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Abstract

The Fisher market model is one of the most fundamen-
tal resource allocation models in economics. In a Fisher
market, the prices and allocations of goods are deter-
mined according to the preferences and budgets of buy-
ers to clear the market.
In a Fisher market game, however, buyers are strate-
gic and report their preferences over goods; the market-
clearing prices and allocations are then determined
based on their reported preferences rather than their
real preferences. We show that the Fisher market game
always has a pure Nash equilibrium, for buyers with
linear, Leontief, and Cobb-Douglas utility functions,
which are three representative classes of utility func-
tions in the important Constant Elasticity of Substitu-
tion (CES) family. Furthermore, to quantify the social
efficiency, we prove Price of Anarchy bounds for the
game when the utility functions of buyers fall into these
three classes respectively.

Introduction
The Fisher market (Brainard and Scarf 2000) is one of the
most fundamental models within mathematical economics
studied in an extensive body of literature alongside the
Arrow-Debreu model. The basic setting is that of a set of
buyers aiming to purchase multiple goods in a way that
maximizes their utility subject to budget constraints. The
outcome where supply equals demand is known as a mar-
ket equilibrium, and has the property that the buyers spend
their entire budgets, all goods are sold, and the bundle pur-
chased by each buyer maximizes his utility (given his bud-
get and the equilibrium prices of the goods). While the gen-
eral equilibrium theory is essentially a non-algorithmic the-
ory (Nisan et al. editors 2007), Fisher markets enjoy desir-
able computational properties. In particular, a market equi-
librium is guaranteed to exist under mild conditions (Arrow
and Debreu 1954), and it can be computed efficiently when
the utility functions belong to the important class of Con-
stant Elasticity of Substitution (CES) functions (Solow 1956;
Arrow et al. 1961). The most prominent types of functions in
this class are the Linear, Leontief, and Cobb-Douglas utility
functions.
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Due to their attractive computational properties, Fisher
markets represent an appealing mechanism for allocating re-
sources in multiagent systems. However, the classical model
implicitly assumes that the true preferences of the buyers are
known. If preferences are private to the market – which often
is the case in multiagent systems – the buyers might manip-
ulate their reports to influence the computed market equi-
librium and hence obtain a better allocation. This strategic
behavior naturally motivates the study of the Fisher market
as a game, where the market equilibrium is computed based
on the reports rather than the true preferences; clearly, the
outcome may be different from the one intended.

The Fisher market game was first studied by Adsul et al.
(2010) for buyers with linear utility functions. The authors
showed the existence of pure Nash equilibria under mild
assumptions and provided necessary conditions for a strat-
egy profile to be a pure Nash equilibrium. Chen, Deng, and
Zhang (2011) and Chen et al. (2012) characterized the ex-
tent to which a buyer can improve his utility by deviating
from being truthful for CES utility functions. More recently,
Babaioff et al. (2013) examined strategic behavior in set-
tings where markets are used as auction mechanisms. Un-
like Fisher markets, where money has no intrinsic value to
buyers, the buyers in the markets studied by Babaioff et al.
have quasi-linear utilities.

In this paper, we study the Fisher market game for buy-
ers with linear, Leontief, and Cobb-Douglas utility func-
tions respectively. We explore two research questions. First,
while a Fisher market almost always has a market equi-
librium, does a Fisher market game always have a game-
theoretic equilibrium? Second, we are interested in quanti-
fying the social welfare loss due to the strategic behavior
of buyers in the Fisher market game. We analyze the Price
of Anarchy (PoA) (Koutsoupias and Papadimitriou 1999;
Roughgarden and Tardos 2002), which is defined as the ratio
between the social welfare at the worst game-theoretic equi-
librium and the social welfare at the optimal “centralized”
allocation, for the game.

