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Abstract

In this paper, we introduce and examine two new models
for competitive contagion in networks, a game-theoretic gen-
eralization of the viral marketing problem. In our setting,
firms compete to maximize their market share in a network
of consumers whose adoption decisions are stochastically
determined by the choices of their neighbors. Building on
the switching-selecting framework introduced by Goyal and
Kearns, we first introduce a new model in which the payoff
to firms comprises not only the number of vertices who adopt
their (competing) technologies, but also the network connec-
tivity among those nodes. For a general class of stochastic
dynamics driving the local adoption process, we derive up-
per bounds on (1) the (pure strategy) Price of Anarchy (PoA),
which measures the inefficiency of resource use at equilib-
rium, and (2) the Budget Multiplier, which captures the extent
to which the network amplifies the imbalances in the firms’
initial budgets. These bounds depend on the firm budgets
and the maximum degree of the network, but no other struc-
tural properties. In addition, we give general conditions under
which the PoA and the Budget Multiplier can be unbounded.
We also introduce a model in which budgeting decisions are
endogenous, rather than externally given as is typical in the
viral marketing problem. In this setting, the firms are allowed
to choose the number of seeds to initially infect (at a fixed
cost per seed), as well as which nodes to select as seeds. In
sharp contrast to the results of Goyal and Kearns, we show
that for almost any local adoption dynamics, there exists a
family of graphs for which the PoA and Budget Multiplier
are unbounded.

Introduction
In the traditional viral marketing problem, firms attempt to
maximize the adoption of their product or service in a large
social network. To this end, each of them seeds a set of
initial “infections” in the network via product give-aways,
marketing campaigns targeting the seed individuals, and so
on. The product may then spread through the network via
local stochastic dynamics accounting for local recommen-
dations or influence between neighbors, known as “word of
mouth” effects. Previous papers on this subject mainly focus
on designing (Kempe, Kleinberg, and Tardos 2003; 2005;
Mossel and Roch 2010) or improving (Chen, Wang, and
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Yang 2009; Chen, Yuan, and Zhang 2010; Borgs et al. 2014;
Goyal, Lu, and Lakshmanan 2011) algorithms for finding a
seed set that (approximately) maximizes the total number of
vertices that ultimately adopt the product. More recently,
a number of papers (Goyal and Kearns 2012; Bharathi,
Kempe, and Salek 2007; Borodin, Filmus, and Oren 2010;
Clark and Poovendran 2011; Carnes et al. 2007; Dubey,
Garg, and Meyer 2006; Vetta 2002; Borodin et al. 2013;
Tzoumas, Amanatidis, and Markakis 2012; Alon et al. 2010)
have examined models of competitive contagion that take a
game-theoretic perspective on the traditional problem: two
or more players or firms compete in a large social network,
each with the goal of maximizing their individual market
share, possibly at the expense of others.

In this paper, we introduce and examine two new natu-
ral models for competitive contagion in a network. Existing
models of influence maximization and competitive conta-
gion assume that firms benefit merely according to the num-
ber of nodes that eventually adopt their product. We intro-
duce a framework where the payoffs to firms capture both
their market share and the connectivity within that market
share in the network. In many natural settings, the goal is
not simply that many nodes adopt a product, but also sub-
sequently use a networked service requiring the product.
For instance, Skype users are more valuable if they are in
a densely connected subnetwork of other Skype users with
whom they use the service to interact. We thus consider util-
ity functions that combine both the size of the market share
and the connectivity within that share. For a broad family of
stochastic dynamics—concave switching function and lin-
ear selection function— we prove upper bounds on both the
pure strategy PoA and the Budget Multiplier which depend
on the firm budgets and the maximum degree of the network,
but no other structural properties. We also find broad condi-
tions under which the PoA and the Budget Multiplier can be
unbounded.

Previous works on the subject of influence maximization
(e.g. see (Goyal and Kearns 2012; Kempe, Kleinberg, and
Tardos 2003)) assume that the budgets available to firms to
seed initial infections in the network are fixed and exoge-
nously determined. In many settings this might not be re-
alistic, as firms are free to adjust their budgets in order to
capture a larger market share. We therefore also consider a
model in which budgeting decisions are endogenous. While
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Model
Measure Price of Anarchy Budget Multiplier

Goyal and Kearns model Θ(1) Θ(1)
The Connectivity model Θ(K2

max, dmax) Θ(Kmax)
The Endogenous model unbounded unbounded

Table 1: Summary of our upper bound results compared to the work of Goyal and Kearns (Goyal and Kearns 2012) for the case
where the adoption dynamics exhibit decreasing returns to local adoption. Here Kmax denotes the maximum number of “seeds”
firms can spend to initialize the adoption of their product in the network, and dmax is the maximum degree of a vertex in the
network.

the results of (Goyal and Kearns 2012) establish fairly gen-
eral conditions on local dynamics yielding bounded PoA
and Budget Multiplier independent of network structure, we
show that such robustness vanishes in the case of endoge-
nous budgets: for almost any choice of dynamics, the PoA
and the Budget Multiplier may be unbounded for certain net-
work structures. The informal intuition is that firms may en-
gage in “bidding wars” for sub-optimal seed infections that
essentially eradicate subsequent market share gains.

