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Abstract
We study a mechanism design problem for exchange
economies where each agent is initially endowed with
a set of indivisible goods and side payments are not al-
lowed. We assume each agent can withhold some en-
dowments, as well as misreport her preference. Under
this assumption, strategyproofness requires that for each
agent, reporting her true preference with revealing all
her endowments is a dominant strategy, and thus implies
individual rationality. Our objective in this paper is to
analyze the effect of such private ownership in exchange
economies with multiple endowments. As fundamental
results, we first show that the revelation principle holds
under a natural assumption and that strategyproofness
and Pareto efficiency are incompatible even under the
lexicographic preference domain. We then propose a
class of exchange rules, each of which has a correspond-
ing directed graph to prescribe possible trades, and pro-
vide necessary and sufficient conditions on the graph
structure so that they satisfy strategyproofness.

Introduction
The housing market problem, introduced by Shapley and
Scarf (1974), is a fundamental exchange model where each
good is indivisible and monetary transfers are not allowed.
Precisely, there is a group of agents, each of whom is ini-
tially endowed with one good, say a house, and has a strict
ordering, so-called a preference, over the set of all goods
owned by the agents. An exchange rule (aka., a mechanism)
takes the preferences revealed by the agents as input and de-
termines which goods are traded. The model has been ap-
plied to various market environments, such as kidney ex-
changes (Roth, Sönmez, and Ünver 2004) and on-campus
university housing markets (Chen and Sönmez 2002).

One desirable property for a mechanism is strategyproof-
ness, which requires that for every agent, the truth revela-
tion of her private information, say a preference over a set of
houses, to the mechanism is a dominant strategy. From the
revelation principle, it is without loss of generality to focus
on strategyproof direct revelation mechanisms if we are only
interested in exchange rules with dominant strategy equilib-
ria. Fortunately, for the housing market problem, Gale’s Top-
Trading-Cycle (TTC) rule is strategyproof, as well as Pareto
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efficient and individually rational. Moreover, it is the only
rule that satisfies those three properties (Ma 1994). Due to
these advantages, TTC has been attracting much attention
from both economists and computer scientists.

In this paper we consider exchange economies where each
agent is endowed with a set of multiple goods, instead of
a single good. Under that model, Pareto efficiency, indi-
vidual rationality, and strategyproofness cannot be simulta-
neously satisfied (Sönmez 1999). Therefore, one main re-
search direction on exchanges with multiple endowments is
to achieve strategyproof rules that guarantee a limited notion
of efficiency. In particular, Pápai (2003) defined a class of
exchange rules and gave a characterization by strategyproof-
ness and individual rationality with some other weak effi-
ciency requirements.

Another important assumption in this work is that each
agent’s endowments are also private information, and agents
reveal to an exchange rule their endowments, as well as their
preferences. Since an exchange rule cannot exactly observe
which agent really owns which goods, guaranteeing strat-
egyproofness seems much harder than in a traditional case
where ownerships are recognized. Indeed, in environments
with private (and multiple) goods, the possibility of various
manipulations via endowments has been pointed out (Postle-
waite 1979; Atlamaz and Klaus 2007), such as hiding (or
withholding). Furthermore, in some anonymous environ-
ments, splitting an account into multiple ones might also be
problematic (Moulin 2008).

In this paper we first focus on hiding manipulations as
well as misreporting preferences, since they can be easily
done by only one agent without any side communication
with other agents. We say an exchange rule is strategyproof
if for every agent, reporting her true preference with reveal-
ing all her endowments (i.e., not hiding anything) to the rule
is a dominant strategy. The main objective of this paper is
to analyze the effect of such private ownership in exchange
economies with multiple endowments. More precisely, we
clarify how the space of possible exchanges by strategyproof
rules shrinks due to the lack of information on ownership.
One of the most closely related works to this paper is Atla-
maz and Klaus (2007), which also investigates the effect of
hiding manipulations. However, they only focus on hidings
and ignore any misreports of preferences.
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Our Results We investigate exchange problems with mul-
tiple private endowments. In our model an exchange rule is
strategyproof if, for each agent, reporting her true preference
with revealing all her endowments is a dominant strategy.
The definition implies individual rationality, since hiding all
endowments is equivalent to not participating. We prove that
the revelation principle holds under a natural assumption,
which is regarded as a variation of Yu’s result (Yu 2011).
We also show that strategyproofness and Pareto efficiency
are incompatible, even if we focus on a “smallest” prefer-
ence domain called the lexicographic preference domain.