Our contributions are as follows. When buyers have Leon-
tief and Cobb-Douglas utility functions, we show that the
Fisher market game always have a pure Nash equilibrium
under mild conditions. Together with the results of Adsul et
al. (2010), which identified a particular pure Nash equilib-
rium of the Fisher market game for buyers with linear utili-
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ties, these results prove the existence of a pure Nash equilib-
rium in the Fisher market game for all the three typical CES
utility functions. We then prove asymptotic PoA bounds
for the Fisher market game for linear, Leontief, and Cobb-
Douglas utilities. For Leontief and Cobb-Douglas functions,
we obtain tight PoA bounds of Θ(1/n) and Θ(1/

√
n) re-

spectively, where n is the number of buyers in the game.
For linear utility functions, the PoA is upper bounded by
O(1/

√
n) and lower bounded by Ω(1/n). The tight PoA

bound for linear utility functions is left as an open question.

The Model
A Fisher marketM consists of a setN = {1, . . . , n} of buy-
ers (agents) and a set M = {1, . . . ,m} of divisible goods
(items). Every buyer i has:

• an initial budget Bi > 0, which can be viewed as some
currency that can be used to acquire goods but has no in-
trinsic value to the buyer, and

• a utility function ui : [0, 1]m → R that maps a quantity
vector of them items to a real value. ui(xi) represents the
buyer’s utility when receiving xi amount of the items.

Without loss of generality, the supply of each good is as-
sumed to be one unit, and the total budget of all buyers is
normalized to one, i.e.

∑n
i=1Bi = 1.1

Utility Functions
In this paper, we consider buyers with linear, Leontief, or
Cobb-Douglas utility functions. These utility functions are
the most widely used classes in the general Constant Elas-
ticity of Substitution (CES) utility function family. Utility
functions in the CES family take the form of

ui(xi) =
( m∑
j=1

aij · xρij
) 1
ρ

where ρ parameterizes the family, and−∞ < ρ ≤ 1, ρ 6= 0.
The Leontief, Cobb-Douglas, and linear utility functions are
respectively obtained when ρ approaches −∞, approaches
0, and equals 1:

Leontief : ui(xi) = minj∈[m]

{
xij
aij

}
.

Cobb-Douglas: ui(xi) =
∏
j∈[m] x

aij
ij .

Linear: ui(xi) =
∑
j∈[m] aijxij .

The Leontief function captures utility of items that are
perfect complements, e.g. left and right shoes; the Linear
function captures utility of items that are perfect substitutes,
e.g. Pepsi and Coca-Cola. The Cobb-Douglas function ex-
presses a perfect balance between complements and substi-
tutes.

The aij is a parameter of the utility functions. It quantifies
how receiving more item j affects buyer i’s utility, while the
exact effect depends on the specific class of utility functions.

1These are standard assumptions that are often made for con-
venience in analyzing the Fisher market model. They do not affect
our results in this paper.

We hence call ai = (aij)j∈[m] a valuation vector. In this
paper, we will only consider buyers having utility functions
from the same class (linear, Leontief, or Cobb-Douglas) but
with possibly different valuation vectors. Once the class of
utility functions is fixed, a buyer’s utility function can be
completely described by its valuation vector ai.

Market Equilibrium
Each buyer in the market wants to spend its entire budget
to acquire a bundle of items that maximizes its utility. A
market outcome is defined as a tuple 〈p,x〉, where p is a
vector of prices for the m items and x = (x1, . . . ,xn) is
an allocation of the m items, with pj denoting the price of
item j and xij representing the amount of item j received by
buyer i. A market outcome that maximizes the utility of each
buyer subject to its budget constraint and clears the market
is called a market equilibrium (Nisan et al. editors 2007).
Formally, 〈p,x〉 is a market equilibrium if and only if:
• For all i ∈ N , xi maximizes buyer i’s utility given prices

p and budget Bi.
• Each item j either is completely sold or has price 0, i.e.

(
∑n
i=1 xij − 1)pj = 0, ∀j ∈ [m].

• All budgets get spent, i.e.
∑m
j=1 pj · xij = Bi, ∀i ∈ [n].

