
Mechanism Design for Mobile Geo–Location Advertising

Nicola Gatti and Marco Rocco
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

{nicola.gatti, marco.rocco}@polimi.it

Sofia Ceppi
Microsoft Research

21 Station Road
Cambridge, CB1 2FB, UK
soceppi@microsoft.com

Enrico H. Gerding
University of Southampton
University Road, Highfield

Southampton, SO17 1BJ, UK
eg@ecs.soton.ac.uk

Abstract

Mobile geo–location advertising, where mobile ads are tar-
geted based on a user’s location, has been identified as a key
growth factor for the mobile market. As with online advertis-
ing, a crucial ingredient for their success is the development
of effective economic mechanisms. An important difference
is that mobile ads are shown sequentially over time and in-
formation about the user can be learned based on their move-
ments. Furthermore, ads need to be shown selectively to pre-
vent ad fatigue. To this end, we introduce, for the first time,
a user model and suitable economic mechanisms which take
these factors into account. Specifically, we design two truth-
ful mechanisms which produce an advertisement plan based
on the user’s movements. One mechanism is allocatively ef-
ficient, but requires exponential compute time in the worst
case. The other requires polynomial time, but is not alloca-
tively efficient. Finally, we experimentally evaluate the trade–
off between compute time and efficiency of our mechanisms.

Introduction
Mobile geo–location advertising (Vallina-Rodriguez et al.
2012), where mobile ads are targeted based on a user’s lo-
cation (e.g., streets or squares), has been identified as a key
growth factor for the mobile market. Growing at an annual
growth rate of 31%, the mobile ad market is forecasted to
be worth 19.7 billion Euros in 2017—about 15.5% of the
total digital advertising market (Berg Insight 2013). A cru-
cial ingredient for its success will be the development of ef-
fective economic mechanisms. To this end, we propose, for
the first time, economic mechanisms for the mobile geo–
location advertising scenario addressing three issues: mod-
eling the users’ behaviour, avoiding advertisers’ strategic
manipulation, and designing tractable algorithms.

To date, much of the literature on computational adver-
tising has focused on sponsored search auctions (Nara-
hari et al. 2009), in which advertisers bid for keywords
and pay only if their links are clicked. A crucial ingredi-
ent for their success is the allocation and payment mech-
anism. The most widely used auction is the Generalized
Second Price (GSP) but another well–known mechanism,
the Vickrey–Clarke–Groves (VCG) mechanism (Narahari

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2009), is being applied in websites such as Face-
book. An important research issue for analysing such auc-
tions is the modeling of user behaviour, where it is typi-
cally assumed that users scan displayed ads from the top to
the bottom in a Markovian fashion (Aggarwal et al. 2008;
Kempe and Mahdian 2008). Such a user model induces so-
called externalities, where the click probability of an ad fur-
ther down the list depends on the ads which are shown ear-
lier on. More recently, there is also increasing research on
display ads, e.g. banners on websites, where advertisers are
matched to publishers (webpages) through a complex web
of ad networks and exchanges (Muthukrishnan 2010).

However, none of these online advertising models can be
directly applied to mobile geo–location mainly because they
do not take into account the future behaviour of the user.
Rather, mobile ads, such as coupons and ads in mobile apps,
are shown sequentially over time while the user moves in
an environment, e.g. a city or shopping centre. Furthermore,
users are affected by the same ad in different ways depend-
ing on the location in which they receive the ads (e.g., if the
shop is far from the location in which the ad is received,
users are more likely to discard the ad), and the path fol-
lowed so far can reveal information about the user’s inten-
tion (i.e., the user’s next visits). Thus, ad allocations can be
done dynamically taking the user behaviour into account,
unlike in sponsored search auctions, where the entire alloca-
tion is shown simultaneously.

To address these problems, we design the first model for
mobile geo–location advertising, which calculates an adver-
tising plan based on the path followed so far and predicted
future path. We adopt a pay–per–visit scheme, where an ad-
vertiser pays only if a user actually visits the shop after hav-
ing received the ad (based on geo–location or by redeeming
a coupon). Importantly, we consider user models where the
visit probability depends on their position. In addition, we
capture the ad fatigue phenomenon (Abrams and Vee 2007),
discounting the visit probability associated with the next ads
as a user receives more ads. This creates sponsored–search
like externalities, except that the visit probability depends
only on the number of ads shown prior, and not on which
ads are shown. Then, we focus on the problems of develop-
ing novel allocation algorithms, both optimal and approxi-
mate, for designing incentive compatible mechanisms. We
analyse theoretical bounds on their performance and exper-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

691

imentally evaluate them. We report proofs and examples in
the extended version of the paper (Gatti et al. 2014).

v1 v2

v3

v4

v5

(a)

p1

v1

v2

v3

v4

v5

p2

v1

v2

v3

v4

v2

v1

p3

v1

v2

v4

v3

v2

v1

p4

v1

v2

v4

v5

(b)

v1 → n1

v2 → n2

v3 → n3 v4 → n4

v4 → n5 v3 → n6 v5 → n7

v5 → n8 v2 → n9 v2 → n10

v1 → n11 v1 → n12

(c)

Figure 1: Running example: graph (a), paths with starting
vertex v1 (b), tree of paths (c).