We next introduce a class of exchange rules called the
agreement cycles rules. They are motivated from segmented
trading cycles rules (Pápai 2003), so that each of them is
defined based on a corresponding directed graph called a
one-for-one trading possibility graph. The performances of
these rules are fairly better than trivial strategyproof rules.
Under each preference domain, we provide a necessary and
sufficient condition on the structure of a one-for-one trading
possibility graph for the exchange rule to be strategyproof.
We also show that these rules are split-proof if and only if
they are strategyproof, where split-proofness requires that
for each agent, using only one identity is a dominant strat-
egy, even if it can use multiple identities and join an ex-
change rule multiple times under them.

Related Works The Shapley-Scarf housing market (Shap-
ley and Scarf 1974) has various applications, such as room-
mate problems and kidney exchanges. Ma (1994) charac-
terized TTC for the problem by strategyproofness, Pareto
efficiency, and individual rationality. Roth and Postlewaite
(1977) showed that it always chooses the unique core assign-
ment. A quite similar model is assignment problems (Pápai
2000), where there are no initial endowments and monetary
transfers are still not allowed.

A natural extension of the Shapley-Scarf model is one
where each agent is allowed to initially have multiple goods.
When at least one agent initially has more than one good, no
rule is strategyproof, Pareto efficient, and individually ra-
tional simultaneously (Sönmez 1999). Pápai (2007) intro-
duced fixed deal exchange rules, which also closely resem-
ble our proposed rules. The main difference is that, while in
her model one agent can join more than one deal, that is not
the case in ours. Since in our model an exchange rule cannot
observe the ownership information, making the whole mar-
ket a single fixed deal seems the only “consistent” way to
guarantee strategyproofness.

In mechanism design literature, variants of strategic ma-
nipulations have been studied. Atlamaz and Klaus (2007)
studied hidings in an exchange model and showed that
Pareto efficiency and hiding-proofness are incompatible for
additive preferences. Moulin (2008) studied splitting and
merging in task scheduling problems and provided an im-
possibility result where any deterministic scheduling proce-
dure is vulnerable to either splitting or merging. A similar
concept called false-name manipulations has been consid-
ered in several environments (Yokoo, Sakurai, and Matsub-
ara 2004; Aziz et al. 2011; Todo and Conitzer 2013).

Our Model
There is a set of agents N = {1, . . . , n} and a set of in-
divisible goods K in the world. Each agent i ∈ N is en-
dowed with a set of goods, or endowments, wi ⊂ K. Let
w = (wi)i∈N be an endowment distribution to N , satisfy-
ing
⋃

i∈N wi ⊆ K and wi ∩ wj = ∅ for any pair i, j ∈ N .
The endowment distribution is chosen, by nature, from the
setW of all possible endowment distributions.

Each agent i ∈ N has a linear ordering, or preference,
Ri, over the set of all possible bundles L ⊆ K. Let R
denote a set of all admissible preferences, or a preference
domain. Given Ri ∈ R and a pair L,L′ ⊆ K, let LRiL

′

denote that L is weakly preferred to L′ at Ri. We assume
preferences are strict, i.e., for any pair L,L′ 6= L, either
LPiL

′ or L′PiL, where Pi indicates the strict component of
Ri. Therefore, LRiL

′ but not LPiL
′ implies L = L′. We

also assume {k}Pi∅ for any i ∈ N , any Ri ∈ R, and any
k ∈ K. Let R = (Ri)i∈N denote a preference profile of N
and R−i = (Rj)j 6=i denote a preference profile of N \ {i}.

In summary, each agent i has two private information,
wi ⊂ K and Ri ∈ R. We refer to θi = (wi, Ri) ∈ Θw,i as
i’s type, where Θw,i denotes the set of all reportable types
of i when an endowment distribution w is chosen. More pre-
cisely, for a givenw, letW (w, i) denote the set of reportable
goods s.t.

⋃
i∈N W (w, i) = K,W (w, i)∩W (w, j) = ∅ for

any pair i, j ∈ N , and W (w, i) ⊇ wi for any i ∈ N 1. With
this notation, Θw,i := 2W (w,i)×R. Note that at this moment
there is no restriction on revealed goods ŵi of i, as long as
they are in W (w, i). Let θ ∈ Θw = ×i∈NΘw,i be a type
profile of N and θ−i = (θj)j 6=i ∈ Θw,−i be a type profile of
agents except i, where Θw,−i = ×j 6=iΘw,j .