A market equilibrium is guaranteed to exist if each item is
desired by at least one buyer and each buyer desires at least
one item (Maxfield 1997). For buyers with utility functions
from the same class in the CES family (i.e. for some fixed
ρ), the equilibrium allocation can be captured by the cele-
brated Eisenberg-Gale convex program (1959), one of the
few algorithmic results in general equilibrium theory:

max
n∑
i=1

Bi · log(ui)

s.t. ui = (
m∑
j=1

aij · xρij)
1
ρ , ∀ i ∈ [n]

n∑
i=1

xij ≤ 1, ∀ j ∈ [m]

xij ≥ 0, ∀ i ∈ [n], j ∈ [m]

For some values of ρ, for example ρ = 1, the objective func-
tion of this convex program is not strictly concave, which
means that there may be multiple market equilibria.

The Fisher Market Game
When the Fisher market is used as a mechanism for allo-
cating resources among self-interested agents, it induces a
game. In this game, each agent first reports its preference
to the center and the center then determines a market equi-
librium according to the budgets of the agents and their re-
ported preferences. An agent’s utility in the game is his util-
ity of the allocated items with respect to his true preference.

In the same spirit as Adsul et. al (2010), we define the
Fisher market game as a game with complete information
among all agents. The definition is for agents with CES util-
ity functions with a fixed ρ. Hence, an agents’s utility func-
tion can be described by its valuation vector ai.
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Definition 1 (Fisher Market Game). Given a set of items
M = {1, . . . ,m} and a set of agents N = {1, . . . , n},
where each agent i has budget Bi and valuation vector ai,
the Fisher Market Game is such that:
• The pure strategy space of each agent i is the set of

all possible valuation vectors that i may report: Si =
{si | si ∈ Rm≥0}. We refer to a strategy si as a report.
• Given a strategy profile s = (si)

n
i=1, the outcome of the

game is any fixed market equilibrium of the Fisher market
given by 〈Bi, si〉i, after removing all items j such that∑
i∈N sij = 0.

• Let x(s) = (x1(s), . . . ,x1(s)) denote the market alloca-
tion for strategy profile s. For all i ∈ N , agent i’s utility
at s is ui(xi(s)), written as ui(s) for shorthand.
The above definition does not allow agents to strategize on

their budgets, since Chen, Deng, and Zhang (2011) proved
that agents can never gain by misreporting their budgets.

Existence of Pure Nash Equilibria
We study the existence of pure Nash equilibria for the
main classes of CES utility functions and begin with Cobb-
Douglas valuations.

According to the standard definition, a strategy profile is
a pure Nash equilibrium if no agent can increase its util-
ity by deviating to some other strategy. In the Fisher market
game, since the outcome of the game might be one of several
market equilibria, we define a pure Nash equilibrium of the
Fisher market game to be a strategy profile where for any
deviation of any agent i, agent i’s payoff does not increase,
for any market equilibrium of the resulting strategy profile.

Cobb-Douglas Utilities
The main result of this section is that the Fisher market game
with Cobb-Douglas utilities has pure Nash equilibria for a
large class of valuations that captures most scenarios of in-
terest. That is, existence is guaranteed when the game is
strongly competitive (i.e. for each item j ∈ [m], there ex-
ists more than one agent with non-zero valuation for it) and
the preferences are unit-sum (i.e.

∑
j aij = 1, ∀i ∈ [n]).

The unit-sum preferences assumption is a common normal-
ization originating in social choice theory and widely used
in both economics and computer science to model situations
where agents’ preferences are not measurable in monetary
terms and hence all agents have equal weights in the system.

Strong competitiveness is required in order for pure Nash
equilibrium to exist, since if there is an item desired by a
single agent, that agent has an incentive to assign less and
less value on this item and can still receive it entirely. The
very same condition is used by Adsul et. al (2010), Feldman
et al (2009), and Zhang (2005).
Theorem 1. The Fisher market game with Cobb-Douglas
utilities has a pure Nash equilibrium under unit-sum valua-
tions whenever the game is strongly competitive.

Recall that given an allocation x = (xij), where xij is the
amount received by agent i from good j, the utilities are:

ui(x) =
∏

j∈[m]:aij 6=0

x
aij
ij ,∀i ∈ [n],

where aij is the value of agent i for item j andBi its budget.
Moreover, the market equilibrium and market prices are

unique and have the following succinct form (Eaves 1985):

pj =
n∑
i=1

aijBi and xij =
aijBi∑n
k=1 akjBk

.