Table 1 shows a summary of our results compared to
(Goyal and Kearns 2012).

Related Work
We contribute to the study of influence maximization in a
networked setting (see (Kempe, Kleinberg, and Tardos 2003;
2005; Mossel and Roch 2010; Chen, Wang, and Yang 2009;
Chen, Yuan, and Zhang 2010; Borgs et al. 2014; Goyal, Lu,
and Lakshmanan 2011)), where the goal is to find a small
set of influential nodes in the network whose aggregated in-
fluence is maximized. We also contribute to the study of
competition in networked environments (see (Butters 1977;
Grossman and Shapiro 1984)). We mainly build on the
game-theoretic framework introduced in (Goyal and Kearns
2012) for studying the competitive influence maximization
in a social network. In this work, the authors identify
broad conditions on the adoption dynamics — namely, de-
creasing returns to local adoption — under which the PoA
is uniformly bounded above, across all networks. They
also find sufficient conditions on the adoption dynamics —
namely, proportional local adoption between competitors —
for bounded pure strategy Budget Multiplier. In our work
we investigate similar problems in more general settings.

To the best of our knowledge, our work is the first to take
the connectivity among adopters into account in the payoff
function of players. There are however several previous pa-
pers that look at a similar quantity, but with different goals.
For example, (Quan et al. 2012) and (Chaoji et al. 2012) in-
vestigate the relationship between connection features of in-
dividuals and the popularity of a content in a social network;
and (Katona, Zubcsek, and Sarvary 2011) investigates the
effect of the connectivity among current adopters on a po-
tential consumer’s behavior. Our connectivity model is also
remotely related to the large body of work on clustering (see
(Aggarwal and Wang 2010) for a survey).

The impact of endogenous budgets have been investi-
gated on various economic problems, including auctions
(Kotowski 2013; Burkett 2011; Ausubel, Burkett, and Filiz-

Ozbay 2013) and housing markets (Pereyra 2012).

The Framework
For the underlying diffusion dynamics, we consider the
switching-selection framework introduced in (Goyal and
Kearns 2012). Before introducing our new models, we first
review this framework.

Consider a 2-player 1 game of competitive adoption on
a (possibly directed) graph G over n vertices. G is known
to the players, R(ed) and B(lue). The two players simul-
taneously choose some number of vertices to initially seed;
after this seeding, the stochastic dynamics of local adoption
determines how each player’s seeds spread throughout G to
create adoptions by new nodes. Each player seeks to maxi-
mize her payoff which is a function of her eventual adopters.

More precisely, suppose that player p ∈ {R,B} has
Kp ∈ N seed infections; Each player p then chooses an al-
location ap = (ap1, ap2, ..., apn) of budget across the n ver-
tices, where apj ∈ N and

∑n
j=1 apj = Kp. In (Goyal and

Kearns 2012) the authors assume that Kp is exogenously
given.We will see that this assumption is crucial for obtain-
ing their upper bounds on the Price of Anarchy and the Bud-
get Multiplier.

Let Ap be the set of allocations for player p, which is
her pure strategy space. A mixed strategy for player p is
a probability distribution σp on Ap. Let Ap denote the set
of probability distributions for player p. The two players
simultaneously choose their strategies (σR, σB). Consider
any realized initial allocation (aR, aB) for the two players.
Let V (aR) = {v|aRv > 0}, V (aB) = {v|aBv > 0} and let
V (aR, aB) = V (aR)∪V (aB). A vertex v becomes initially
infected if one or more players assigns a seed to infect v. If
both players assign seeds to the same vertex, then the prob-
ability of initial infection by a player is proportional to the
seeds allocated by the player (relative to the other player).