Problem Statement
User mobility model. We represent a physical area, e.g. a
city, as a graphG = {V,E}, e.g. Fig. 1(a), where V is the set
of vertices v and E is the set of edges. Vertices are subareas,
e.g. streets or squares, in which an ad can be sent to a user. A
user will move over the graph following a path, denoted by
p ∈ P and defined as a sequence of adjacent vertices, where
P is the set of possible paths. We denote the first or start-
ing vertex of a path p by vs(p), and partition paths by this
starting position. To this end, we introduce Pv ⊆ P which
denotes the set of paths p with vs(p) = v. For instance,
Fig. 1(b) depicts 4 paths with starting vertex v1. In addition,
we associate each path p with a probability γp—estimated,
e.g., by means of machine learning tools (Gatti, Lazaric, and
Trovò 2012)—that indicates how likely the given path will
be followed by users, given the starting vertex of the user.
Thus,

∑
p∈Pv γp = 1. Since the number of possible paths in

Pv can be arbitrarily large, we restrict Pv to a finite (given)
number of paths containing only the paths with the highest
probability. We normalize the probabilities γp accordingly.

Given a user’s actual starting vertex, we can build the tree
of the paths the user could follow. Fig. 1(c) depicts an ex-
ample of such a tree with starting vertex v1. We denote by
N = {n1, . . . , n|N |} the set of tree nodes where each node n
is associated with a single graph vertex v ∈ V , whereas each
vertex v can be associated with multiple tree nodes n ∈ N .
We define αn as the probability with which node n is visited
by a user given a starting vertex. In particular, αn is equal
to the sum of the γp of the paths p sharing n. Consider, for
instance, the bold node n3 in Fig. 1(c): since n3 is contained
in both the paths p1 and p2, αn3

= γp1
+ γp2

.
Advertising model. Let A = {a1, . . . , a|A|} denote the

set of advertisers. W.l.o.g., we assume each advertiser to
have a single ad (thus we identify both advertiser and ad by
a). We denote by θ an advertising plan (i.e., an allocation of
ads to nodes in which the ads are sent to the users) and by Θ
the set of all the advertising plans. Formally, θ is a function
θ : N → A ∪ {a∅} mapping each node of a tree of paths
to an ad, where a∅ is an empty ad corresponding to sending
no ad. We constrain θ to not allocate the same ad (except
a∅) on different nodes belonging to the same path (the basic
idea is that receiving the same ad multiple times does not
affect the visit probability of the corresponding shop, but it

just increases ad fatigue), while the same ad can be allo-
cated on different paths. Each advertiser receives a reward
ra ∈ R ⊆ R+ from the visit of a user to his shop; we de-
fine ra∅ = 0 and r = (ra1

, . . . , ra|N|) the profile of rewards.
The probability with which a user visits the shop a is given
by V TRa(θ), also called visit through rate, which is deter-
mined by the user attention model as specified below. Given
this, the expected reward of a from an advertising plan θ is:
E[ra|θ] = V TRa(θ) · ra, and we define the social welfare
SW over θ by: SW (θ) =

∑
a∈A E[ra|θ].

User attention model. We assume that the VTR of an
ad a depends on both where the ad is shown on the path
(i.e., depending on whether the ad is relevant to the cur-
rent position) and number of other ads shown prior to this
one (due to ad fatigue). To this end, we define function
c : Θ × N → N returning the number of non–empty
ads allocated to nodes that precede n from the root node.
The VTR of an ad a ∈ A given advertising plan θ is:
V TRa(θ) =

∑
n∈N :θ(n)=a αn · Λc(θ,n) · qa,n, where:

• αn is the probability that node n is visited;
• Λc(θ,n) is the aggregated continuation probability, cap-

turing the ad fatigue phenomenon where the user’s atten-
tion decreases as more ads are received; we assume the
user attention decreases as Λc(θ,n) =

∏c(θ,n)
i=1 λi where

λi ∈ [0, 1] ∀i ∈ {1, . . . , |N |} and Λ0 = 1;
• qa,n ∈ [0, 1] is the relevance or quality of ad a at node n,

representing the VTR when a is the first allocated ad in
all the paths.
Mechanism design problem. Our aim is to de-

sign a direct–revelation economic mechanism M =
(A,Θ, R, f, t), where the agents A are the advertisers, the
outcomes Θ are the possible advertising plans, the agents
communicate their (potentially untruthful) valuation over
the allocations reporting their single–parameter reward r̂a.
Note that, similar to sponsored search, we assume the ad
qualities to be known by the system and not part of the re-
port. The agents’ valuation space is R, the allocation func-
tion f : R|A| → Θ maps the profile (r̂a1