The game has discontinuous payoffs; thus standard meth-
ods for proving existence of pure Nash equilibria do not ap-
ply. Our main tool is a non-trivial result due to Reny (1999)
on the existence of Nash equilibria in general games with
discontinuous payoffs. We set up the required machinery
starting with the following definitions.

Definition 2. Agent i can secure a payoff of α at strategy
(si, s−i) ∈ S if there is s̄i ∈ Si, such that ui(s̄i, s′−i) ≥ α
for all s′−i close enough to s−i. [i.e. if there exists ε > 0 such
that for any s′−i with |s′−i− s−i| < ε then ui(s̄i, s′−i) ≥ α].

In other words, agent i can secure the payoff α if the agent
has a strategy guaranteeing at least α not only at the strategy
profile (s̄i, s−i), but also at all profiles where agent i plays
s̄i but the other agents slightly deviate from s−i.

Definition 3. A pair (s,u) ∈ S × Rn is in the closure
of the graph of the vector payoff function if u ∈ Rn
is the limit of the vector of agent payoffs for some se-
quence of strategies (sk)k≥1 converging to s. That is, if
u = limk

(
u1(sk), . . . , un(sk)

)
for some sk → s.

Definition 4. A gameG = (Si, ui)
n
i=1 is better-reply secure

if whenever (s∗,u∗) is in the closure of the graph of its vec-
tor payoff function and s∗ is not a Nash equilibrium, some
agent i can secure a payoff strictly above u∗i at s∗.

Theorem 2. (Reny 1999) If the strategy profile of each
agent i, Si, is a non-empty, compact, convex subset of a met-
ric space, the utility function of each agent i, ui(s1, . . . , sn)
is quasi-concave in the agent’s own strategy, si, and the
game G = (Si, ui)

n
i=1 is better-reply secure, then G has

at least one pure Nash equilibrium.

We show that the Fisher market game with Cobb-Douglas
utilites and unit-sum valuations is better-reply secure.

Lemma 1. The Fisher market game with Cobb-Douglas
utilities and unit-sum valuations is better-reply secure.

Proof. Since all games with continuous payoffs are better-
reply secure, it is sufficient to check the property at the
points where the utility functions are discontinuous (Reny
2006). In the Fisher market game with Cobb-Douglas util-
ities, the discontinuity occurs when there exists an item j
such that all agents assign a value of zero towards that item.
That is, the utility functions are discontinuous at the points
in the set

D = {s ∈ S | ∃ j ∈ [m] such that sij = 0,∀i ∈ N}

Let (s∗,u∗) be in the closure of the graph of the vector pay-
off function, where s∗ ∈ D. Then u∗ = limK→∞(u1(sK),
. . ., un(sK)) for some sequence of strategies sK → s∗. For
each sequence term sK , let sKij be the report of agent i for
item j and SKj the sum of reported values for item j. Let
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J be the set of items that no agent declares as valuable (i.e.
with strictly positive value) in s∗:

J = {j ∈ [m] | s∗ij = 0 and aij 6= 0,∀i ∈ N}

Using an average argument, there exist an agent i, item
l and index N0 ∈ N such that sKil

SKl
≤ 1

2 , for all K ≥ N0.
That is, agent i gets at most 50% of item l in every term of
the sequence (sK)K≥1 (except possibly for the first N0 − 1
terms). Let agent i and item l be fixed for the remainder of
the proof. Let S∗j =

∑n
k=1 s

∗
kj be the sum of values of the

agents for item j at the strategy profile s∗, SKj =
∑n
k=1 s

K
kj

the sum of values for item j at the strategy profile sK , and
Li = {j ∈ [m] | s∗ij > 0} the set of items that agent i
declares as valuable in the limit.