Following the allocation of seeds, the stochastic contagion
process on G determines how these Red and Blue infections
generate new adoptions in the network. Time is considered
to be discrete for this process, and the state of a vertex v

1One can also define the single-player setting by letting the op-
ponent’s strategy be the empty set. In the single-player setting the
interesting problem is that of maximizing the profit. One can eas-
ily show that as is the case for other contagion models, including
(Kempe, Kleinberg, and Tardos 2003), profit maximization is hard
in our models. In fact it may even be more difficult, since in the
connectivity model the payoff function is not submodular, and in
the endogenous model it is not monotone.
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at time t is denoted svt ∈ {U,R,B}, where U stands for
Uninfected, R stands for infection by Red, and B stands for
infection by Blue. We assume there is an update schedule
which determines the order in which vertices are considered
for state updates. Note that this schedule does not need to be
deterministic. We also assume once a vertex is infected, it is
never a candidate for updating again.

For the stochastic update of an uninfected vertex v, we
will consider the switching-selection model. In this model,
updating is determined by the application of two functions to
v’s local neighborhood: f(x) (the switching function), and
g(y) (the selection function). More precisely, let αR and
αB be the fraction of v’s neighbors infected by R and B,
respectively, at the time of the update, and let α = αR +αB
be the total fraction of infected neighbors. The function f
maps α to the interval [0, 1] and g maps αR/(αR+αB) (the
relative fraction of infections that are R) to [0, 1]. These two
functions determine the stochastic update in the following
fashion:

1. With probability f(α), v becomes infected by either R
or B; with probability 1 − f(α), v remains in state
U (ninfected), and the update ends.

2. If it is determined that v becomes infected, it becomes
infected by R with probability g(αR/(αR + αB)), and
infected by B with probability g(αB/(αR + αB)).

We assume f(0) = 0 (infection requires exposure), f(1) =
1 (full neighborhood infection forces infection), and f is in-
creasing (more exposure yields more infection); and g(0) =
0 (players need some local market share to win an infection),
g(1) = 1. Note that since the selection step above requires
that an infection takes place, we also have g(y)+g(1−y) =
1, which implies g(1/2) = 1/2.

Given a graph G and an initial allocation of seeds, the
dynamics described above — determined by f , g, and
the update schedule — yield a number of adopters for
the two players, and as mentioned earlier, the payoff to
player p ∈ {R,B}, which we denote by Πp(σR, σB), is
a function of her eventual adopters. Here is one possi-
ble choice for the payoff function: let the random variable
χp denote the number of infections p gets at the termina-
tion of the dynamics for the strategy profile (σR, σB); in
(Goyal and Kearns 2012) authors assume Πp(σR, σB) =
E[χp|(σR, σB)], where the expectation is over any random-
ization in the player strategies, in the choice of initial al-
locations, and the randomization in the stochastic updating
dynamics. Shortly in the connectivity and the endogenous
budgets model we will see more general choices for the pay-
off function.

Given any payoff function, each player seeks to maxi-
mize her own expected payoff, and this results in compe-
tition among the players. In the resulting game a Pure Nash
Equilibrium is a profile of pure strategies (aR, aB) such that
ap maximizes player p’s payoff given the strategy a−p of the
other player.

A Mixed Nash Equilibrium is a pair σ = (σR, σB) of
independent probability distributions that satisfies

Ea∼σ[Πp(a)] ≥ Ea−p∼σ−p
[Πp(a

′
p, a−p)]

for every p and a′p ∈ Ap. In the above a = (ap, a−p).
For a fixed graph G and stochastic update dynamics, the

maximum social welfare allocation is the (deterministic) al-
location (a∗R, a

∗
B) (obeying the budget constraints if any

exists) that maximizes ΠR(aR, aB) + ΠB(aR, aB). For
the same fixed graph and update dynamics, let (σR, σB)
be the equilibrium strategies that minimize ΠR(σR, σB) +
ΠB(σR, σB) among all equilibria2. Then the Price of Anar-
chy (or PoA) is defined to be

ΠR(a∗R, a
∗
B) + ΠB(a∗R, a

∗
B)

ΠR(σR, σB) + ΠB(σR, σB)
.

The Price of Anarchy is a measure of the inefficiency in re-
source use created due to decentralized, non-cooperative be-
havior by the two players.

We also study the Budget Multiplier, which measures the
extent to which network structure and dynamics can amplify
initial resource inequality across the players. For example,
when we have external budget constraints KR,KB , with
KR ≥ KB , we define the Budget Multiplier as follows:
for any fixed graph G and stochastic update dynamics, let
(σR, σB) be the equilibrium that maximizes the ratio

ΠR(σR, σB)

ΠB(σR, σB)
× KB

KR

among all equilibria3. The resulting maximized ratio is the
Budget Multiplier, and it measures the extent to which the
larger budget player can obtain a final market share that ex-
ceeds her share of the initial budgets4.