We then formally define a set of possible assignments.
When a set of goods L ⊆ K is reported by agents, let XL

be a set of the possible assignments of goods to the agents,
s.t. any assignment x ∈ XL satisfies

⋃
i∈N xi = L and

xi ∩ xj = ∅ for any pair i, j ∈ N .
An exchange rule ϕ maps a reported type profile θ̂ =

(ŵi, R̂i) ∈ Θw into a possible assignment x ∈ Xŵ, where
ŵ =

⋃
i∈N ŵi. Here let ϕi(θ̂) be a set of goods assigned

to i by ϕ when agents report θ̂. Note that ϕ is a function
that reallocates all reported goods, rather than exactly owned
goods

⋃
i∈N wi, because it could not observe wi. Therefore,⋃

i∈N ϕi(θ̂) ⊃
⋃

i∈N wi might occur when some i reports
good k ∈ W (w, i) \ wi, while this possibility will be elimi-
nated by an assumption in the next section.

We now define some desirable properties considered in
this paper. Individual rationality requires that reporting the
true preference with revealing true endowments is never
worse than not participating.

Definition 1 (Individual Rationality). An exchange rule ϕ is
individually rational if ∀w ∈ W , ∀i ∈ N , ∀θ−i ∈ Θw,−i,
∀θi = (wi, Ri) ∈ Θw,i, ϕi(θi, θ−i)Riwi holds.

Strategyproofness is an incentive constraint for agents, re-
quiring that reporting a true preference with revealing true

1We need this to make each agent’s type space independent
from the reports of others.
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endowments is weakly better than misreporting her prefer-
ence or withholding a subset of endowments wi \ ŵi.
Definition 2 (Strategyproofness). An exchange rule ϕ is
strategyproof if ∀w ∈ W , ∀i ∈ N , ∀θ−i ∈ Θw,−i,
∀θi = (wi, Ri) ∈ Θw,i, ∀θ̂i = (ŵi, R̂i) ∈ Θw,i,
ϕi(θi, θ−i)Riϕi(θ̂i, θ−i) ∪ (wi \ ŵi) holds.

Note that ϕi(θ̂i, θ−i)∪ (wi \ ŵi) indicates the bundle that
i finally owns when she reports θ̂i. In our model, each agent
has an option to withhold all her endowments, which is es-
sentially equivalent to not participating. That is, an exchange
rule is individually rational if it is strategyproof.

To evaluate the performance of an exchange rule, it is nat-
ural to measure the quality, or the efficiency, of assignments
that can be produced by it. Pareto efficiency is one of the
most popular efficiency criteria.
Definition 3 (Pareto efficiency). An assignment y ∈ XL

Pareto dominates x ∈ XL if ∀i ∈ N , yiRixi, and ∃j ∈ N ,
yiPixi. An exchange rule ϕ is Pareto efficient if ∀w ∈ W ,
∀θ̂ ∈ Θw, any y ∈ Xŵ does not Pareto dominate ϕ(θ̂).

In this paper we focus on four domains of strict pref-
erences. First, we mention that for any Ri, we can define
w.l.o.g. a corresponding utility function ui : 2K → R s.t.
for any L,L′ ⊆ K, LPiL

′ if and only if ui(L) > ui(L
′).

Therefore, we define each preference domain,Rm,Rr,Ra,
and Rl, as a condition on ui. Note that they have inclusion
relations ofRm ) Rr ) Ra ) Rl.
Definition 4 (Monotonic Preferences). A monotonic prefer-
ence domainRm is the set of all possible preferences Ri s.t.
ui satisfies ∀L,L′ ⊆ K, L ⊃ L′⇒ ui(L) > ui(L

′).
Definition 5 (Responsive Preferences). A responsive prefer-
ence domain Rr is the set of all possible preferences Ri s.t.
ui satisfies ∀L ⊆ K, ∀k, k′ ∈ K ∪{∅} \L, ui(k) > ui(k

′)
⇒ ui(L ∪ {k}) > ui(L ∪ {k′}).
Definition 6 (Additive Preferences). An additive preference
domain Ra is the set of all possible preferences Ri s.t. ui
satisfies ∃vi : K → R s.t., ∀L ⊆ K, ui(L) =

∑
k∈L vi(k).

