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Abstract

We study the envy-free allocation of indivisible goods be-
tween two players. Our novel setting includes an option to
sell each good for a fraction of the minimum value any player
has for the good. To rigorously quantify the efficiency gain
from selling, we reason about the price of envy-freeness of al-
locations of sellable goods — the ratio between the maximum
social welfare and the social welfare of the best envy-free al-
location. We show that envy-free allocations of sellable goods
are significantly more efficient than their unsellable counter-
parts.

1 Introduction
After decades of unresolved communication prob-
lems (Kushilevitz and Nisan 1996), Alice and Bob
have decided to get a divorce. Their worldly goods include
a well-worn (shared) blackboard, a museum-quality collec-
tion of private keys, and a 19th century French vase. Can
Alice and Bob divide these goods in a way that is fair to
both sides?

To answer this question we must be more specific about
what we mean by “fair”. The notion of envy-freeness pro-
vides a natural interpretation: Alice (weakly) prefers her
own bundle of goods to Bob’s bundle, and Bob is likewise
convinced that he got the better deal. In other words, when
the allocation is envy free, neither Alice nor Bob is inter-
ested in swapping bundles.

While envy-freeness is a compelling ideal, envy may
clearly be unavoidable when the goods are indivisible. But
envy-freeness can nevertheless be achieved if we are willing
to split one of the goods. This concession enables the famous
Adjusted Winner (AW) protocol (Brams and Taylor 1996) —
an envy-free protocol that has been patented by New York
University and licensed to the law firm Fair Outcomes, Inc.

In their book, Brams and Taylor (1996, pp. 102–108) ap-
ply AW to the real divorce case of Jolis vs. Jolis, which was
decided in 1981 (let us call the wife Alice Jolis, and the hus-
band Bob Jolis). The marital property included a Paris apart-
ment, a Paris studio, a New York City coop, a farm, cash
and receivables, securities, a profit-sharing plan, and a life
insurance policy. Deducing Alice and Bob’s values for these
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goods (from available data) and applying AW yields an al-
location that gives the studio, coop, farm, securities, and life
insurance policy to Bob, the Paris apartment to Alice, and
splits the cash (giving a 1/11 fraction to Bob and the rest to
Alice). In this case AW split a good that happens to be divis-
ible, but this is by no means guaranteed: had Alice and Bob
expressed different preferences, AW could have split one of
the indivisible goods, say, the Paris apartment. In practice,
this would typically mean selling the Paris apartment and
splitting the cash. However, for example, 40% of the mar-
ket price of the Paris apartment may not be equal to 40%
of Bob’s value for owning the entire apartment, invalidating
the assumptions underlying AW and thus nullifying its guar-
antees. Moreover, if we are indeed allowed to sell goods,
perhaps there is a better envy-free allocation?

This paper is motivated by the preceding observations and
questions, which, we believe, call for an explicit model of
the envy-free division of sellable goods.

1.1 Our Approach and Formal Model
We consider a setting with two players, Alice (denoted A)
and Bob (denoted B). Our approach cannot give rise to non-
trivial positive results when there are more than two players,
as we discuss in Section 4. There is also a set of m indivisi-
ble goods to be allocated, denoted by [m] = {1, . . . ,m}. For
each j ∈ [m] and P ∈ {A,B}, P ’s value for j is denoted
vP (j) ∈ [0, 1].

We make two assumptions regarding the valuation func-
tions:
1. Additivity: For P ∈ {A,B} and J ⊆ [m], vP (J) =∑

j∈J vP (j). In particular, vP (∅) = 0.

2. Normalization: For P ∈ {A,B}, it holds that vP ([m]) =∑
j∈[m] vP (j) = 1.

An allocation (partition of the goods between Alice and
Bob) X = {XA, XB} is envy free if vA(XA) ≥ vA(XB)
and vB(XB) ≥ vB(XA). We are also interested in the eco-
nomic efficiency of allocations, which we measure via their
(utilitarian) social welfare: SW(X , vA, vB) = vA(XA) +
vB(XB).