Finally, we will restate some of the results in (Goyal and
Kearns 2012) which we will make use of later in the paper.

Lemma 1 Let aR and aB be any sets of seed vertices for
the two players. Then if f is concave and g is linear,

E[χR|(aR, ∅)] ≥ E[χR|(aR, aB)]

and
E[χB |(∅, aB)] ≥ E[χB |(aR, aB)].

Lemma 2 Let aR and aB be any sets of seeded nodes for
the two players. If f is increasing,

E[χR + χB |(aR, aB)] ≥ E[χR|(aR, ∅)].

The Connectivity Model
In some cases, such as video conferencing and messaging
applications like WhatsApp, ooVoo or Skype, not only the
number of adopters matters; it is also important to the firms
how well those adopters are connected to each other, as the

2If we restrict attention to pure Nash equilibria only, the result-
ing ratio is called the pure strategy Price of Anarchy.

3If we restrict attention to pure Nash equilibria only, the result-
ing ratio is called the pure strategy Budget Multiplier.

4We will later introduce the endogenous budgets model in
which budgets are not externally constrained. In that model we can
either use the same definition for the Budget Multiplier, or use a
similar one in which we replace the number of seeds players spend
with the cost per seed for each.
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use of these products takes place along the edges of the so-
cial network rather than at a vertex alone. Motivated by
the above examples, we introduce the connectivity model
in which a firm’s goal is to maximize the number of her
adopters plus the number of edges among those adopters;
the second term here models the strength of the connectivity
among the adopters.

More precisely, consider a pure strategy profile (aR, aB)
where ap denotes the strategy of player p ∈ {R,B}. We
define the random variable γp to be the eventual number of
edges among adopters of product p. Player p then seeks to
maximize her payoff which is equal to

E[γp + χp|(aR, aB)].

Note that due to linearity of expectation E[γp +
χp|(aR, aB)] = E[γp|(aR, aB)] + E[χp|(aR, aB)]. To sim-
plify the statement of our results we denote E[γp|(aR, aB)]
by δp and E[χp|(aR, aB)] by θp. In addition, we denote the
strategy of player p in the maximum social welfare solution
by a∗p and her payoff by θ∗p + δ∗p . Also let θ = θR + θB ,
δ = δR + δB , θ∗ = θ∗R + θ∗B , and δ∗ = δ∗R + δ∗B .

We will see that in this new model, when f is concave
and g is linear, upper bounds on the pure PoA and Budget
Multiplier still exist, but they can depend on the budget con-
straints and the structure of the network. In addition we will
see that if f is convex and g is linear, then the PoA and Bud-
get Multiplier can be unbounded. Note that the results and
techniques presented in this section can be easily extended
to the case where Πp = Bδp + Dθp with B,D being posi-
tive constants. Detailed discussion is omitted due to space
constraints.

We first illustrate the connectivity model with an example
for which the equilibrium looks quite different compared to
the original model of (Goyal and Kearns 2012).

Example 1 Consider a graphG consisting of 3 components
C1, C2 and C3, where C1, C2 are star networks of size
(N + 1) with central nodes v1, v2 pointing to N periph-
eral vertices, and C3 is a complete undirected network of
size 3

√
N . Suppose that both players have a budget equal

to 1. Let f(x) = xα for some α > 0, and let g be linear.
Suppose that the update schedule is relatively long so that
any connected component containing a non-zero number of
seeds eventually becomes entirely infected.

It can be shown that in the original model, the equilib-
rium of the game on G is where Red and Blue put their
seeds on v1, v2 and each get an expected number of infec-
tions equal to (N + 1). However, in the connectivity model,
the equilibrium is where both players put their seeds on
C3 and each get an expected payoff approximately equal to
3(3N/2 +

√
N)/2. Thus the connectivity objective causes

the players to prefer to compete for the highly connected ver-
tices, as opposed to each taking an isolated low-connectivity
component.

In what follows, we will use the following no-
tations: Kmax denotes max{KR,KB}, Kmin denotes
min{KR,KB}, and dmax is the maximum degree of any ver-
tex in the graph G.

