , Bk, where each
Bt contains r = min{`, d(maxt |At|)/2e} distinct agents
from At, for t = 1, . . . , k. For t = 1, . . . , k, we define the
uUD valuation functions of agents in Bt, At, as follows:

∀i ∈ Bt: vi({j}) =

{
1 if j = j∗t or j = jt
0 otherwise

∀i ∈ At \Bt: vi({j}) =

{
1 if j = j∗t
0 otherwise

The socially optimal outcome is {j∗1 , j∗2 , . . . , j∗k} with total
value of n. Consider a bidding configuration b, with:

bi(j) =

{
1 if j = jt
0 otherwise

∀i ∈ Bt

bi(j) = 0 ∀i ∈ At \Bt ∀j ∈ {jt , j∗t | t = 1, . . . , k}

Then, Xk(b) = {j1, j2, . . . , jk} and:

SW (b) =
k∑
t=1

|Bt| ≤
k∑
t=1

min

{
`,

(
1 +
|At|

2

)}

≤
k∑
t=1

min

{
`,
n+ 3k

2k

}
≤ min

{
k · `, n+ 3k

2

}

Then, notice that n/SW (b) ≥ max
{
n
k·` ,

2n
n+3k

}
, which

asymptotically in n yields the result, for k = o(n).
We show that b is a `−strong equilibrium. Observe that,

under b, all agents in ∪kt=1Bt receive their maximum utility
possible (equal to 1); thus, none of these agents could be
part of a jointly deviating subset. For the remaining agents in
eachAt\Bt, notice that |Bt| ≥ min{`, d(maxt |At|)/2e} ≥
min{`, |At \ Bt|}, by construction. Thus, no subset of at
most min{`, |At\Bt|} agents fromAt\Bt may concentrate
a bid larger than |Bt| on item j∗t (recall that agents from Bt
do not have incentive to participate in any deviating subset).
If such a subset manages to insert j∗t in the outcome due to a
favorable tie-breaking rule, all its members gain a value of 1
at a price of 1, thus not increasing their utility beyond 0.

Conclusions and Future Work
We presented and analyzed a simple Item Bidding mecha-
nism for the CPPP. We have derived tight upper and lower
bounds on the Price of Anarchy for `−strong equilibria both
for the general class of XOS valuation functions but also for
other fairly expressive subclasses. Our analysis exhibits in-
creasingly favorable performance as the number of agents
that are allowed to coordinate increases. We believe that the
performance of item bidding mechanisms along with their
simple and natural interface makes them appealing for prac-
tical deployment in multi-agent environments.

Several interesting open problems remain. It would be
interesting to investigate existence of strong equilibria for
classes beyond the ones that we established their existence
for; experimental evidence allows us to conjecture that they
do exist for UD and, possibly, XOS valuation functions.
Computation of strong equilibria and related convergent pro-
cedures constitute compelling issues for future research, as
well. Considering even richer valuation function classes,
such as Subadditive ones, would broaden our understanding
of the mechanism’s performance. Another direction is to en-
rich the family of item bidding mechanisms, by examining
different payment or outcome determination rules.
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