Our main conceptual contribution is the idea that indi-
visible goods can be sold, and thereby converted into an
infinitely divisible cash value (which Alice and Bob value
equally). We assume that there is a universal constant c ∈
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(0, 1] such that the selling price of a set of goods J ⊆ [m]
is c ·

∑
j∈J min{vA(j), vB(j)}. The rationale is that Alice

and Bob both value each good at least at its market value,
because they can always sell a good they have obtained. But
their value for a good can be strictly higher than its market
value — this is captured by the constant c. While we assume,
for ease of exposition, that the price is exactly a c-fraction
of the minimum value, our results naturally hold if this ex-
pression is just a lower bound; this observation is important
when different goods can be sold for different fractions of
the minimum value. With this in mind, we define an allo-
cation with selling as X = {XA ∪ CA, XB ∪ CB}, where
CA and CB are cash derived from the sale of a subset of the
items, given to Alice and Bob, respectively.

To rigorously quantify the gain from selling, we use the
notion of (utilitarian) price of envy-freeness, independently
introduced by Caragiannis et al. (2012) and (in slightly
different form) by Bertsimas et al. (2011). For valuation
functions vA, vB , let OPT(vA, vB) be the social welfare
of the welfare-maximizing allocation; i.e., OPT(vA, vB) ,
maxX SW(X , vA, vB). Similarly, define OPTEF(vA, vB) to
be the social welfare of the welfare-maximizing envy-
free allocation without selling, and OPTEFS(vA, vB) to
be the social welfare of the welfare-maximizing envy-
free allocation with selling. The price of envy-freeness
is the worst-case (over valuation functions vA, vB) ratio
OPT(vA, vB)/OPTEF(vA, vB). With selling, it is the worst-
case ratio OPT(vA, vB)/OPTEFS(vA, vB). Hereinafter the
valuation functions will always be clear from the context,
so we simply write OPT, OPTEF and OPTEFS.

We now formulate our primary research challenge:

Show that the option to sell goods provides a major
boost to efficiency by establishing that the price of
envy-freeness with selling is significantly lower than the
price of envy-freeness without selling.

1.2 Our Results

Table 1 summarizes our results regarding the price of envy-
freeness. The columns distinguish between two scenarios:
(i) the general setting where an envy-free allocation without
selling may not exist, and (ii) such an allocation does exist.
The first row shows our bounds on the price of envy-freeness
with selling (which are tight), the second row instantiates
these bounds for c = 1, and the third row gives the price
of envy-freeness without selling. In scenario (i), the price of
envy-freeness without selling is∞ (or, alternatively, it is not
well defined). In contrast, our analysis (Theorem 1) gives a
bound of 3/2 for the case of c = 1. In scenario (ii), Cara-
giannis et al. (2009) show that the price of envy-freeness
(without selling) is 3/2; our bound (Theorem 2) instantiates
to 6/5 when c = 1. As c→ 0, our results match the bounds
without selling.

We also investigate the problem of computing a social
welfare maximizing allocation of sellable goods. While the
problem is NP-complete (Theorem 3), we show that, when
c = 1, it admits a fully polynomial time approximation
scheme (Theorem 4).

Is there an EF allocation?
No Yes

Selling max{ 3−c
c+c2 ,

3
1+c} max{ 3−2c2−c ,

6
4+c}

Selling (c = 1) 3/2 6/5

No selling ∞ 3/2

Table 1: Summary of our results.

1.3 Additional Context and Significance in AI
The rigorous study of fair division dates back to the work
of Steinhaus (1948). Over the years a deep theory has been
developed by economists, mathematicians, and political sci-
entists; see, e.g., the books by Brams and Taylor (1996) and
Moulin (2003). More recently, the study of fair division has
attracted significant attention from the AI community. This
relatively newfound interest is partly motivated by the idea
that fair division theory can inform the design of multiagent
systems (Chevaleyre et al. 2006).