Theorem 1 If f is concave and g is linear, then in the
connectivity model, the pure strategy Budget Multiplier is
bounded from above by 8(Kmax + 1).
Proof: Without loss of generality suppose KR ≥ KB . Let
(SR, SB) denote the pure Nash equilibrium that maximizes
the ratio ΠR

ΠB
× KB

KR
. We assume that in this equilibrium, Red

has the higher payoff, that is θR + δR ≥ θB + δB (if this
is not the case the budget multiplier is bounded from above
by 1). We will assume that δR ≥ θR. Since if δR < θR,
from Theorem 4 in (Goyal and Kearns 2012), we know that
in the equilibrium the Blue player gets at least KB

2KR
θR infec-

tions (the Blue player can achieve this by imitating the KB

Red seeds that result in the highest number of infections).
Therefore, we have

ΠB ≥ θB ≥
KB

2KR
θR =

KB

4KR
(θR+θR) ≥ KB

4KR
(θR+ δR)

and so we can conclude that the Budget Multiplier is at most
4.

Given the above assumptions, next we assign a unique la-
bel to each of the vertices in SR and attribute subsequent Red
infections to exactly one of these seeds. More precisely, let
the solo Red process be the stochastic dynamical process on
the network when only Red seeds SR are present. Suppose
SR = {v1, . . . , vKR

}. At time 0, label each vertex vi ∈ SR
by a different color Ci; also label all other vertices by U . In
the subsequent steps, whenever a new vertex gets infected
in the process we assign to it one of the KR labels {Ci}KR

i=1
in the following manner: when updating a vertex v, we first
compute the fraction αRv of neighbors whose current label
is one of C1, . . . , CKR

, and with probability f(αRv ) we de-
cide that an infection will occur (otherwise the label of v is
updated to U ). If an infection occurs, we simply choose an
infected neighbor of v uniformly at random, and update v to
have the same label (which will be one of the Ci’s). It can
easily be observed that at every step, the dynamics of the
(SR, ∅) process are faithfully implemented if we drop label
subscripts and simply view any label Ci as a generic Red
infection R. Furthermore, at all times every infected vertex
has only one of the labelsCi. Thus if we denote the expected
number of edges with endpoints labeled Ci, Cj by ΩRi,j , we
have E[γR|(SR, ∅)] =

∑
i≤j ΩRi,j .

Next we claim that the blue player can choose KB of the
Red seeds as her strategy such that in expectation she gets at
least KB

4KR(KR+1) share of the Red edges, which as we will
see, results in the desired bound on the Budget Multiplier.

To prove the above claim, observe that the Blue player can
consider the KB

2 color pairs with highest ΩR values. If pair
(i, j) is in that set, the Blue player adds both i and j to her
seed set. Since there are KR(KR + 1)/2 color pairs in total,
the expected number of edges Blue gets by choosing this
strategy, is at least 1

4
KB/2

KR(KR+1)/2δR (the factor 1
4 is present

due to the fact that when Blue seeds vi, vj , the two vertices
both become initially infected by Blue with probability 1/4).
Therefore we have

θR + δR
θB + δB

≤ 2δR
KB

4KR(KR+1)δR
≤ 8(KR + 1)

KR

KB
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Next, we simply multiply the left and the the right hand side
of the above inequality by KB

KR
and replace KR with Kmax

to obtain the claimed bound on the Budget Multiplier. This
finishes the proof.

One can easily find families of examples in which the
Budget Multiplier does actually grow with Kmax.

Example 2 Suppose KR = K > 2 and KB = 2. Consider
the networkG which is a complete graph of sizeK. One can
easily see that in any equilibrium Red gets Θ(K) vertices
while Blue gets Θ(1) vertices. Since all the Red vertices are
connected to each other, the number of edges among them is
Θ(K2). Similarly the number of edges among Blue adopters
is Θ(1). Therefore the Budget Multiplier is Θ(K).

Theorem 2 If f is concave and g is linear, then in the
connectivity model, the pure strategy Price of Anarchy is
bounded from above by 2+2(1+dmax)(1+8(Kmax+1)Kmax

Kmin
).

Proof: Let (SR, SB) denote the pure Nash equilibrium
and (a∗R, a

∗
B) denote the maximum social welfare solution.

Without loss of generality, suppose the Red player gets the
higher payoff in (a∗R, a

∗
B). Since (SR, SB) is a Nash equilib-

rium, the deviation of Red player to a∗R should not be prof-
itable, i.e. θR + δR must be larger than the payoff Red gets
by deviating to a∗R. Let’s denote that payoff by (θ′R + δ′R).
Next we find a lower bound on (θ′R + δ′R). We claim the
following holds:

θ′R + δ′R ≥ (θ∗R − θ) + (δ∗R − θdmax) (1)

To prove the above, we first note that when Blue is not
present, the number of infection R gets by switching to a∗R
is at least θ∗R (Lemma 1). Also when Red is not present,
the number of infection B gets by seeding SB is at most
θ (Lemma 2). Now by adding SB to a∗R, the total num-
ber of infections remains at least θ∗R. In addition the num-
ber of Blue infections will decrease and become less than or
equal to θ. So the number of Red infections will be at least
(θ∗R − θ), i.e.