, . . . , r̂a|A|) con-
stituted of the valuations reported by the agents to the space
of the possible advertising plans, and the transfer function
ta : R|A| → R maps reported valuations profiles to the mon-
etary transfer of each agent a. The aim of each advertiser is
to maximise his own utility ua(r̂, ra) = V TRa(f(r̂))ra −
ta(r̂). This is the reason an advertiser could be interested in
misreporting his true reward (r̂a 6= ra). We aim at designing
f and ta such that dominant strategy incentive compatibil-
ity (DSIC), individual rationality (IR), weak budget balance
(WBB), and allocative efficiency (AE) (Narahari et al. 2009)
are satisfied. Moreover, we would like f and t to be effi-
ciently computable (polynomial time).

Single–Path Case
In this section, we study the basic case with a single path,
before proceeding to the more general case.

Efficient Mechanism
The main challenge of an efficient mechanism is finding the
optimal advertising plan, i.e. the allocation of ads to nodes

692

that maximises social welfare, subject to the constraint that
each ad a ∈ A can appear at most once on the (single)
path (except ad a∅). To this end, we show that this allocation
problem is a variation of a known linear assignment prob-
lem (AP) as in Burkard et al. (2012). In particular, when the
aggregated continuation probability, Λc, is a constant (i.e.,
when λi = 1 ∀i, which means that there are no external-
ities) the single–path problem corresponds to the classical
2–index AP (2AP), where the aim is to allocate a set of
tasks to a set of agents while minimising/maximising the
sum of costs/profits w, subject to each agent having exactly
one task. In our problem, agents correspond to nodesN , and
tasks to ads A. Furthermore, since there is a single path, we
have that αn = 1,∀n ∈ N . Then, for λi = 1 ∀i, the value
for an ad–node assignment (a, n) is given by the expected
reward E[ra|θ(n) = a] = wa,n = r̂a · qa,n (to maximise).

Now, it is well known that the 2AP can be solved in poly-
nomial time by means of the Hungarian algorithm—with
complexity O(max{|N |3, |A|3})—or linear programming
(LP) as in Burkard et al. (2012), where the continuous re-
laxation results in a basic integer solution. However, when
λi < 1, the nature of our problem becomes fundamentally
different. In particular, the 2AP optimal solution always re-
quires that all the agents are assigned with a task. This also
holds in our setting when λi = 1 ∀i. However, when λi < 1,
it can be optimal to leave some nodes unallocated as shown
in the extended version of the paper (Gatti et al. 2014).

When λi < 1, our allocation problem can be formulated
as a variation of the 3–index assignment problem (3AP) as:

max
θ∈Θ

∑
a∈A

∑
n∈N

∑
c∈C

Λc · r̂a · qa,n · xa,n,c

∑
n∈N

∑
c∈C

xa,n,c ≤ 1 ∀a ∈ A (1)

∑
a∈A

∑
c∈C

xa,n,c ≤ 1 ∀n ∈ N (2)

∑
a∈A

∑
n∈N

xa,n,c ≤ 1 ∀c ∈ C (3)

∑
a∈A

xa,n,c −
∑
a∈A

∑
n′∈N:
n′<n

xa,n′,c−1 ≤ 0 ∀n ∈ N, c ∈ C \ {0} (4)

xa,n,c ∈ {0, 1} ∀a ∈ A,n ∈ N, c ∈ C (5)

where xa,n,c = 1 if a = θ(n) (i.e. ad a is allocated
to node n) and c = c(θ, n) (i.e. a is the c + 1–th allo-
cated non–empty ad along the path); xa,n,c = 0 otherwise.
C = {0, . . . , |N | − 1} contains all the possible values of c.
Constraints (1) ensure that each ad a 6= a∅ is allocated at
most once; Constraints (2) ensure that each node is allocated
to an ad a 6= a∅ at most once; Constraints (3) ensure that
there cannot be two ads with the same number of preceding
ads (except for the empty ad); Constraints (4) ensure that,
whenever xa,n,c = 1 (i.e. if some ad a 6= a∅ is allocated to
a node n with c preceding ads), then c ads must be actually
allocated in the path preceding n.

Complexity issues. Compared to the 3AP formulation,
our problem has Constraints (4) as additional constraints.
Moreover, our objective function is a special case of the 3AP
objective function (the original 3AP function is given by
max

∑
a∈A

∑
n∈N

∑
c∈C wa,n,c·xa,n,c). The maximization

version of 3AP is easily shown to beNP–hard by reduction

from the 3–dimentional matching problem (3DMP), how-
ever, there is no straightforward reduction from NP–hard
problems to ours. Furthermore, we can show that the con-
tinuous relaxation of our allocation problem admits, differ-
ently from 2AP, non–integer optimal solutions and thus the
above integer mathematical programming formulation can-
not be solved (in polynomial time) by LP tools, as shown
into the extended version of the paper (Gatti et al. 2014).