Definition 7 (Lexicographic Preferences). A lexicographic
preference domain Rl is the set of all possible preferences
Ri s.t. ui satisfies ∃vi : K �� {1, 2, . . . , 2K−1}, ∀L ⊆ K,
ui(L) =

∑
k∈L vi(k), where �� indicates a bijection.

In some real application fields of exchange economies,
each agent’s utility is sometimes determined almost exclu-
sively by the most preferred good among those she got. For
instance, in the housing market, each agent actually uses
only one house, while all of the other houses she receives
will give it a different amount of utility as real estate. Lexi-
cographic preferences reflect such situations.

When an agent decides an order over singletons, a lex-
icographic preference is uniquely determined without any
additional information. Moreover, if an agent does not have
such an order, no full strict preference can be produced due
to the lack of information. That is, the lexicographic pref-
erence domain is a “smallest” domain of strict preferences.
In this point, it is worth discussing exchange problems un-
der lexicographic preference domain, from the perspective
of finding a “price of strict preferences.”

The Revelation Principle
The revelation principle guarantees that focusing on strate-
gyproof exchange rules is sufficient, when we are only inter-
ested in market with dominant strategy equilibria. However,
in our exchange model with private endowments, the revela-
tion principle does not always hold. The following indirect
mechanism gives a counter example:
Example 1. Each agent brings her endowments to a mar-
ket. If someone brings a pre-specified good, say α ∈ K, the
market runs an (strategyproof) exchange rule to trade goods
except for α, by asking agents for their preferences. Other-
wise, do nothing and return all goods to their owners.

The mechanism has a dominant-strategy equilibrium:
each agent first brings all her endowments to the market
and, if asked by the mechanism, reports her true preference.
However, we cannot truthfully implement the outcome by an
exchange rule when agents can report endowments that they
do not initially own. E.g., when no agent initially owns such
α, an agent i s.t. α ∈W (w, i) \wi would reveal α as one of
her endowments and make the trade processed. This is not
strategyproof, and the revelation principle fails.

To fix the failure of the revelation principle, we introduce
the following assumption.
Assumption 1. No agent can reveal any good that she does
not initially own. Formally, ∀w ∈ W , ∀i ∈ N , ∀θi =
(wi, Ri) ∈ Θw,i, let M(θi) ⊆ Θw,i be the set of all re-
portable types θ̂i = (ŵi, R̂i). Then ∀θ̂i ∈M(θi), ŵi ⊆ wi.

In such actual markets as eBay and Amazon.com, that as-
sumption is almost satisfied; sellers are often asked to upload
photos of their items. Under this policy, it is slightly more
difficult for sellers to offer an item that they do not have.

We call such a mappingM a misreport restriction system.
When an exchange rule has a misreport restriction system,
the strategyproofness condition is drastically weakened:
Definition 8. An exchange rule ϕ with a misreport re-
striction system M is strategyproof if ∀w ∈ W , ∀i ∈
N , ∀θ−i ∈ Θw,−i, ∀θi ∈ Θw,i, ∀θ̂i ∈ M(θi),
ϕ(θi, θ−i)Riϕi(θ̂i, θ−i) ∪ (wi \ ŵi) holds.

Consider an exchange rule ϕ as direct revelation mech-
anism, which has a misreport restriction system M satis-
fying Assumption 1. Let Γ = (S1, . . . ,Sn, g) be an indi-
rect mechanism s.t. each i has a strategy space Si(·) that
varies based on her true type θi, and goods are assigned to
agents by an outcome function g : ×i∈NSi → X . In our
exchange model, let gi(s) be the assignment to i under the
indirect mechanism Γ when agents play a strategy profile
s ∈ ×i∈NSi. We say an indirect mechanism Γ implements
an exchange rule ϕ if there exists a dominant strategy equi-
librium s∗(θ) = (s∗i )i∈N s.t. ∀w ∈ W , ∀θ ∈ Θw, ∀i ∈ N ,
gi(s

∗(θ)) = ϕi(θ). The following is the revelation principle
for our model with private endowments.
Theorem 1 (Revelation Principle). Suppose that an ex-
change rule ϕ with a misreport restriction system M sat-
isfying Assumption 1 is implemented by an indirect mecha-
nism Γ = (S1, . . . ,Sn, g). satisfying ∀i ∈ N , ∀θi ∈ Θw,i,
∀θ̂i ∈M(θi), Si(θ̂i) ⊆ Si(θi). Then ϕ is strategyproof.
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The proof is omitted since it is straightforward from the
original proof of the traditional revelation principle, see e.g.
Chapter 23 in (Mas-Colell, Whinston, and Green 1995). In
what follows we assume that exchange rules have such mis-
report restriction system M satisfying Assumption 1 and
thus use the new definition of strategyproofness. Also, we
can assume w.l.o.g. that for any w ∈ W ,

⋃
i∈N wi = K.