θ′R ≥ (θ∗R − θ) (2)

Next, we observe that when Blue is not present, the number
of edges Red gets using strategy a∗R is at least δ∗R. To see
this, just note that by the departure of a∗B from (a∗R, a

∗
B) all

the vertices become just more likely to adopt Red. So the
Red edges remain Red.

Now if the Blue player comes back with strategy SB , this
can result in at most θ Blue infections, and therefore number
of Red edges decreases by at most θdmax, as each Blue vertex
can take at most dmax edges away from Red, meaning that

δ′R ≥ (δ∗R − θdmax). (3)

Combining (2) and (3), we get

θ′R + δ′R ≥ (θ∗R − θ) + (δ∗R − θdmax)

Combining the above with θR + δR ≥ θ′R + δ′R (which must
hold because of the property of Nash equilibrium), we obtain
the following:

θR + δR ≥ (θ∗R − θ) + (δ∗R − θdmax) (4)

Now to prove the desired bound on PoA we can write

θR + δR ≥ (θ∗R − θ) + (δ∗R − θdmax)

⇒ 1 + (1 + dmax)
θ

θR + δR
≥ θ∗R + δ∗R
θR + δR

⇒ 1 + (1 + dmax)
θ + δ

θR + δR
≥ θ∗R + δ∗R

θ + δ

⇒ 2 + 2(1 + dmax)
θ + δ

θR + δR
≥ θ∗ + δ∗

θ + δ
. (5)

In the third line we used the fact that δ ≥ 0 and θB+δB ≥ 0,
and in the fourth line we used the fact that in the maximum
social welfare solution the Red player gets the higher payoff,
or equivalently 2(θ∗R + δ∗R) ≥ θ∗ + δ∗. Next we note that

θ + δ

θR + δR
≤


1 + 1 if θR + δR ≥ θB + δB
1 + 8 if KR ≥ KB

1 +MKB

KR
otherwise.

where M is the Budget Multiplier5. Using the bound we
obtained in Theorem 1 for Budget Multiplier, we get

θ + δ

θR + δR
≤ 1 + 8(KB + 1)

KB

KR
.

Combining the above with (5) and replacing KB with Kmax
and KR with Kmin, we get

2 + 2(1 + dmax)(1 + 8(Kmax + 1)Kmax
Kmin

) ≥ θ∗+δ∗

θ+δ

and that finishes the proof.
Finally, using constructions similar to the ones in (Goyal

and Kearns 2012), we show that the concavity of f and the
linearity of g are necessary for obtaining the upper bounds.

Proposition 1 If f is linear and g(y) = ys/(ys+((1−y)s)
for some s > 1, then in the connectivity model, for any V >
0, there exists a graph G for which the Budget Multiplier is
greater than V .

Proof:(sketch) The idea, closely following Theorem 5 in
(Goyal and Kearns 2012), is to construct a layered graph that
amplifies the punishment in the selection function, and as a
result makes the Budget Multiplier arbitrarily large: The top
layer of this amplifying graph is where in the equilibrium so-
lution players put their seeds; as we go down the layers the
share of vertices that adopt the product of the higher bud-
get player, becomes larger and larger; and therefore in the
last layer, which is a huge one that makes up for the ma-
jority of the payoff each player receives, the larger budget
player receives a payoff much higher than what the oppo-
nent receives. As a result the Budget Multiplier becomes
very large. By adjusting the parameters of this construction,
we can make the Budget Multiplier arbitrarily large and this
proves the theorem.

Proposition 2 If f(x) = xr for some r > 1, and g is linear,
then in the connectivity model, for any V > 0, there exists a
graph G for which the Price of Anarchy is greater than V .

5The discussion for the second item where KR ≥ KB is very
similar to the proof of Theorem 1, and due to space constraints we
do not repeat it here.
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Proof:(sketch) The idea, closely following Theorem 2 in
(Goyal and Kearns 2012), is to create a layered directed
graph whose dynamics rapidly amplify the convexity of f .
When we take two such amplification components of differ-
ing sizes, one equilibrium is the case where players coordi-
nate on the smaller component, while the maximum social
welfare solution lies in the larger component. As a result we
have an example in which the PoA is large. By adjusting
the parameters of this construction, we can make the PoA
arbitrarily large and this proves the theorem.