Allocation function algorithm in unrestricted do-
mains. We start by considering the unrestricted setting. For
this setting, any branch–and–bound algorithm enumerating
all the allocations, e.g., using standard integer programming
or (Balas and Saltzman 1991) for 3AP, has a complexity of
O(|A||N |) in the worst case. We show that it is possible to
have an algorithm for fE with a better complexity.

Our algorithm, named OptimalSinglePath, works as fol-
lows. First, we split the problem into subproblems. In detail,
let B ⊆ N denote a set of nodes such that we assign non–
empty ads (a 6= a∅) to all nodes n ∈ B, and empty ads
(a∅) to all nodes n /∈ B. Note that there are exactly 2|N |

such combinations (assuming for the sake of simplicity that
|A| ≥ |N |). Now, for a given combination B, the number
of nodes with non–empty ads preceding any n ∈ B is fixed.
Let this number be denoted by c(B,n). Then, the problem
of finding the optimal allocation for a givenB can be formu-
lated as an AP where wa,n = r̂a · qa,n · Λc(B,n). Therefore,
it can be solved by using an AP–solving oracle with a com-
plexity of O(|A|3). Our algorithm then calls the AP–solving
oracle for each B ⊆ N . Finally, the algorithm returns the
best found allocation. The complexity is O(2|N | · |A|3).

Allocation function algorithm in restricted domains.
We consider two restricted domains in which fE is easy.

Node–independent qualities. Assume that, for every ad
a ∈ A, the following holds: qa,n = qa,n′ = qa for all
n, n′ ∈ N . In words, the visit probability does not depend on
the specific node where the ad is shown, but only on the ad it-
self, and the number of preceding ads shown. In this case, the
mobile geo–location advertising reduces to the sponsored
search auctions with only position–dependent externalities
that is known to be easy (Kempe and Mahdian 2008). No-
tice that, in this special case, the optimal advertising plan
prescribes that all the slots (nodes) are filled with an ad.

Single–node maximal ads. We say that ad a is maximal
for a given node n, denoted by amax

n , if a is the best ad
(in terms of expected value) for node n. Formally: amax

n =
arg max

a∈A
{qa,nr̂a}. Assume that each ad is maximal in at

most a single node of the path. Formally: amax
n 6= amax

n′ for
all n, n′ ∈ N with n 6= n′. This is reasonable when there are
many ads and the quality strongly depends on the distance
between the shop and the current position of the user, e.g.,
the user decides to visit the shop only if it is right next to
him. In this case, if the algorithm allocates an ad to a given
node, then it will allocate the maximal ad (this is not the case
if an ad is maximal in multiple nodes).

The algorithm we proposed (Algorithm 1), based on dy-
namic programming, works as follows. First, suppose that
nodes of set N are numbered in increasing order from the
root n1 to the leaf n|N |. Each subproblem is characterized by

693

a pair [i, j] with i ∈ {0, . . . , |N | − 1} and j ∈ {1, . . . , |N |}
and aims at finding the optimal allocation of the subpath of
nodes from nj to n|N | when the number of ads allocated
in the subpath of nodes from n1 to nj−1 is i. The rationale
of the algorithm is to start from the leaf of the path and to
move backward given that, in the case each node has a dif-
ferent maximal, the optimal allocation of a subproblem [i, j]
does not depend on the optimal allocation of a subproblem
[i′, j′] strictly including [i, j], i.e., i′ ≤ i and j′ < j.

We use two |N | × |N | matrices Π and Φ. Each element
Φ[i, j] is the optimal allocation of subproblem [i, j] and it is
represented as a set of pairs (a, n) where a is the ad allocated
in n; while each element Π[i, j] is the expected value of the
optimal allocation of subproblem [i, j].

At Steps (1–3) the algorithm fills all the elements of the
last column of Π, i.e. Π[i, |N |] ∀i ∈ {0, . . . , |N | − 1}, with
the value Λi · qamax

n|N|
,n|N| · r̂amax

n|N|
, i.e. the contribute that

ad amax
n|N|

provides to the social welfare when amax
n|N|

is al-
located in node n|N | when it is the i + 1–th allocated ad.
Indeed, any optimal allocation will have an ad allocated in
the last node. Then, at Steps (4–12), the algorithm selects
each node nj from n|N |−1 to n1, and finds the optimal ad-
vertising plan for the subpath from nj to n|N |. Consider a
generic element Π[i, j], the algorithm decides whether it is
better to allocate amax

nj in nj as the i + 1–th ad (and thus
Π[i, j] = Λi · qamax

nj
,nj · r̂amax

nj
+ Π[i+ 1, j + 1]) or to leave

node nj empty (and thus Π[i, j] = Π[i, j + 1]). At the end
of the execution, Φ[1, 1] contains the optimal allocation of
ads into the nodes of the path. The complexity of the algo-
rithm is O(|C| · |N |). This algorithm can be extended to