For every item k 6∈ J , we have that limK→∞
sKik
SKk

=
s∗ik
S∗
k

.
Then the utility of agent i in the limit of the sequence of
strategies (sK)K≥1, can be rewritten as follows:

u∗i = lim
K→∞

∏
j∈J

(
sKij
SKj

)αij
·
∏
j∈Li

(
sKij
SKj

)αij
=

∏
j∈J

lim
K→∞

(
sKij
SKj

)aij
·
∏
j∈Li

(
s∗ij
S∗j

)aij

≤
(

1

2

)ail
·
∏
j∈Li

(
s∗ij
S∗j

)aij
We illustrate the case u∗i > 0. If u∗i = 0, the analysis is

simpler; agent i can easily secure a strictly positive payoff
by declaring a small valuation on the items in J , for every
ε-perturbation of the other agents’ strategies around s∗−i.

Define the constants α =
∑
j∈Li:aij 6=0 aij and γ = 2

ail
α ,

where γ > 1. Let δ > 0 be fixed such that δ <
(γ−1)·S∗

j

γ·S∗
j−s∗ij

, for

all j ∈ Li. Consider a new strategy profile, s′i, for agent i,
such that

s′ij =


(1− δ)s∗ij if j ∈ Li(
δ
|J|

)
·
(∑

k∈Li s
∗
ik

)
if j ∈ J

s∗ij(= 0) otherwise

Agent i’s utility when playing s′i against strategies s∗−i is:

ui(s
′
i, s
∗
−i) =

∏
j∈J

(
s′ij
s′ij

)aij
·
∏
j∈Li

(
(1− δ)s∗ij
S∗j − δ · s∗ij

)aij

=
∏
j∈Li

(
(1− δ)s∗ij
S∗j − δ · s∗ij

)aij
Then for each j ∈ Li, the following inequality holds:

γail ·

(
(1− δ) · s∗ij
S∗j − δ · s∗ij

)
>
s∗ij
S∗j

(1)

By taking the product of Inequality (1) over all items j ∈
Li, we obtain that ui(s′i, s

∗
−i) > u∗i . The utility of agent i

is continuous at (s′i, s
∗
−i), and so for small changes in the

strategies of the other agents around s∗−i, agent i still gets
a better payoff than at u∗i . That is, there exists ε > 0 such
that for all feasible strategies s′−i of the other agents, where
||s′−i − s∗−i|| < ε, it is still the case that ui(s′i, s

′
−i) > u∗i . It

follows that the game is better-reply secure.

It can be easily seen that the utility function of each agent
is quasi-concave in the agent’s own strategy.

Proof of Theorem 1. The strategy set of each agent in the
Fisher market game with unit-sum, Cobb-Douglas utilities
is non-empty, compact, and convex. Moreover, the utilities
are quasi-concave in the agents’ own strategies; by Lemma
1, the game is also better-reply secure. Thus the conditions
of Reny’s theorem are met, and so a pure Nash equilibrium
is guaranteed to exist.

Leontief Utilities
For the class of Leontief functions, we prove the existence
of a pure Nash equilibrium by directly constructing a set
of equilibrium strategies. Namely, the uniform strategy pro-
file is a Nash equilibrium regardless of the true valuations;
moreover, the statement holds even for games that fail to
be strongly competitive. The high level explanation is that
Leontief utilities exhibit perfect complementarity; thus re-
porting a smaller valuation of an item that no other agent
desires does not result in an increased utility for the devi-
ator (since utility is taken as a minimum over the alloca-
tion/valuation ratios).

We start by analyzing two-agent markets and then extend
the characterization to markets with multiple agents.
Theorem 3. Given a Fisher market game for two agents
with Leontief utilities, the uniform tuple of strategies is
a pure Nash equilibrium, and the agents’ utilities are

B1

maxj{a1j} and B2

maxj{a2j} , respectively.

In order to prove Theorem 3, we build upon a result due
to Chen, Deng, and Zhang (2011), that describes the best re-
sponse strategies in two-agent markets. First, define for each
agent i ∈ [n] the following terms: amaxi = maxj∈[m]{aij},
amini = minj∈[m]{aij}, smaxi = maxj∈[m]{sij}, smini =
minj∈[m]{sij}.