The fair division literature makes a distinction between
two typically disjoint cases, depending on whether the goods
are divisible or indivisible. The divisible case usually in-
volves a single, heterogeneous good, and the task of dividing
this good is known as cake cutting. This setting has been ex-
tensively studied by AI researchers in recent years (Procac-
cia 2009; Chen et al. 2013; Caragiannis, Lai, and Procaccia
2011; Cohler et al. 2011; Brams et al. 2012; Bei et al. 2012;
Kurokawa, Lai, and Procaccia 2013; Brânzei, Procaccia,
and Zhang 2013); see the survey by Procaccia (2013) for
an overview. In the context of indivisible goods, AI re-
searchers have also studied issues like complexity, prefer-
ence handling, and incentives (Bouveret and Lang 2008;
2011; Kalinowski et al. 2013).

Our work attempts to bridge these two worlds, by es-
sentially allowing the division of indivisible goods — at a
cost. In this sense, our paper is somewhat related to a line
of work on reaching envy-free states through distributed
negotiation over indivisible goods (Chevaleyre et al. 2007;
Chevaleyre, Endriss, and Maudet 2007; 2010), because these
papers allow players to pay each other in order to achieve
envy-freeness (as long as the sum of payments is zero). That
said, our motivation, questions, approach, and results are all
fundamentally different.

2 Bounds on the Price of Envy-Freeness
To gain some intuition for price of fairness bounds, we start
by discussing the price of envy-freeness without selling. As
mentioned above, Caragiannis et al. (2009) restrict their at-
tention to instances where an envy-free allocation does exist,
and — for these instances — show that OPT/OPTEF < 3/2.
The proof is simple. First, notice that a player is not envious
if and only if his or her bundle is worth at least 1/2 (be-
cause the sum of values for the two bundles is 1). Now, if
the optimal allocation is envy-free we are done. If not, on
the one hand either Alice or Bob is envious under the opti-
mal solution, so OPT < 1 + 1/2 = 3/2; and on the other
hand, OPTEF ≥ 1/2 + 1/2 = 1. Crucially, Caragiannis et
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al. (2012) also show that this bound is tight; i.e., for every
ε > 0 there is an example where the ratio is 3/2− ε.

In contrast, when the goods are sellable, there always ex-
ists an envy-free allocation, so the price of envy-freeness is
always well defined. Interestingly, it turns out that the price
of envy-freeness (with selling) when an envy-free allocation
without selling is assumed to exist (Theorem 2) is signifi-
cantly lower than the price of envy-freeness in the general
case (Theorem 1), so we present these results as two sepa-
rate theorems, starting with the (simpler, surprisingly) gen-
eral case.
Theorem 1. When an envy-free solution without selling
does not exist for a particular instance, for any c ∈ (0, 1],
OPT

OPTEFS
≤ max{ 3−c

c+c2 ,
3

1+c}.
Before proving the theorem, we demonstrate that the

bound is tight. For c ∈ (0, 3/4] it holds that 3−c
c+c2 ≥

3
1+c . Let

there be two goods, and let vA(1) = 1 − c/2 − ε, vA(2) =
c/2+ε, vB(1) = 1/2+ε, vB(2) = 1/2−ε, for an arbitrarily
small ε > 0. We have OPT = 3/2−c/2−2ε. The only way to
get an envy-free allocation is to sell both goods, and split the
cash equally. The value of the resulting allocation is just the
amount of cash: OPTEFS = c·(1/2+ε+c/2+ε) ≈ (c+c2)/2.
Then OPT/OPTEFS ≈ (3− c)/(c+ c2).

For c ∈ [3/4, 1], 3
1+c ≥

3−c
c+c2 . Let vA(1) = 1, vA(2) = 0,

vB(1) = 1/2 + ε, vB(2) = 1/2− ε, for an arbitrarily small
ε > 0. For this instance, OPT = 3/2 − ε. To obtain an EF
allocation, good 1 must be sold — we then allocate good 2
to Bob and divide that cash so that Alice and Bob are both
satisfied. Therefore, OPTEFS = c · (1/2 + ε) + (1/2 − ε) ≈
(c+ 1)/2, and OPT/OPTEFS ≈ 3/(1 + c).