Algorithm 1
1: for all i ∈ {0, . . . , |N | − 1} do
2: Π[i, |N |] = Λi · qamax

n|N|
,n|N| · r̂amax

n|N|
3: Φ[i, |N |] = {(amax

n|N|
, n|N|)}

4: j = |N | − 1

5: while j ≥ 1 do
6: for all i ∈ {0, . . . , j − 1} do
7: if Π[i, j + 1] ≥ Λi · qamax

nj
,nj
· r̂amax

nj
+ Π[i+ 1, j + 1] then

8: Π[i, j] = Π[i, j + 1] and Φ[i, j] = Φ[i, j + 1]

9: else
10: Π[i, j] = Λi · qamax

nj
,nj
· r̂amax

nj
+ Π[i+ 1, j + 1]

11: Φ[i, j] = Φ[i+ 1, j + 1] ∪ {(amax
nj

, nj)}
12: j = j − 1

13: return Φ[1, 1]

find the optimal allocation even when some ads are maximal
in more than one node. In the worst case, the complexity
is O

(
|N |min{|N |,|A|}|C||N |

)
that is worse than the com-

plexity of OptimalSinglePath. More details can be found
in (Gatti et al. 2014).

Economic mechanism. We can have an AE, DSIC, IR,
and WBB mechanism by resorting to the VCG mechanism
with Clarke pivoting. Transfers ta can be easily found by us-
ing the algorithm for the allocation function fE . Formally,
ta = SW (fE(r̂−a)) − SW−a(fE(r̂)), where fE(r̂−a) re-
turns the optimal allocation when ad a does not participate
to the auction and SW−a(fE(r̂)) is the SW of the optimal

allocation when a participates, but his contribution is not
considered in the SW . The complexity of the mechanism
is min{|A|, |N |} times the complexity of the adopted fE .

Approximate Mechanisms
Since the efficient mechanisms in the unrestricted domains
discussed above do not scale, it is important to consider
approximate algorithms. Existing results show that 3AP
does not admit any polynomial–time approximation scheme
(PTAS), but it does admit a constant–ratio (the best one is
1
2) approximation algorithms (Spieksma 2000). These ap-
proximation algorithms are based on the similarity between
3AP and the weighted k–set packing problem (WkSPP) and
the existence of approximation algorithms with ratio O(1

k)
for this latter problem (Arkin and Hassin 1998). Specifi-
cally, any 3AP can be formulated as a WkSPP with k = 3.
However, our allocation problem cannot be formulated as
WkSPP due to additional Constraints (4) that cannot be for-
mulated as set packing constraints of the form

∑ · ≤ 1.
Thus, we cannot resort to such approximation algorithms.
However, it is possible to design an ad hoc polynomial–time
approximation algorithm with constant approximation ratio
w.r.t. both |N | and |A|. We start by stating the following (we
recall the proofs can be found in (Gatti et al. 2014))
Proposition 1 Suppose we limit the total number of ads al-
located, such that the continuation probability, Λc, of the
last ad is at least δ, i.e. ∀n ∈ N : Λc(θ,n) ≥ δ. Then, the
optimal social welfare given the reduced allocation space is
at least (1− δ) the optimal social welfare when considering
the set of all possible allocations Θ.

We now present our approximate algorithm, fA, which is
a slight modification of the OptimalSinglePath algorithm.
The basic idea is that the exponential nature of the algorithm
can be eliminated by fixing the maximum number of allo-
cated non–empty ads to a given m. The algorithm generates
all the possible combinationsB with |B| ≤ m and then finds
the optimal allocation for each combination B by calling a
2AP–solving oracle.
Proposition 2 Algorithm fA has a polynomial computa-
tional complexity O(|N |m · |A|3) and is an (1−∏m−1

i=1 λi)–
approximation algorithm.
It is worth noting that fA does not guarantee a constant ap-
proximation ratio given that λi can be arbitrarily close to 1
and, therefore, the bound can be arbitrarily close to 0. How-
ever, the approximation ratio does not depend on N and A
and therefore the algorithm scales to large instances. We re-
mark that when λi is close to 1, it would seem “natural” to
approximate our allocation problem as a 2AP, by rounding
λi to 1. This new algorithm is denoted by fA2

. However, we
can state the following negative result.
Proposition 3 fA2 is an

∏|N |−1
i=1 λi–approximation algo-

rithm, but is not monotone.
Economic mechanism. The adoption of fA as alloca-

tion function allows the definition of an incentive compatible
mechanism in dominant strategies.
Proposition 4 fA is maximal in range.
As shown in (Nisan and Ronen 2007), any allocation func-
tion that is maximal in range, if combined with VCG–based

694

transfers with Clarke pivoting as ta = SW (fA(r̂−a)) −
SW−a(fA(r̂)), leads to a DSIC mechanism. The mecha-
nism satisfies also IR and WBB; the proof is easy by def-
inition of VCG–based transfers.