Then given any two-agent market and an arbitrary fixed
strategy s2 of agent 2, the best response strategy of agent 1
is: s1 = (s1j)j∈[m], where s1j = 1 − s2j · B2

smax2
. In addi-

tion, given fixed strategies (s1, s2), the market equilibrium
allocation is unique and the utility of agent 1 is:

u1(s1, s2) = min
j∈[m]

{
1− s2j · B2

smax2

a1j

}
Agent 2’s allocation is given by: x2j = s2j · B2

smax
2

, ∀j ∈ [m],
and its utility is the minimum possible (as evaluated using
its strategy, s2); that is, u′2(s1, s2) = B2

smax2
.

Recall that the prices pj and budgets Bi satisfy the iden-
tity:

∑
j∈[m] pj =

∑
i∈[n]Bi = 1, and so the utility of agent

i (as evaluated using the agent’s strategy si) is:

u′i =
Bi∑

j∈[m] pjsij
, where

Bi
smaxi

≤ u′i ≤
Bi
smini

590



At a high level, by using s1, agent 1 forces agent 2 to get
the minimum possible utility (as evaluated with the reported
preferences si); this translates to the worst possible alloca-
tion for agent 2, while agent 1 gets all the remaining items.

In order for a pair of strategies (s1, s2) to be a pure Nash
equilibrium, the utility of each agent i (evaluated using its
report) satisfies: u′i(s1, s2) = Bi

smaxi
. Otherwise, some agent

could increase its allocation by using the above best re-
sponse strategy (which would decrease the other agent’s al-
location). Theorem 3 follows Lemmas 2 and 3.

Lemma 2. For every pair of strategies (s1, s2) that is a
pure Nash equilibrium of the Fisher market game with two
agents and Leontief preferences, the utility of each agent i,
as evaluated using its true preferences, satisfies the inequal-
ity: ui(s1, s2) ≤ Bi

amaxi
.

Lemma 3. The uniform strategy guarantees agent 1 a payoff
of B1

amax1
, regardless of agent 2’s strategy.

Note that by using its true preferences, agent i receives:
ui = Bi/

(∑
j∈[m] pj · aij

)
, where Bi/a

max
i ≤ ui ≤

Bi/a
min
i . Thus in any pure Nash equilibrium, the agents fare

worse compared to truthful play.
Next we generalize Theorem 3 to any number of agents.

Note that the best response strategy of Chen, Deng, and
Zhang (2011) does not apply to our game directly. However,
we observe that the uniform strategy remains a pure Nash
equilibrium regardless of the number of agents.

Theorem 4. Given a Fisher market game with Leontief pref-
erences, the uniform strategy is a Nash equilibrium for any
number of agents, with utilities ui = Bi

amaxi
, for all i ∈ [n].

Proof. Let i be any agent and s−i an arbitrary fixed strat-
egy of the other agents. From the objective function of the
Eisenberg-Gale convex program, it can be observed that all
the other agents can be seen as equivalent to a (combined)
single agent. Thus the market equilibrium allocation can be
computed by reducing the game to two agents, i and −i. By
Theorem 3, agent i has no incentive to deviate from the uni-
form strategy; thus the uniform strategy is also a pure Nash
equilibrium of the n-agent game. It can be verified that the
utilities are ui = Bi

amaxi
, for each i ∈ [n].

Linear Utilities
Finally, the existence of pure Nash equilibria for linear utili-
ties was established by Adsul et. al (2010) for strongly com-
petitive games in a more restricted model than ours. In their
model they require that the outcome of the game on a given
set of reports s, is the market equilibrium that maximizes the
product of every agent’s utility according to their true valua-
tions, i.e. if there is a market equilibrium E that every agent
prefers to every other market equilibrium, then the outcome
of the game is E . This is well-defined because the true val-
uations are known to all agents but implicitly assumes that
the market equilibrium is selected by the agents themselves.

Theorem 5. [Adsul et. al (2010)] Given any Fisher market
game with linear utilities, there exists a (symmetric) pure

Nash equilibrium in which the payoffs are identical to those
obtained when agents play truthfully.