Proof of Theorem 1. Suppose we start with a social welfare
maximizing allocation S = {SA, SB}, and assume with-
out loss of generality that vA(SA) ≥ vB(SB). It holds that
vA(SA) ≥ vB(SA) and vB(SB) ≥ vA(SB), because to
maximize social welfare each good is allocated to the player
who values it more highly. Since no envy-free solution ex-
ists without selling, we have that 1 ≥ vA(SA) ≥ vB(SA) >
1/2 > vB(SB) ≥ vA(SB). Thus, selling only SB would
leave the player that does not receive SA envious. Hence, to
obtain an envy-free allocation, it may be necessary to sell
the entirety of SA, in the worst case that it is a single good.

It may also be required to sell SB to guarantee the ex-
istence of an envy-free allocation. If only SA is sold, it is
possible that the player that does not receive SB will be en-
vious, if vA(SB) > c · vB(SA).
Case 1: vA(SB) ≤ c · vB(SA). In this case we only sell SA.
Alice’s total remaining value is

vA(SB) + c · vB(SA) = 1− vA(SA) + c · vB(SA)
≤ 1− (1− c) · vB(SA),

and Bob’s total remaining value is 1 − (1 − c) · vB(SA).
We first show that there is enough cash from selling SA to
satisfy both Alice and Bob in an envy-free allocation.

Suppose that vB(SB) ≥ c · vB(SA); i.e., Bob does not
need to be given any cash to be envy-free. Alice’s total (re-
maining) value is vA(SB) + c · vB(SA) ≤ 2c · vB(SA), so
giving her the cash will make her envy-free.

Otherwise, suppose Bob is not immediately envy-free af-
ter selling SA. It is easy to see there is enough cash to
satisfy both Alice and Bob, since the following equation
can be obtained by rearranging the terms of the identity
vB(SA) + vB(SB) = 1:

c · vB(SA) =
1

2
(1− (1− c) · vB(SA))

+

(
1

2
(1− (1− c) · vB(SA))− vB(SB)

)
.

We conclude that in Case 1 we can obtain an envy-free
allocation by selling only SA and letting Bob keep SB . This
yields

OPTEFS ≥ c · vB(SA) + vB(SB) = 1− (1− c) · vB(SA).

Since OPT ≤ 2− vB(SA), and letting x , vB(SA),

OPT

OPTEFS

≤ 2− x
1− (1− c) · x

, g(x, c).

We want the maximum of g over the entire range vB(SA) ∈
[1/2, 1]. The partial derivative of g with respect to x is

∂g(x, c)

∂x
=

1− 2c

(1− (1− c) · x)2
.

Thus, the maximum occurs at g(1/2, c) for all c ∈ [1/2, 1],
since for such c, g is non-increasing as x increases, and at
g(1, c) for all c ∈ (0, 1/2], since for these values, g is non-
decreasing as x increases. Hence,

OPT

OPTEFS

≤ max

{
1

c
,

3
2

1− (1− c) · 1
2

}
= max

{
1

c
,

3

1 + c

}
.

Case 2: vA(SB) > c·vB(SA). It may be required to sell both
SA and SB to guarantee the existence of an envy-free solu-
tion, if both are single goods. Take the allocation in which
everything is sold and the resulting cash is split evenly. We
have already established that vB(SA) > 1/2. As a result,

OPT = 2− (vA(SB) + vB(SA)) < 2− c/2− 1/2,

and

OPTEFS ≥ c · (vA(SB) + vB(SA)) > c · (1 + c) · vB(SA)

> c · (1 + c) · 1
2
.

Thus, OPT
OPTEFS

< 3−c
c+c2 .

