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Abstract
Individual rationality, Pareto efficiency, and strategy-
proofness are crucial properties of decision making
functions, or mechanisms, in social choice literatures.
In this paper we investigate mechanisms for exchange
models where each agent is initially endowed with a set
of goods and may have indifferences on distinct bun-
dles of goods, and monetary transfers are not allowed.
Sönmez (1999) showed that in such models, those three
properties are not compatible in general. The impossi-
bility, however, only holds under an assumption on pref-
erence domains. The main purpose of this paper is to
discuss the compatibility of those three properties when
the assumption does not hold. We first establish a prefer-
ence domain called top-only preferences, which violates
the assumption, and develop a class of exchange mecha-
nisms that satisfy all those properties. Each mechanism
in the class utilizes one instance of the mechanisms in-
troduced by Saban and Sethuraman (2013). We also find
a class of preference domains calledm-chotomous pref-
erences, where the assumption fails and these properties
are incompatible.

1 Introduction
The housing market problem (Shapley and Scarf 1974) is a
fundamental exchange model where each agent is initially
endowed with an indivisible good, say a house, and mon-
etary transfers are not allowed. When agents’ preferences
over the goods are strict, Gale’s top-trading-cycles (TTC)
algorithm returns a unique core. Furthermore, an exchange
mechanism based on the TTC algorithm is the only one
that satisfies three desirable properties; individual rational-
ity, Pareto efficiency, and strategy-proofness (Ma 1994).

Considering the multiple endowment of agents is a natu-
ral extension of the housing market problem. Since agents
can have complicated preferences for the situations, design-
ing Pareto efficient exchange mechanisms is not straightfor-
ward in the model. Pápai (2003) proposed a class of ex-
change mechanisms that satisfy individual rationality and
strategy-proofness along with a weaker notion of efficiency.
Konishi, Quint, and Wako (2001) dealt with a model where
there is more than one type of goods, say houses and cars,
and showed that the core may be empty in their model.
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Introducing indifferences in agents’ preferences is an-
other extension. In realistic exchange models, agents’ pref-
erences over goods are not always strict, that is, some
agent may be indifferent about getting one of two distinct
bundles of goods. Concerning the existence of such indif-
ferences, much progress has been made in the past half
decade (Alcalde-Unzu and Molis 2011; Jaramillo and Man-
junath 2012; Aziz and de Keijzer 2012; Plaxton 2013). Par-
ticularly, Saban and Sethuraman (2013) provided a class of
exchange mechanisms that satisfy all three properties.

In this paper, we investigate an exchange model where
each agent initially owns multiple indivisible goods and
agents’ preferences contain indifferences; i.e., we consider
both of these two extensions together. Our main objective is
to discuss the compatibility of individual rationality, Pareto
efficiency, and strategy-proofness for our model. To the best
of our knowledge, there has been very little research deal-
ing with this model, even though it can reflect many realistic
trading situations.

Sönmez (1999) is one notable work whose situation
closely resembles ours. His elegant characterization of the
relationships between preference structures and the core im-
plies that, when at least one agent has more than one good,
the above three properties are not compatible in general.
This impossibility result, however, crucially depends on an
assumption that for every agent, any bundle distinct from its
initial endowment is either strictly better or strictly worse
than the initial endowment under her preference. Therefore,
a broad class of preference domains remains where the as-
sumption does not hold, and thus it has not been clarified
whether these three properties are compatible.

Our results complement the findings of Sönmez (1999).
We establish a domain of agents’ preferences called top-only
preferences that actually violates the assumption on prefer-
ences. We show that under the domain, these three proper-
ties are compatible, i.e., there is an exchange mechanism
that is individually rational, Pareto efficient, and strategy-
proof. Indeed, we propose a class of such exchange mecha-
nisms based on Saban and Sethuraman (2013), and to guar-
antee Pareto efficiency we need to implement an appropriate
demand update scheme. We also find a class of preference
domains called m-chotomous preferences, under which the
three properties cannot be simultaneously satisfied by any
exchange mechanism.
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2 Preliminaries
Let N be the set of n agents and K be the set of indivisible
goods in a market. Each agent i ∈ N is initially endowed
with subset wi ⊆ K of indivisible goods, or an endowment.
Assume that goods are heterogeneous, i.e., wi ∩ wj = ∅
for any pair i, j(6= i) ∈ N , and

⋃
i∈N wi = K. Let w =

(wi)i∈N denote an endowment distribution to N .
LetXN denote the set of all feasible assignments of goods

K to agents N . Assignment x ∈ XN is feasible if it is a
distribution of K to N , i.e., xi ∩ xj = ∅ for any i, j(6=
i) ∈ N and

⋃
i∈N xi = K, where xi is a bundle assigned

to agent i under x. Note that any endowment distribution
w is regarded as an assignment, and the set of all possible
endowment distributions coincides with XN .