Impossibility
In this section we show that although Assumption 1 makes
the revelation principle hold, no exchange rule satisfies strat-
egyproofness and Pareto efficiency.
Proposition 1. Under the lexicographic preference domain,
there exists no exchange rule that satisfies strategyproofness
and Pareto efficiency.

Proof. Consider N = {1, 2}, K = {α, β, γ}, (w1, w2) =
(αβ, γ), andR1, R2 defined by the following orders overK:

R1 : γ � α � β
R2 : α � β � γ

If both report truthfully, a strategyproof and Pareto efficient
rule returns (αγ, β), (βγ, α), or (γ, αβ). If (αγ, β) occurs,
consider a misreport R̂2 : α � γ � β by agent 2. Then pos-
sible assignments become (βγ, α) and (γ, αβ), and agent 2
gets higher utility than only receiving β from both assign-
ments. If either (βγ, α) or (γ, αβ) occurs, consider a misre-
port R̂1 : α � γ � β by agent 1. The only possible assign-
ment is (αγ, β), which increases agent 1’s utility.

To show the tightness of the impossibility result, we ar-
gue that if we ignore either of these two properties, we can
design an exchange rule that satisfies the other property. A
dictatorship rule, which gives all goods brought to the mar-
ket to an agent for any report, is Pareto efficient. However,
it obviously violates individual rationality, and thus violates
strategyproofness. On the other hand, A no-trade rule, which
does not process any trade on the market for any report, is
strategyproof but not Pareto efficient.

It might still be worth mentioning that when preferences
do not need to be strict, there might be a preference do-
main under which some rules satisfy both properties, even
if ownership is private. For example, when all the goods are
identical and the preferences are additive, then the initial en-
dowments are also Pareto efficient. Thus, the no-trade rule
satisfies both strategyproofness and Pareto efficiency.

Note that in the proof above, no hiding manipulation is
considered, except for deriving individual rationality. There-
fore, the result has the following strong implication: even
when the ownership of goods is publicly observable (as well
as many other works such as Sönmez (1999) and Pápai
(2003)), strategyproofness, individual rationality, and Pareto
efficiency cannot be satisfied simultaneously under a lexico-
graphic preference domain. In other words, focusing on lex-
icographic preferences does not help much. Furthermore, as
we mentioned before, the lexicographic preference domain
is the smallest strict preference domain. This implies that in
multiple endowment environments with strict preferences,
no exchange rule simultaneously satisfies those properties.

Strategyproof Exchange Rules
Pápai (2003) introduced the notion of trading possibility
graphs, which can be regarded as a proposal of trades by
an exchange rule to agents. We basically follow the con-
cept, and introduce additional restrictions to guarantee strat-
egyproofness for our model with private ownership.
Definition 9 (One-for-One Trading Possibility Graph). Let
G = (K,E) be a directed graph s.t. each node k ∈ K cor-
responds to each good.G is a one-for-one trading possibility
graph if for each node, indegree and outdegree are one.

Each k ∈ K is included in exactly one cycle (if we con-
sider a self-loop a cycle). For given one-for-one trading pos-
sibility graphG and good k ∈ K, let c(G, k) ⊆ E be a cycle
containing k, and let k ∈ cmean that cycle c contains k. The
length of cycle c is given as the number of nodes in c, i.e.,
|c| = #{k|k ∈ c}. Furthermore, let C(G) be the set of all
cycles in G, i.e., C(G) = {c(G, k)|k ∈ K}.

Let us introduce the relationship between revealed goods
ŵ and graph G. For given graph G and cycle c ∈ C(G), let
I(G, c) be the set of agents in cycle c, i.e., I(G, c) := {i ∈
N |∃k′ ∈ ŵi s.t. k′ ∈ c}. Also, for given graph G, cycle
c ∈ C(G), and reported goods ŵi of agent i, let ŵi,c be the
set of goods that are revealed by i and contained in c, i.e.,
ŵi,c := {k ∈ ŵi|k ∈ c}. From the definition of one-for-one
trading possibility graph, ŵi =

⋃
c∈C(G) ŵi,c.