Wrapping up. Since 3−c
c+c2 ≥

1
c for all c ≤ 1, we proved

OPT
OPTEFS

≤ max{ 1c ,
3−c
c+c2 ,

3
1+c} = max{ 3−c

c+c2 ,
3

1+c}.

Next, we assume that an envy-free allocation without sell-
ing exists. Recall that in this case, even without selling the
price of envy-freeness is 3/2 (so Theorem 1 does not give
a better bound). However, we are able to show that, with
selling, the price of envy-freeness is significantly lower. In
particular, for c = 1, the price of envy-freeness is only 6/5.
Theorem 2. Suppose an envy-free solution without selling
exists for a particular instance. Then for c ∈ (0, 1], OPT

OPTEFS
≤

max{ 3−2c2−c ,
6

4+c}.
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Once again, before proving the theorem we give an exam-
ple showing that the bound is tight. For c ∈ [1/2, 1] it holds
that 6

4+c ≥
3−2c
2−c . Let there be four goods, with values given

by the following table:

1 2 3 4

vA
1−ε
2

1−ε
2 ε 0

vB 1/4 + ε 1/4 + ε 1/4− ε 1/4− ε

ε > 0 is arbitrarily small. Note that an envy-free allocation
without selling exists (Alice gets 1 and 3 and Bob gets 2 and
4). Moreover, we have that OPT ≈ 3/2. The optimal envy-
free allocation with selling would sell either 1 or 2, resulting
in OPTEFS ≈ 1 + c/4. Thus, OPT/OPTEFS ≈ 6/(4 + c).

For c ∈ (0, 1/2], the values are given by the following
table:

1 2 3 4

vA
1−ε
2

1−ε
2 ε 0

vB
1/2
2−c − ε

1/2
2−c − ε

(1−c)/2
2−c + ε (1−c)/2

2−c + ε

The social welfare maximizing solution, where Alice re-
ceives 1 and 2 and Bob receives 3 and 4, yields a total value
of OPT ≈ (3 − 2c)/(2 − c). The envy-free with selling so-
lution sells 1 or 2, and yields OPTEFS = 1. The ratio is there-
fore roughly (3− 2c)/(2− c).

We are now ready to prove the theorem. The proof is quite
long and intricate, so the proofs of several lemmas are omit-
ted. All omitted proofs can be found in the extended version
of the paper.1

Proof of Theorem 2. Let X = {XA ∪ CA, XB ∪ CB} be
an allocation where XA and XB are disjoint subsets of the
goods and CA + CB is the cash obtained from selling [m] \
(XA ∪XB). We let

XA , {j ∈ XA : vA(j) < vB(j)},

XB , {j ∈ XB : vB(j) < vA(j)},

and define their complements, XA , XA \XA, and XB ,
XB \XB .

We have assumed that an envy-free allocation without
selling exists, so let Y = {YA, YB} be a social welfare
maximizing envy-free allocation without selling; that is,
OPTEF = SW(Y, vA, vB). Note that OPTEF ≥ 1, because
vA(YA) ≥ 1/2 and vB(YB) ≥ 1/2 due to envy-freeness.
Without loss of generality, assume that vA(YA) ≤ vB(YB).

Note that when vA(YA) ≥ 1/2, Y satisfies YA = ∅ (so
that vA(YA) = vB(YA) = 0), since giving those goods to
Alice is not necessary for envy-freeness, and Alice values
them strictly less than Bob.

Next, S = {SA, SB} will refer to a particular social wel-
fare maximizing allocation: SA = YA∪YB , and SB = YB∪
YA. Note that when vB(YB) = 0, vA(YA) + vB(YB) = 0,
so SW(S) = SW(Y), in which case the price of fairness is
1. This is not an interesting case so assume henceforth that

1Available at: http://cs.cmu.edu/˜arielpro/papers

the price of envy-freeness is strictly greater than one; i.e.,
assume vB(YB) > 0.

Our first lemma is used throughout the theorem’s proof.

Lemma 1. vA(SA) ≥ 1
2 and vB(SB) < 1

2 .