Multi–Path Case
In this section, we extend the results previously discussed to
the general case with multiple paths.

Efficient Mechanism
We focus only on the allocation function, referred to as fEM
(since the VCG transfer with Clarke pivot can again be used
to obtain a DSIC mechanism). We can formulate the prob-
lem of finding the optimal allocation as an integer linear pro-
gram by extending the single–path formulation as follows:

max
∑
a∈A

∑
p∈Pv

∑
c∈Cp

∑
n∈Np

ωp · Λc · r̂a · qa,n · xa,n,c,p

∑
n∈Np

∑
c∈Cp

xa,n,c,p ≤ 1 ∀a ∈ A, p ∈ Pv (6)

∑
a∈A

∑
c∈Cp

xa,n,c,p ≤ 1 ∀p ∈ Pv, n ∈ Np (7)

∑
a∈A

∑
n∈Np

xa,n,c,p ≤ 1 ∀c ∈ Cp, p ∈ Pv (8)

∑
a∈A

xa,n,c,p −
∑
a∈A

∑
n′∈Np:

n′<n

xa,n′,c−1,p ≤ 0
∀p ∈ Pv, n ∈ Np,

c ∈ Cp \ {0}
(9)

xa,n,c,p − xa,n,c,p′ = 0
∀p, p′ ∈ Pv, n ∈ p ∩ p′,

a ∈ A, c ∈ Cp
(10)

xa,n,c,p ∈ {0, 1}
∀a ∈ A,n ∈ N,

p ∈ Pv, c ∈ Cp
(11)

where Np and Cp depend on the specific path p. Basically,
the variables for the single–path case, xa,n,c, are replicated
for each path p, i.e., xa,n,c,p. Each path p must satisfy the
same constraints we have in the single–path case and, in ad-
dition, Constraints (10) force nodes that are shared by multi-
ple paths to be assigned to the same ad. The objective func-
tion maximizes the (expected) social welfare. We notice that
differently from the single–path case, even when λ = 1, our
problem can no longer be formulated as a 2AP (it is a vari-
ation of the 2AP with additional constraints whose continu-
ous relaxation admits non–integer solutions). In this case,
we use the classical branch–and–bound algorithm whose
complexity is O(|A||N |).

Allocation function algorithm in restricted domain. As
in the case of single–path, we can identify a restricted do-
main where fEM is computationally easy. For the single–
path case we have shown that, when the nodes of the
path have different maximal ads, the problem becomes
easy. In the multi–path environment we can state something
stronger: when, for each path p, all the nodes belonging
to Np have different maximal ads, fEM is computationally
easy. Thus, we allow an ad to be maximal in multiple nodes,
as long as these nodes belong to different paths.

An optimal algorithm for this restricted domain is given
by Algorithm 2, which extends Algorithm 1 to the multi–
path case. To this end, we need to define two additional func-
tions: s : N → P(N), which returns, for any node n ∈ N ,
s(n), the set of children nodes of n in the multi–path tree;

and l : N → N, which returns, for any node n ∈ N , l(n),
the number of nodes on the path from the root of the tree,
n1, to node n (including the root n1 and n).

Algorithm 2 is based on a recursive procedure and pro-
ceeds as follows. The base case is reached when the pa-
rameter of the algorithm is a leaf node. Then, the algorithm
builds the optimal advertising plan from the subpaths gener-
ated starting from the leaf nodes and backtracking until the
root node n1 is reached. Each call to the algorithm fMP (n)
requires the allocation of two vectors Φn and Πn with size
l(n). Φn[i] and Πn[i] are the optimal allocation and its value
respectively, in the subtree with root n when the first dis-
played ad in the subtree will be the i + 1–th in the tree al-
location. For reasons of space we leave the detailed expla-
nation of Algorithm 2. The complexity of the algorithm is
O(|Pv| · |C| · |N |).

Algorithm 2 fMP (n)

1: if s(n) = ∅ then
2: for all i ∈ {0, . . . , l(n)− 1} do
3: Πn[i] = αn · Λi · qamax

n ,n · r̂amax
n

and Φn[i] = {(amax
n , n)}

4: else
5: Πn[·] = 0 and Φn[·] = ∅
6: for all n′ ∈ s(n) do
7: Πn′ ,Φn′ = fMP (n′)

8: for all i ∈ {0, . . . , l(n)− 1} do
9: if

∑
n′∈s(n) Πn′ [i] ≥ αn · Λi · qamax

n ,n · r̂amax
n

+∑
n′∈N Πn′ [i+ 1] then

10: Πn[i] =
∑
n′∈s(n) Πn′ [i] and Φn[i] = ∪n′∈s(n)Φn′ [i]