The Endogenous Budgets Model
As we have mentioned, previous works assume that there are
external constraints on the maximum number of seeds play-
ers can spend to initialize the adoption of their product in the
network. We argue that this assumption is not necessarily
realistic, since in some settings (such as the case of product
give-aways), if firms feel they can offset higher marketing
expenditures by winning greater market share, they are free
to do so. This motivates us to relax this assumption and in-
vestigate the case in which firms are allowed to choose the
number of seeds they want to allocate, given the constraint
that each seed has a cost associated with it.

More precisely, we propose the endogenous budgets
model, which is the following modification of the original
framework: Each firm p ∈ {R,B} has a cost per seed de-
noted by cp ≥ 0, and for each new (non-seed) vertex that
adopts her product, firm p benefits bp6. So if θp denotes the
(expected) eventual number of non-seed infections that firm
p obtains by initially spending Kp seeds, her payoff is equal
to bp × θp − cp × Kp. Without loss of generality we can
assume bp = 1, and write the payoff as:

θp − cp ×Kp

In this section we show that in the endogenous budgets
model, for a broad setting of f, g and c, there are examples
in which the PoA is unbounded7.

Beside the PoA we also look at the quantity θ∗

θ (recall
that this quantity represented the PoA in the original model
of (Goyal and Kearns 2012)).We will see that similar to the
PoA in our model, this quantity is also unbounded, show-
ing that the unbounded PoA in the endogenous model is
not merely due to the introduction of costs (i.e. the term
−cp ×Kp) to the payoff function.

We first illustrate the endogenous budgets model with an
example where the equilibrium can look completely differ-
ent compared to the original model of (Goyal and Kearns
2012).

Example 3 Consider a graph G consisting of a central
node v pointing to N vertices v1, v2, ..., vN , each of which
points to 3 different (unimportant) vertices. Suppose cp =
Kp = 1 for p ∈ {R,B}. Let f(x) = xα for some α > 0,

6We assume seed vertices do not provide any payoff, only cost.
7Similar results hold for the Budget Multiplier. The

construction—which is basically a properly tuned star-like
network—is straightforward, and therefore omitted due to space
constraints.

… 

… 
c c c 

… 

c c c … c c c 

Layer L1 of size K* 

Layer L3 of size cK* 

Layer L2 of size N 

Layer L4 of size 2cN 

v 

Figure 1: A graph with PoA ≥ (2c+ 1)N .

and let g be linear. Suppose that the update schedule is rela-
tively long so that a connected component containing a non-
zero number of seeds eventually becomes entirely infected.

It can be shown that in the original model of (Goyal and
Kearns 2012), the equilibrium is where both players put
their only seed on v and each get an expected payoff equal
to (4N + 1)/2, while in the endogenous budgets model, the
equilibrium is the case where there is exactly one Red and
one Blue seed on each of v1, v2, ..., vN , resulting in a payoff
equal to N/2 for each player.

Theorem 3 Suppose cp = c for all p ∈ {R,B} and c ∈ N.
Then regardless of f, g, in the endogenous budgets model
the PoA can be unbounded.

Proof: We first prove the theorem for the case of c = 1.
Consider the graph H represented in Figure 1. We claim
that in this graph the maximum social welfare solution is
the case where there is a single seed on each node in layer
L1. Also we claim that the equilibrium solution is the case
where players both spend exactly one seed on each node of
layer L2. If this holds then it is easy to see that the PoA
is equal to 3N+1+K∗−K∗

2N+1−2N = 3N+1
1 = 3N + 1; And since

N can be arbitrarily large, we can conclude that the PoA is
unbounded. Also we have θ∗

θ = 3N+1+K∗

2N+1 , and since K∗

can be as large as we want, θ
∗

θ is unbounded as well.
It only remains to prove the above claims. First note

that no node in layers L3, L4 is ever selected as a seed
in the maximum social welfare solution, because selecting
those nodes does not result is any new infections (as all the
edges are directed from top to bottom). Therefore since
layer L3 is empty of seeds, putting one seed on a node of
layer L1 always pays off immediately as it has a neighbor in
L3 which becomes subsequently infected with probability 1
(f(1) = 1). This means that if a node in L1 is not already
seeded in the maximum social welfare solution, one can seed
it without decreasing the payoff. So we can assume that in
the maximum social welfare solution all the nodes in layer
L1 are seeded (it is easy to see that one seed per node suf-
fices). Now note that once all the vertices in L1 are seeded,
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the rest of the network will become infected with probability
1 (f(1) = 1). So we can conclude that this case is indeed
the maximum social welfare solution.