Consider the following two allocations. They both begin
with the allocation S, and involve Alice selling one of YA or
YB .

Allocation 1. Alice sells YB and gives Bob cash worth

C1
B , max

{
0,

1

2
− (1− c)

2
·vB(YB)−vB(YB)−vB(YA)

}
.

Let C1
A , c ·vB(YB)−C1

B be Alice’s remaining cash. Then
define Z1 , {YA ∪ C1

A, YB ∪ YA ∪ C1
B}.

Note that Alice’s value for all the remaining goods and
the cash from the sale is 1 − vA(YB) + c · vB(YB) ≤ 1 −
(1 − c) · vB(YB), while Bob’s value for everything is 1 −
(1− c) · vB(YB).

Allocation 2. Alice sells YA and gives Bob cash worth

C2
B , max

{
0,

1

2
− (1− c)

2
·vB(YA)−vB(YB)−vB(YA)

}
.

Let C2
A , c · vB(YA) − C2

B . Then define Z2 , {YB ∪
C2
A, YB ∪ YA ∪ C2

B}.
Observe that Alice’s value for all the remaining goods and

the cash from the sale is 1 − vA(YA) + c · vB(YA) ≤ 1 −
(1 − c) · vB(YA), while Bob’s value for everything is 1 −
(1− c) · vB(YA).

The next two lemmas show that, if the two allocations
Z1 and Z2 have enough cash, then they are envy free and
provide certain guarantees with respect to social welfare.

Lemma 2. Assume that C1
B ≤ c · vB(YB) (that is, there is

enough cash to give to Bob under Allocation 1), and OPT >
6

4+c . Then the allocation Z1 is envy free, and SW(Z1) =

vA(YA) + vB(YA) + vB(YB) + c · vB(YB).

Proof. The statement about the value of SW(Z1) is trivial.
Turning to envy-freeness, clearly Bob has no envy in this
transaction, since his value is

vB(YB) + vB(YA) + vB(C
1
B) ≥

1− (1− c) · vB(YB)
2

;

i.e., half his total (remaining) value. We need to show that
Alice is not envious.

Case 1: C1
B = 0. Note that this case cannot happen if c =

1, since then 1/2 − vB(YB) − vB(YA) ≤ 0, contradicting
Lemma 1. Thus, suppose c ∈ (0, 1).

We show that if Alice receives YA and all the cash, then
she would not envy Bob. Assume for the sake of con-
tradiction that Alice would actually envy Bob: vA(YA) +
vA(YB) > vA(YA) + c · vB(YB).
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Note that, by Lemma 1, vB(YA) + vB(YB) = vB(SA) >

1/2. Since we are assuming OPT > 6
4+c , and

6

4 + c
< OPT = 2− (vB(YA) + vB(YB) + vA(YA) + vA(YB))

<
3

2
− (vA(YA) + vA(YB)),

it follows that vA(YA) + vA(YB) <
3c

2(4+c) . By our earlier
assumption that Alice would envy Bob,

3c

2(4 + c)
> vA(YA) + vA(YB)

> vA(YA) + c · vB(YB)
≥ vB(YA) + c · vB(YB)
= vB(YA) + vB(YB)− (1− c) · vB(YB)

>
1

2
− (1− c) · vB(YB).

Thus, vB(YB) > 2−c
(1−c)(4+c) . This value is strictly greater

than 1/2 for all c ∈ (0, 1), which is a contradiction to the
envy-freeness of Y , since then vA(YB) ≥ vB(YB) > 1/2.

Hence, when C1
B = 0, vA(YA)+vA(YB) ≤ vA(YA)+ c ·

vB(YB), so Alice does not envy Bob.