Let p(G, k) be the good k′ ∈ K pointed to by k in
given one-for-one trading possibility graph G. Formally,
p(G, k) = k′ s.t. (k, k′) ∈ E. By definition, such a good
uniquely exists. For given G and L ⊆ K, let p(G,L) be the
set of goods pointed to by L, i.e., p(G,L) :=

⋃
k∈L p(G, k).

When its meaning is obvious from the context, we respec-
tively denote c(G, k), p(G, k), p(G,L), and I(G, c) as c(k),
p(k), p(L), and I(c) for notation simplicity.

There is one main difference with the original trading
possibilities graph proposed by Pápai (2003). Since in our
model an exchange rule cannot observe the exact ownership,
the one-for-one trading possibility graph cannot always sat-
isfy the requirement of (Pápai 2003) that all goods contained
in a cycle are endowed with different agents. The require-
ment plays an important role in the original paper to guar-
antee strategyproofness under the responsive preference do-
main. Therefore, even focusing on responsive preferences,
we need to add modifications to Pápai’s result (2003).

Unanimous Agreement Rules
In general resource allocations, a trivial way to guarantee
strategyproofness is to recommend a pre-specified solution
for them and return it as the outcome when all agents accept
it. Utilizing the one-for-one trading possibility graph, we can
implement this idea as a class of exchange rules.
Definition 10 (Unanimous Agreement Rule). An exchange
rule ϕ is a unanimous agreement rule if there exists a pre-
defined one-for-one trading possibility graph G s.t. ∀w ∈
W , ∀θ̂ = (ŵ, R̂) ∈ Θw, ∀i ∈ N ,

ϕi(θ̂) =


p(ŵi) if

[
∀k′ ∈ K, p(k′) 6= k′ ⇒ k′ ∈ ŵ

]
∧
[
∀i ∈ N, p(ŵi)Piŵi

]
wi otherwise.
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In words, when there exists a cycle with length of more
than one in G, the rule requires that all goods in the cycle
must be revealed by agents; otherwise no trade is done and
they receive the status quo. Therefore, the range of any unan-
imous agreement rule is at most two.

For any one-for-one trading possibility graph G, we can
define a unanimous agreement rule. One extreme example
in the class is the no-trade rule, which is obtained by setting
G = (K,E) s.t. ∀k ∈ K, (k, k) ∈ E, i.e., no cycle longer
than one exists. We can guarantee strategyproofness for any
G, even under the monotonic preference domain.
Theorem 2. Under the monotonic preference domain, any
unanimous agreement rule is strategyproof.

Proof Sketch. Intuitively, for each i, the rule recommends
two bundles p(wi) and wi when it reveals all the endow-
ments. The former is accepted only when i prefers it un-
der the reported preferenceRi. Therefore, misreports are not
beneficial. Even if an agent hides some of her endowments,
the rule never recommends any different assignment.

Agreement Cycles Rules
Because of the requirement of a unanimous agreement on a
trade proposed by the rule, the range of a unanimous agree-
ment rule contains at most two assignments, causing a much
loss of efficiency. To avoid this negative result, we intro-
duce another class of strategyproof exchange rules that uti-
lize the corresponding one-for-one trading possibility graphs
in a better way under specific preference domains. Namely,
they allow independent decision making for different cycles.
Definition 11 (Trade via Cycles). Given one-for-one trad-
ing possibility graph G, cycle c ∈ C(G), set of reported
goods ŵ =

⋃
i∈N ŵi, reported preference profile R̂, and

agent i ∈ N , let τi,c(G, ŵ, R̂) be the set of goods traded
with ŵi,c through cycle c in the graph G. More precisely,

τi,c(G, ŵ, R̂) =


p(ŵi) if

[
k′ ∈ c⇒ k′ ∈ ŵ

]
∧
[
∀j ∈ I(c), p(ŵj,c)Pjŵj,c

]
ŵi otherwise.

Definition 12 (Agreement Cycles Rule). An exchange rule
ϕ is an agreement cycles rule if there is a pre-defined one-
for-one trading possibility graph G s.t. ∀w ∈ W , ∀θ̂ =

(ŵ, R̂) ∈ Θw, ∀i ∈ N , ϕi(θ̂) =
⋃

c∈C(G) τi,c(G, ŵ, R̂).