11: else
12: Πn[i] = αn · Λi · qamax

n ,n · r̂amax
n

+
∑
n′∈N Πn′ [i+ 1]

13: Φn[i] = ∪n′∈s(n)φn′ [i+ 1] ∪ {(amax
n , n)}

14: return Πn,Φn

Approximate Mechanism
We now consider an approximate mechanism for the multi-
path setting, and show that it is possible to provide a
maximal–in–range approximation algorithm fAM with ap-
proximation ratio that is constant w.r.t. |N | and |A|, but
decreases with |Pv|. Let SWp(θ) =

∑
n∈Np αn · Λc(θ,n) ·

qθ(n),n · r̂θ(n) denote the social welfare for a single path in
the tree, and define θ∗ = arg maxθ∈Θ SW (θ) and θ∗p =
arg maxθ∈Θ SWp(θ). Given this, the following holds:
Proposition 5 The value maxp∈Pv{SWp(θ

∗
p)} is never

worse than 1
|Pv| of the optimal allocation for the entire tree.

By using this proposition, we can provide a simple approxi-
mation algorithm that computes the best allocation θ∗p,∀p ∈
Pv and selects the allocation of the path with the maximum
SW ∗p (θ∗p), obtaining a bound of 1

|Pv| . However, this algo-
rithm requires exponential time, which is the same as finding
the optimal allocation of the single–path problem. By ap-
proximating this latter problem as described in Section 3.2,
we obtain a polynomial–time approximation algorithm with

bound 1−
∏m−1
i=1 λi
|Pv| . It is easy to see that the algorithm is max-

imal in range as in the single–path case, and therefore it is
possible to design a DSIC, WBB, IR, VCG–based mecha-
nism with Clarke pivoting.

695

Experimental Evaluation
In our experiments we compare the run time and the quality
of the solutions obtained using the above algorithms.

Instance generation. We represent the experimental en-
vironment by a 10×10 grid map in which each cell corre-
sponds to a vertex of graph G. We associate each adver-
tiser a with a cell, sa, in which we place the shop of a.
The reward ra is uniformly drawn from [0, 100]. To generate
paths, we randomly select a starting vertex vs and, from vs,
we build the paths moving randomly to the adjacent (hori-
zontally and vertically) cells until the desired length of the
path is reached. The quality qa,n is uniformly drawn from
[0, 1] if n = sa, and it is max{0, qa,sa − da · dist(sa, v)} if
n = v 6= sa, where da is a coefficient uniformly drawn
from [0, 1] and dist(sa, v) is the Manhattan distance be-
tween sa and v (normalized w.r.t. the maximum Manhat-
tan distance among two cells in the grid map). The ba-
sic idea is that the quality linearly decreases as the dis-
tance between the current node and sa increases, and da
gives the decreasing speed. We assume a constant contin-
uation probability λi = λ ∀i ∈ {1, . . . , |N |}. We gener-
ate 50 instances for each of the following configurations:
λ = 0.5 and N ∈ {10, 20, 30, 40, 50}, and λ = 0.8 and
N ∈ {10, 20, 30}. In all instances |A| = 30. For our math-
ematical programming formulations we use AMPL as mod-
eling language and CPLEX 11.0.1 to solve them. The exper-
iments were conducted on an Unix computer with 2.33GHz
CPU, 16Gb RAM, and kernel 2.6.32-45.

Single–path results. We ran fE (specifically, the Op-
timalSinglePath implementation) and fA with m ∈
{1, 2, 3}. The results are depicted in Fig. 2. The average run
time (left) and the average approximation ratio (AAR) ob-
tained with different m (right) are plotted as |N | varies. The
two top plots are with λ = 0.5, while the two bottom plots
are with λ = 0.8. We observe that the run time of fE strictly
depends on λ: the larger λ, the longer the run time. This is
because, in the optimal allocation, the number of allocated
ads increases as λ increases (7 with λ = 0.5 and 16 with
λ = 0.8), requiring a larger number of possible allocations
to be considered. With λ = 0.5, fE can be used in prac-
tice to solve instances with a large number of nodes (up to
50) within 103 s, while, with λ = 0.8, fE cannot be used
for |N | > 30 (we found instances that were not solved even
after 10 hours). Instead, the run time of fA is constant in
λ, and, differently from the worst–case complexity, run time
is sub linear in |N |. On the other hand, the AAR, as the-
oretically expected, decreases as λ increases. However, fA
largely satisfies the theoretical bound, e.g., with λ = 0.5
and m = 2, the theoretical bound is 0.5, while we experi-
mentally observed an AAR of 0.83.