Case 2: C1
B > 0. Alice’s value is

vA(YA) + c · vB(YB)−
(
1

2
− (1− c)

2
· vB(YB)

)
+ vB(YB) + vB(YA)

= vA(YA) + c · vB(YB)−
(
1

2
− (1− c)

2
· vB(YB)

)
+ (1− vB(YB)− vB(YA))

=
1

2
− (1− c)

2
· vB(YB) + vA(YA)− vB(YA)

≥ 1

2

(
1− (1− c) · vB(YB)

)
,

where the last line follows from the assumption that
vA(YA) ≥ vB(YA). The right hand side is at least half of
Alice’s total (remaining) value.

The proofs of the following two lemmas, 3 and 4, are rel-
egated to the full version of the paper.

Lemma 3. Assume that C2
B ≤ c · vB(YA) (that is, there is

enough cash to give to Bob under Allocation 2), and OPT ≥
6

4+c . Then the allocation Z2 is envy free, and SW(Z2) =

vA(YB) + vB(YA) + vB(YB) + c · vB(YA).

At this point, it will be useful to define the maximum of
Allocations 1 and 2, with respect to social welfare, as Z .
That is,

Z ,

{
Z1 if vA(YA) + c · vB(YB) > vA(YB) + c · vB(YA),
Z2 otherwise.

We will use C∗A to refer to the cash received by Alice in Z ,
and C∗B for the cash Bob receives in Z .

Lemma 4. When OPT ≥ 6
4+c ·OPTEF,Z has sufficient cash:

C∗A and C∗B are both non-negative.

With all the lemmas in place, we can now complete the
proof of Theorem 2. Observe that the lemmas imply Z is
envy-free. Also note that OPTEF ≥ 1, so assuming OPT >
max{ 3−2c2−c ,

6
4+c}·OPTEF allows Lemmas 2, 3, and 4 to apply.

Since the maximum of two numbers is at least their aver-
age, and

vB(YA) + vB(YB) = OPT− vA(YA)− vA(YB) ≥ OPT− 1,

we have that

OPTEFS ≥ SW(Z)
= max{vA(YA) + c · vB(YB) + vB(YA) + vB(YB),

vA(YB) + c · vB(YA) + vB(YA) + vB(YB)}

≥ 1

2

(
vA(YA) + vA(YB) + c · (vB(YA) + vB(YB))

+ 2(vB(YA) + vB(YB))

)
=

1

2

(
OPT− vB(YA)− vB(YB)

+ c · (1− vB(YA)− vB(YB))

+ 2(vB(YA) + vB(YB))

)
=

1

2

(
OPT+ c+ (1− c)(vB(YA) + vB(YB))

)
≥ 1

2

(
(2− c) · OPT+ 2c− 1

)
.

This implies

OPT

OPTEFS

≤ 2 · OPT
(2− c) · OPT+ 2c− 1

, f(OPT, c).

For every c, we want to re-write this bound to be only
in terms of c and not OPT. Note that it suffices to con-
sider OPT ∈ (max{ 3−2c2−c ,

6
4+c}, 3/2). This follows from the

reasoning from the beginning of Section 2: if at least one
player is envious, then OPT < 1 + 1/2 = 3/2. Since we
want the bound to hold across the entire possible range of
OPT, we need to take the maximum of f(OPT, c) over the
range. Thus, we take the derivative, with respect to OPT, of
f(OPT, c).

∂f(OPT, c)

∂ OPT
=

4c− 2

((2− c) · OPT+ 2c− 1)2
.

For c ∈ [1/2, 1], ∂f
∂OPT ≥ 0, so

OPT

OPTEFS

≤ f
(
3

2
, c

)
=

6

4 + c
.

For c ∈ (0, 1/2], ∂f
∂OPT ≤ 0 and max{ 3−2c2−c ,

6
4+c} =

3−2c
2−c ,

so
OPT

OPTEFS

≤ f
(
3− 2c

2− c
, c

)
=

3− 2c

2− c
.
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3 An Algorithmic Retrospective
Our theorems in Section 2 are existence results: they state
that there always exists an envy-free allocation of sellable
goods that yields a certain fraction of the optimal social
welfare. The proof of Theorem 1 constructs an allocation
that achieves the stated bound by selling portions of the
social welfare maximizing allocation S. The allocation S
is easy to compute (just give each good to the player that
values it more). In contrast, from a computational view-
point, the guarantees of Theorem 2 may be hard to achieve,
as the proof requires Alice to sell bundles from a welfare-
maximizing envy-free (without selling) allocation Y , which
is far trickier to compute (Bouveret and Lang 2008).