Price of Anarchy Bounds
Having examined the existence of pure Nash equilibria in
the Fisher market game, we proceed to study its Price of An-
archy (PoA) (Nisan et al. editors 2007) and give asymptotic
bounds for the three main classes of CES utility functions.
The (pure) PoA is defined as the ratio between the welfare
of the worst-case pure Nash equilibrium and the maximum
welfare (taken over all strategy profiles). Note that a PoA
of O(α) implies that the equilibrium efficiency cannot be
asymptotically better (i.e. higher) than the optimal welfare
by a factor of α. Similarly, a PoA of Ω(α) implies that the
equilibrium welfare is at least as high as α times the optimal
welfare.

First, note that in all three cases, if the valuations can be
completely arbitrary, then the PoA can also be arbitrarily
bad. Following the recent literature (Zhang 2005), we study
the normalized game, in which each agent’s utility is pro-
portional to its budget if it owns all of the items. More for-
mally, for each agent i ∈ [n], we have that ui(0) = 0 and
Bi/ui(1) = δ, where 0 and 1 are the all 0 and all 1 vectors.
We will refer to this assumption as the δ-normalization. In
addition, we focus on unit-sum valuations; such normaliza-
tions are commonly encountered in other resource allocation
and social choice settings.

Linear Utilities
For linear utilities, we begin with the following upper bound.

Theorem 6. The Fisher market game with linear utilities
has a Price of Anarchy of O(1/

√
n).

Proof. Consider an instance with n = m2 + m agents and
m items, where the budget of each agent i is Bi = 1.

For every agent i ∈ {1, . . . ,m}, define its valuation vec-
tor as ai = (0, . . . , 0, 1, 0, . . . , 0), that is, the vector in which
the ith coordinate is set to 1 and all other entries are zero.

For every agent i ∈ {m + 1, . . . ,m2 + m}, define its
valuation vector as ai =

(
1
m , . . . ,

1
m

)
.

By checking the KKT conditions of the Eisenberg-Gale
convex program, we obtain the market equilibrium:

• The prices are: pj = m+ 1, ∀j ∈ [m]

• The allocations are: xii = 1
m+1 ,∀i ∈ {1, . . . ,m}, xij =

1
m(m+1) ,∀i ∈ {m+1, . . . ,m2+m},∀j ∈ [m], and xij =

0 everywhere else.

Moreover, for any truthful reporting, any market equilibrium
gives the same utility to every agent. Thus, regardless of
the chosen allocation, the social welfare under truthfulness
is 2m

m+1 . By Theorem 5, there exists a Nash equilibrium in
which the social welfare is the same as that of the truthful
strategy profile, and so there exists a Nash equilibrium with
a social welfare of 2m

m+1 . The optimal social welfare is at
least m− 1; given by the strategies si = (0, 0, ..., 1, ...0) for
players i = 1, ...,m − 1 and si = (0, 0, ...., 1) for players
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i = m, ...,m+m2. The PoA is 2m
(m−1)(m+1) ; asymptotically,

the bound is O(1/
√
n).

We also establish the following lower bound.

Theorem 7. The Fisher market game with linear utilities
has a Price of Anarchy of Ω(1/n).

Proof. By δ-normalization, we have: Bi/(
∑m
j=1 aij) = δ.

Given unit-sum preferences, we get Bi = Bk,∀i 6= k.
By only assigning value to its most preferred item, each

agent i can guarantee a payoff bounded as follows:

ui ≥ Bi ·
amaxi∑n
k=1Bk

=
amaxi

n

i.e., in the worst case, all agents prefer the same item, so
the price of the item is

∑n
k=1Bk and each agent gets a

fraction of Bi/(
∑n
k=1Bk). The optimal social welfare is

W ∗ ≤
∑n
i=1 a

max
i , and so the PoA is:

PoA =

∑n
i=1 ui
W ∗

≥
1
n

∑n
i=1 a

max
i∑n

i=1 a
max
i

=
1

n
.

Cobb-Douglas Utilities
Recall that under Cobb-Douglas utilities with unit-sum val-
uations, the Fisher market game allocates to each agent i
exactly a xij =

aijBi∑n
k=1 akjBk

fraction of every item j. This
allocation coincides with that of the proportional-share al-
location mechanism, studied by Feldman et al. (2009) and
Zhang (2005).