Multi–path results. We ran fEM and fAM with m ∈
{1, 2, 3}. The results are depicted in Fig. 3. By m∗ we de-
note a variation of fAM in which we adopt fE to find the
optimal solution θ∗p on the single path p (used because, as
discussed above, the run time of fE is tractable for 20 nodes
or less). The figures show, for λ = 0.5, the average run
time (left) and the AAR obtained with different values of
m (right) as |Pv| varies, while the length of each path is uni-
formly drawn from {1, . . . , 20}. With |Pv| = 15 and 20,

10 20 30 40 50
10

−1

10
0

10
1

10
2

10
3

|N|

T
im

e
 (

s
)

exact

m=1

m=2

m=3

10 20 30 40 50

0.6

0.7

0.8

0.9

|N|

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

m=1
m=2
m=3

10 15 20 25 30
10

−1

10
0

10
1

10
2

10
3

|N|

T
im

e
 (

s
)

exact

m=1

m=2

m=3

10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

0.65

|N|

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

m=1
m=2
m=3

Figure 2: Average run time (left) and approximation ratio
(right) as |N | varies. λ = 0.5 (top) and λ = 0.8 (bottom).

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

|P
v
|

T
im

e
 (

s
)

exact

m=1

m=2

m=3

m*

0 5 10 15 20

0.6

0.7

0.8

0.9

1

|P
v
|

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

m=1
m=2
m=3
m*

Figure 3: Average run time (left) and approximation ratio
(right) as |Pv| varies with λ = 0.5 in the multi–path case.
we interrupted the execution of fEM in 2 instances due to
the set time limit (1200 s); with λ = 0.8 (the plots are not
reported due to space limitation), the number of interrupted
executions is 11 when |Pv| = 20. Thus, fEM can be used
in practice with instances with no more than 20 paths and a
small λ. We experimentally observed that AARs are much
better than the theoretical bounds. In particular, the theo-
retical bound decreases as 1

|Pv| , instead, experimentally, the
ratios seem to converge to values ≥ 0.6 as |Pv| increases.
Also, m∗ provides the best performance in terms of trade–
off between run time and AAR.

Conclusions and Future Works
In this paper, we introduced, for the first time, an economic
model for mobile geo–location advertising. We designed a
user mobility model whereby the user moves along one of
several paths and we designed some incentive compatible
mechanisms: exact with exponential time, exact with poly-
nomial time for a significant restricted set of instances, and
approximate with theoretical bounds and polynomial–time.
Finally, we experimentally evaluated our algorithms in terms
of the trade–off between sub–optimality of the allocation
and compute time showing that in the single–path case the
optimal solution can be found for large instances and that
the average–case approximations we found are significantly
better than the worst–case theoretical bound. With multi–
path cases, finding the optimal allocation quickly becomes
intractable, and approximation algorithms are necessary.

In future work, we aim to prove the NP–hardness of our
allocation problem and to design more efficient (even non–
monotone) approximation algorithms.

696

References
Abrams, Z., and Vee, E. 2007. Personalized ad delivery
when ads fatigue: an approximation algorithm. In WINE,
535–540.
Aggarwal, G.; Feldman, J.; Muthukrishnan, S.; and Pál, M.
2008. Sponsored search auctions with markovian users. In
WINE, 621–628.
Arkin, E., and Hassin, R. 1998. On local search for weighted
packing problems. Mathematics of Operations Research
23:640–649.
Balas, E., and Saltzman, M. J. 1991. An algorithm for
the three–index assignment problem. Operations Research
39:150–161.
Berg Insight. 2013. Mobile advertising and marketing – 6th
edition. Technical report.
Burkard, R.; Dell’Amico, M.; and Martello, S. 2012. As-
signment problems. SIAM.
Gatti, N.; Rocco, M.; Ceppi, S.; and Gerding, E. H. 2014.
Mechanism design for mobile geo–location advertising.
CoRR abs/1404.4106.
Gatti, N.; Lazaric, A.; and Trovò, F. 2012. A truthful learn-
ing mechanism for contextual multi–slot sponsored search
auctions with externalities. In ACM EC, 605–622.
Kempe, D., and Mahdian, M. 2008. A cascade model for
externalities in sponsored search. In WINE, 585–596.
Muthukrishnan, S. 2010. Ad exchanges: Research issues. In
WINE, 1–12. Springer.
Narahari, Y.; Garg, D.; Narayanam, R.; and Prakash, H.
2009. Game Theoretic Problems in Network Economics and
Mechanism Design Solutions. Springer.
Nisan, N., and Ronen, A. 2007. Computationally feasible
vcg mechanisms. volume 29, 19–47.
Spieksma, F. C. R. 2000. Multi index assignment problems:
complexity, approximation, applications. 1–12.
Vallina-Rodriguez, N.; Shah, J.; Finamore, A.; Grunen-
berger, Y.; Papagiannaki, K.; Haddadi, H.; and Crowcroft,
J. 2012. Breaking for commercials: characterizing mobile
advertising. In ACM IMC, 343–356.

697