The optimal envy-free allocation with selling is at least
as good as the allocations constructed in the two proofs.
And, in theory, the option to sell goods may actually make
its computation easy. Our next result shows that this is not
the case.2 To be more formal, let us define the MAX-EFS(c)
problem as follows: the input is the set of goods [m] that can
be sold for a c-fraction of the minimum value, the valuation
functions vA and vB , and k ∈ R+; the question is whether
there is an envy-free allocation with social welfare at least
k.

Theorem 3. For any c ∈ (0, 1], the MAX-EFS(c) problem
is NP-complete.

Intuitively, though, what makes the problem hard is that,
starting from a social welfare maximizing allocation (which
is not envy free), an optimal solution would have to sell a
set of goods that is sufficient to satisfy the envious player,
while losing as little value as possible. For c = 1, this can
be formulated as a MIN-KNAPSACK problem, which ad-
mits a fully polynomial time approximation scheme (FP-
TAS) (Kellerer, Pferschy, and Pisinger 2004). Leveraging
this insight, we establish following result.

Theorem 4. MAX-EFS(1) admits an FPTAS; i.e., there
is an algorithm that, for any ε > 0, returns an envy-
free allocation X (which possibly includes cash) such that
SW(X , vA, vB) ≥ (1− ε) OPTEFS(vA, vB), and runs in poly-
nomial time in the parameters of the problem and 1/ε.

Moreover, it is easy to see that for any value of c, MAX-
EFS(c) can be formulated as an integer linear program
(ILP), which can be solved using a variety of practical algo-
rithms. To conclude, we do not view Theorem 3 as a serious
obstacle to solving fair division problems in our framework,
and, in particular, to achieving the guarantees given by The-
orems 1 and 2.

4 Discussion
All of our results focus on the case of two players. This
is because, when there are three or more players, the price
of envy-freeness with selling is unbounded. To see why, let
there be two goods and three players A,B,C; set vA(1) =

2A related computational problem is whether OPTEFS = OPT.
This question does turn out to be tractable for c = 1; the proof is
implicit in the arguments in the extended version of the paper. In
contrast, the question of whether OPTEF = OPT is NP-complete.

vB(1) = 1 − ε, vC(1) = 0, vA(2) = vB(2) = ε, and
vC(2) = 1. Both goods needs to be sold to prevent envy,
but this only generates ε cash. In contrast, the case of two
players (which is of special significance) gives rise to a rich
collection of insights.

Another assumption — this one implicit — worth dis-
cussing is the conversion between value and cash. We have
assumed that Alice and Bob’s valuations for the complete
bundle of goods are normalized to 1. This assumption is also
made in many other fair division papers that reason about
utilitarian social welfare (see, e.g., (Caragiannis et al. 2009;
Cohler et al. 2011; Brams et al. 2012)). In practice, this could
mean assigning Alice and Bob the same number of points to
distribute between goods. But the conversion to cash means
that the normalized valuation of a good can be compared
to its market value. This is clearly possible, for example,
if Alice and Bob have the same actual value for the com-
plete bundle of goods. In any case, the fact that c can be any
number in (0, 1] gives us the flexibility to handle a range of
conversion schemes, possibly at the cost of slightly weaker
guarantees.

Finally, note that the Adjusted Winner protocol (Brams
and Taylor 1996), discussed in Section 1, actually guaran-
tees another fairness property called equitability: the players
have equal values for their own bundles of goods. In princi-
ple, one can ask the same questions we have answered above
about the price of equitability instead of envy-freeness —
but that would be a bit repetitive!
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