Now we prove our claim about the equilibrium solution.
Suppose the Red player has a seed on every node of layer
L2; we compute the best response of the Blue player to this
strategy. Note that adding a seed to layers L1, L3, L4 does
not increase Blue’s payoff, so her only choice is to allocate
seeds to vertices in layer L2. Suppose Blue has k < N seeds
onL2 each on a different node. This means that the expected
number of Blue seeds in L2 is equal to k/2. Now note that
for each new seed that Blue adds to a vertex u in L2:

1. If Blue does not have any other seed on u, by adding one,
she increases her payoff by a positive amount: with prob-
ability 1

2 , u becomes a Blue seed. If that happens, the 2
neighbors of u in layer L4 certainly adapt Blue; also the
probability that v adopts Blue increases (as g is increas-
ing). Since the cost per seed is equal to 1 and the change
in the expected number of Blue infections is larger than
1
2 × 2 = 1, this action increases Blue’s payoff.

2. If Blue does already have one seed on u, by adding an-
other, at best she changes her payoff by 1

6 (2 + 1)− 1 ≤ 0
(the change in the probability of u becoming initially Blue
as a result of this new seed is 1

6 . If this happens, in the best
case scenario, both v and the two neighbors of u in L4 be-
come subsequently infected). Since the change is negative
this action decreases Blue’s payoff.

The above shows that the best response of the Blue player
is to spend exactly one seed on each vertex of L2. Similarly,
the best response of the Red player to Blue player’s strategy
is to put exactly one seed on every vertex of L2, showing
that this allocation is indeed an equilibrium. This finishes
the proof for the case of c = 1.

It is now easy to see that the above example can be eas-
ily generalized to the case where the cost per seed is a pos-
itive integer c: It suffices to replace every node in layers
L3, L4 with c vertices with the same neighbor set in L1, L2

as the original vertex. With a similar type of reasoning
one can show that PoA is equal to (2c+1)N+1+K∗c−K∗c

2cN+1−2cN =
(2c+1)N+1

1 = (2c + 1)N + 1 which can be arbitrarily large
by respectively choosing N sufficiently large.

Corollary 1 Suppose cp = c for all p ∈ {R,B} and c ≥ 1

(c ∈ N). Then regardless of f, g, the quantity θ∗

θ can be
unbounded in the endogenous budgets model.

Proof: The same construction in the previous proof works
here too. We have that θ

∗

θ = (2c+1)N+1+K∗c
2cN+1 , so it can be

arbitrarily large by choosing K∗ big enough.
Finally we investigate the case where c < 1.

Theorem 4 Suppose cp = c < 1 for p ∈ {R,B} and g is
linear. Then regardless of f , the PoA can be unbounded in
the endogenous budgets model.

Proof: Consider the graph H in Figure 2. We choose K
sufficiently large. The maximum social welfare solution is
obviously the case where a single seed is put on v, resulting
in payoff K + [2cK] + 1− c which is larger than K.

… 

… 

u1 

v 

 [2cK]+1 

u2   uK 

 1   2 

Figure 2: A graph with PoA ≥ K.

Next we claim that one equilibrium is the case where play-
ers put one seed on each of u1, ..., uK resulting in total pay-
off of [2cK]+1−2cK < 1, and therefore a PoA larger than
K. To prove our claim, we just need to show that if the strat-
egy of one player (say Red) is to put exactly one seed on each
vertex of the second layer, then the best response of the Blue
player will be to do the same thing. Suppose Blue chooses x
vertices among u1, ..., uK as her seed set. Then her expected
payoff would be at most (x/2K)([2cK] + 1)− cx which is
increasing in x (one can easily see this by taking the deriva-
tive: ([2cK] + 1)/2K − c ≥ 0). This means that the best
response is to choose x = K which proves our claim.

Finally, we note that since K in the above construction
can be chosen arbitrarily large, the PoA is unbounded and
this finishes the proof.

Concluding Remarks
We relaxed two of the main restricting assumption in previ-
ous papers on competitive influence maximization. We saw
that exogenous budget constraints are crucial for obtaining
upper bounds on the PoA and the Budget Multiplier. We
also saw that if in addition to the number of adopters, firms
take the connectivity among those adopters into account, up-
per bounds on the PoA and the Budget Multiplier still exist,
but they can depend weakly on the network structure and
the budget constraints. Our work suggests a number of ad-
ditional interesting open problems, including the following:

1. In the endogenous model, we assumed that the cost per
seed is a fixed value. It would be interesting to investigate
the case where the cost is in fact a more complex function
of the seed set.

2. In the connectivity model, we considered a simple notion
of connectivity (i.e. the number of edges). Another inter-
esting direction is to investigate more complex notions of
connectivity.
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