This is an extension of the unanimous agreement rules.
Indeed, when the number of cycles longer than one in G is
less than two, i.e., every vertex pointing to another one is
included in one big cycle, then it is also represented as an
unanimous agreement rule.

We provide more conditions on one-for-one trading possi-
bility graph G for the agreement cycles rules to satisfy strat-
egyproofness. We first show that under the additive pref-
erence domain, any agreement cycles rule satisfies strat-
egyproofness regardless of the structure of corresponding
one-for-one trading possibility graph G.
Theorem 3 (Additive Preferences). Under the additive pref-
erence domain, an agreement cycles rule with any one-for-
one trading possibility graph is strategyproof.

Proof Sketch. We can observe that under the additive pref-
erence domain, an exchange rule is strategyproof if and only
if it is robust against each of misreporting preferences and
hiding endowments, respectively. From the definition of the
agreement cycles rules, a decision on a cycle c is indepen-
dently determined from the decisions on other cycles. Since
the preferences are additive, it suffices to show that, for each
cycle c ∈ C(G), an agent cannot get a preferable bundle by
both misreporting preferences and hiding endowments.

Misreporting preferences never raises an agent’s utility
on a cycle, since the rule only recommends two bundles,
p(ŵi,c) and ŵi,c, to an agent on it, and reporting true pref-
erence Ri always chooses the preferred one. Nor is hiding
endowments helpful, since it only reduces the chance that a
preferred bundle is chosen on each cycle.

It is somewhat obvious that under the additive preference
domains, truth-telling is the best choice, since these pref-
erences have no super-additive synergies. However, when
agents have such synergies, independent decisions for dif-
ferent cycles will give them the incentive to manipulate.
We first show that under the responsive preference domain,
truth-telling is not always the best choice when two initial
endowments are traded via a cycle for two different goods.
Theorem 4 (Responsive Preferences). Under the responsive
preference domain, an agreement cycles rule with one-for-
one trading possibility graph G is strategyproof iff[
6 ∃c ∈ C(G) s.t., |c| > 3

]
∨
[
∃c ∈ C(G) s.t., |c| = |K|

]
.

Proof. We first show the if part. When the second condition
is satisfied, the rule coincides with a unanimous agreement
rule and satisfies strategyproofness. Consider the other case,
i.e., the length of each cycle in G is always at most three.

For given such graph G, for each cycle c ∈ C(G) and for
each agent i ∈ I(c), at most one good is traded via cycle c,
even when |c| = 3 and |ŵi,c| = 2. Because, in that case, one
of the two goods is certainly returned to her. Also, at each
cycle c, a truth report θi gives the agent the better bundle
between p(c, wi) and wi under her true preference.

When we fix decisions on all other cycles c′ ∈ C(G), get-
ting the better bundle on c, which has at most one good dif-
ferent with the other choice on c, never reduces the agent’s
utility from responsiveness. By repeatedly applying this, we
can see that a truth report is a dominant strategy.

For the only if part, consider graph G = (K,E) s.t. K =
{α, β, γ, δ, ε} and E = {(α, α), (β, γ), (γ, δ), (δ, ε), (ε, β}
(Fig. 1 (a)), which violates both conditions above. Note that
any one-for-one trading possibility graph violating both of
the conditions has the same (or a quite similar) structure
as Fig. 1 (a), so focusing on the graph G is without loss
of generality. Let us consider the case where N = {1, 2},
(w1, w2) = (αβδ, γε) and R1, R2 ∈ Rr satisfy:

R1 : · · · � αβδ � · · · � αγε � · · · � γε � · · · � βδ � · · ·
R2 : · · · � βδ � · · · � γε � · · ·

Preference R1 is not additive, but it is still responsive.
When both agents truthfully report their preferences with

revealing all their endowments, a trade via the cycle c is pro-
cessed, which gives a bundleαγε to agent 1. This violates in-
dividual rationality, and thus violates strategyproofness.
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Figure 1: Examples of one-for-one trading possibility graphs
violating strategyproofness underRr andRm respectively

In other words, due to the existence of super-additive syn-
ergies between a good and a bundle of size more than one,
between α and βδ in the above example, on a responsive
preference, an independent decision on a cycle (without re-
garding other cycles) might decrease an agent’s utility.