In the proportional-share mechanism, each agent i has
a budget Bi that it can freely distribute over the m items.
The report of each agent is an m−dimensional vector si =
(si1, . . . , sim), with the property that

∑m
j=1 sij = Bi. Given

any instance of the agents’ reports, s = (s1, . . . , sn), the
price of each item j is set to pj =

∑n
k=1 skj , and agent i

receives xij =
sij
pj

units of item j. If all agents report zero
for some item, then that item is kept by the center.

Theorem 8. The Fisher market game with Cobb-Douglas
utilities has a Price of Anarchy of Θ(1/

√
n).

Proof. For the lower bound, we use the technique employed
by Zhang (2005) to show that the linear proportional-share
mechanism has a PoA of Ω(1/

√
n).

The key observation is that the technique used in their
proof does not require a specific form of the utility func-
tions; thus the lower bound holds more generally for any
concave, non-decreasing utility function. In their proof, the
optimal allocation is not necessarily a feasible allocation of
the Fisher market game, but its value is actually at least as
large as the optimal value of the game and hence the lower
bound still holds. As a result, the Fisher market game with
Cobb-Douglas utilities has a PoA of Ω(1/

√
n).

To see the upper bound, consider the same instance that
we constructed in Theorem 6 to prove the upper bound on
the PoA for the Fisher market game for linear utilities (with
n = m2 + m agents and m items). With a simple check, it
can be seen that reporting truthfully is a Nash equilibrium.

Moreover, under truthfulness, the social welfare is 2m
m+1 ,

while the optimal social welfare is at least m − 1, given by
the same strategy profile used in proving the upper bound
for linear utility functions.. Thus the PoA is 2m

(m−1)(m+1) ,
and we get the asymptotic bound of O(1/

√
n).

Leontief Utilities
Finally, for Leontief utilities, we give the next tight bound.
Theorem 9. The Fisher market game with Leontief utilities
has a Price of Anarchy of Θ(1/n).

Proof. The upper bound proof is omitted. For the lower
bound, by reporting truthfully, agent i can guarantee

ui =
Bi

(
∑m

j=1 pjaij)
≥ Bi

(
∑m

j=1 pja
max
i )

=
Bi

(
∑n

k=1 Bkamax
i )

The optimal welfare is W ∗ ≤
∑n
i=1 ui(1) =

∑n
i=1

1
amaxi

,
and so the PoA is:

n∑
i=1

ui
W ∗
≥
Bi/ (

∑n
k=1Bka

max
i )∑n

i=1 (1/amaxi )

The δ-normalization implies: amaxi Bi = δ, and so:

PoA =
n∑
i=1

B2
i

(
∑n
i=1Bi)

2

By the Cauchy-Schwarz inequality, we have:

PoA =
1

n
·
(
∑n

i=1 1
2)(

∑n
i=1 B

2
i )

(
∑n

i=1 Bi)2
≥ 1

n
·
(
∑n

i=1 1 ·Bi)
2

(
∑n

i=1 Bi)2
=

1

n
.

Table 1: Summary: Welfare of the Fisher Market Game.
Lower bound (*) is due to Zhang (2005)

Cobb-Douglas Leontief Linear
UB O(1/

√
n) O(1/n) O(1/

√
n)

LB Ω(1/
√
n) (*) Ω(1/n) Ω(1/n)

Future Work
It remains an interesting open question whether a pure Nash
equilibrium exists for CES functions with any value of ρ.
The main challenge to this question is that there is no ex-
plicit formula for the allocation, instead, the allocation rule
is a part of the feasible solution to a convex program. This
challenge also carries over into proving a tight lower bound
on the PoA of the Fisher market game with linear utility
functions. For the latter case, an additional difficulty is that
the market equilibrium may not be unique and hence a proof
should take all market equilibria into account.

For the linear case, the results of Adsult et. al (2010) as-
sume a somewhat artificial choice of market equilibrium. In
real markets, however, the choice of the market equilibrium
is upon the market designer, who does not know the true val-
uations and hence cannot select the “universally preferred”
allocation. It remains open to find a natural choice of market
equilibrium for the linear case that could be handled by the
market designer.
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