The next example shows that when we consider the mono-
tonic preference domain, any combination of independent
decisions could give agents the incentive to manipulate.
Theorem 5 (Monotonic Preferences). Under the monotonic
preference domain, an agreement cycles rule with one-for-
one trading possibility graph G is strategyproof iff[
6 ∃c ∈ C(G) s.t., |c| > 1

]
∨
[
∃c ∈ C(G) s.t., |c| = |K|

]
.

Proof. The if part is proven from the fact that when G satis-
fies either of the conditions, the rule coincides with a unani-
mous agreement rule with identical graph G.

To show the only if part, consider graph G = (K,E) s.t.
K = {α, β, γ} and E = {(α, α), (β, γ), (γ, β)} (see Fig. 1
(b)), which violates both above conditions. Note that any
one-for-one trading possibility graph violating both condi-
tions has the same structure as Fig. 1 (b), so focusing on the
graph G is without loss of generality. Consider N = {1, 2},
(w1, w2) = (αβ, γ), and R1, R2 ∈ Rm satisfy:

R1 : · · · � αβ � αγ � · · · � γ � β � · · ·
R2 : · · · � β � γ � · · · .

Preference R1 is not responsive, but it is still monotone.
When both truthfully report their preferences with reveal-

ing all their endowments, a trade via the cycle proceeds,
which gives a bundle αγ to agent 1. This violates individ-
ual rationality and thus violates strategyproofness. Almost
the same discussion appears in Pápai (2007).

Robustness to Splitting
One of the real application fields in which the ownership
of goods is private is an exchange economy on the Inter-
net. In such environments, however, since the possibilities
of different kinds of manipulations have been pointed out,
guaranteeing strategyproofness is sometimes not sufficient.
For instance, an agent may split her endowments into two
bundles and participate in a market under two identities,
one of which is fake, e.g., under different email accounts.
In this section we show that our proposed exchange rules
are also split-proof, meaning that no agent has an incentive
to split her endowments into multiple bundles or misreports
her preference whenever they are strategyproof.

Note that even under the monotonic preference domain,
the unanimous agreement rules are not the only strate-
gyproof ones. For example, consider the following rule: first
separate agents into parties, and propose for each party a
trade (or a deal) based on the reports of agents outside of
the party. This is obviously strategyproof, but it cannot be
represented as any unanimous agreement rule. Pápai (2003,
2007) designed strategyproof rules that utilize the knowl-
edge of the ownership of goods to propose trades to agents.

However, when ownership is private and agents might cre-
ate fakes, there is almost no way to propose trades without
being affected by agents’ strategies. Indeed, the above ex-
ample is not robust against splitting (Moulin 2008); there is
a chance that an agent’s fake is in a different party from her
true identity. Such an agent might benefit by misreporting
under the fake to change a proposal to her original party.

The following is the main result of this section. We omit
the formal definition of split-proofness and a detailed proof
due to space limitations, but we believe readers can easily
understand the underlying intuition.
Theorem 6. Any unanimous agreement rule is split-proof
under the monotonic preference domain. Also, any agree-
ment cycles rule is split-proof under any preference domain
under which it is strategyproof.

Proof Sketch. Any unanimous agreement rule is obviously
split-proof, since for each agent, a possible assignment is ei-
ther her initial endowments or the one proposed by the one-
for-one trading possibility graph, regardless of her splitting.

This is also true for each cycle in agreement cycles rules.
Furthermore, since each agent originally has the right to
make independent decisions on different cycles via misre-
porting preferences, splitting is not more powerful than only
misreporting preferences. Thus, an agreement cycles rule is
split-proof whenever it is strategyproof.

Conclusions
In this paper we studied the effect of private ownership in ex-
change economies with multiple goods. We presented two
fundamental results on strategyproof exchange rules; the
revelation principle holds under a natural assumption, and
even under the lexicographic preference domain, Pareto effi-
ciency and strategyproofness are incompatible. We then pro-
posed agreement cycles rules, which perform slightly bet-
ter than trivial strategyproof rules under more restricted do-
mains. All of these rules are also split-proof in a stronger
sense that split manipulations are assumed to be costless.

Our exchange model remains quite simple due to the lack
of indifferences/incomparability/unacceptability in the pref-
erences. Extending it to such richer preferences is a natural
research direction. It seems also interesting to design ran-
domized rules (Ashlagi et al. 2010) with higher social wel-
fare. Finally, even though we focused on strategyproofness,
we are also ineterested in studying Pareto efficient rules that
are computationally hard to manipulate (Pini et al. 2011).
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