Each agent i also has preference relationRi over the set of
all possible subsets of K. We assume Ri is complete, tran-
sitive, and reflexive. For any pair of two subsets L,L′ ⊆ K,
LRiL

′ means that L is weakly preferred to L′ under prefer-
ence Ri. Let Pi and Ii respectively indicate the strict and in-
different components of Ri, so that for any pair L,L′ ⊆ K,
LRiL

′ means either LPiL
′ or LIiL′. Let R indicate the set

of all possible preferences. Let R = (Ri)i∈N ∈ Rn denote
a preference profile of agents N , and R−i = (Rj)j 6=i ∈
Rn−1 denote a preference profile of agents excluding i.

Now we formally define exchange mechanisms. Exchange
mechanism ϕ : XN × Rn → XN assigns feasible assign-
ment ϕ(w,R) to each pair (w,R) of endowment distribu-
tionw and preference profileR, where ϕi(w,R) denotes the
bundle assigned to agent i by exchange mechanism ϕ under
assignment ϕ(w,R).
Definition 1 (Individual Rationality). Under endowment
distribution w ∈ XN , assignment x ∈ XN is individually
rational if xiRiwi holds for any i ∈ N . Exchange mecha-
nism ϕ is individually rational (IR) if ∀w ∈ XN , ∀R ∈ Rn,
ϕ(w,R) is individually rational under w.

In other words, for every agent, participating the exchange
mechanism is better than not participating as long as she re-
ports her preference truthfully. Under an IR exchange mech-
anism, every agent has a natural incentive to participate.
Definition 2 (Pareto Efficiency). Assignment y ∈ XN

Pareto dominates another x ∈ XN at preference profile R if
∀i ∈ N , yiRixi, and ∃j ∈ N , yjPjxj . Exchange rule ϕ is
Pareto efficient (PE) if ∀w ∈ XN , ∀R ∈ Rn, any y ∈ XN

does not Pareto dominate ϕ(w,R) at R.
A Pareto efficient exchange mechanism is “optimal” in

the sense that it is impossible to make any agent better off
without making at least one agent worse off. When assign-
ment y ∈ XN Pareto dominates another assignment x ∈ XN

at R, we represent the relation as y ⇀R x.
Definition 3 (Strategy-proofness). Exchange rule ϕ is
strategy-proof (SP) if ∀w ∈ XN , ∀R ∈ Rn, ∀i ∈ N ,
∀R′i ∈ R, it holds that ϕi(w,R)Riϕi(w, (R

′
i, R−i)).

Under an SP exchange mechanism, for every agent, re-
porting her true preference is a dominant strategy. Further-
more, from the revelation principle, focusing on SP ex-
change mechanisms is without loss of generality if we are
only interested in markets with dominant strategy equilibria.

strongly connected component

sink
terminal-sink

Figure 1: Terminal-sink in directed graph

3 Related Works
Housing Market Problem: The housing market prob-
lem (Shapley and Scarf 1974) is represented as setting
|K| = n and |wi| = 1 for any i ∈ N . In housing mar-
ket problem, agents’ preferences are usually assumed to be
strict, such that for any two distinct bundles, L,L′(6= L) ⊆
K, and any preference Ri, either LPiL

′ or L′PiL holds.
It has been known that Gale’s top-trading-cycles algorithm
(TTC) always returns the unique core assignment. Further-
more, Ma (1994) showed that TTC is the only exchange
mechanism that is simultaneously IR, PE, and SP for the
housing market problem.

Impossibility for Multiple Goods: Sönmez (1999) ex-
tended the housing market problem to more general situa-
tions where each agent’s initial endowment is not restricted
to a single good, which is called indivisible goods exchange.
In the paper he introduced the following assumption on
agents’ preferences:

Assumption 1 (Assumption A (Sönmez 1999)). Given w ∈
XN , for any i ∈ N , any Ri ∈ R, and any x ∈ XN , xiIiwi

if and only if xi = wi.

In other words, an agent is indifferent between an assign-
ment and her initial endowment if and only if she keeps her
initial endowment. For example, the assumption holds when
all preferences are strict, e.g., the housing market problem.
Sönmez showed that under Assumption 1 (and another rich-
ness assumption), there exists no exchange mechanism that
is IR, PE, and SP when |K| > n holds, i.e., when at least
one agent is endowed with more than one good. However,
the existence of such mechanisms satisfying IR, PE, and SP
has not been clarified under preference domains where As-
sumption 1 does not hold.

Preferences with Indifferences: In the last half decade,
many researches have dealt with a modified housing market
problem where agents’ preferences can have indifferences.
Their main research interest is to construct exchange mech-
anisms that satisfy all three properties. Saban and Sethura-
man (2013) proposed a class of exchange mechanisms that
satisfy IR and PE. Their class contains many previously pro-
posed mechanisms, such as top-cycles-rule (Jaramillo and
Manjunath 2012) and top trading absorbing sets (Alcalde-
Unzu and Molis 2011). Furthermore, they show a condition
called local invariance, which is a necessary and sufficient
condition for those mechanisms to be SP.
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4 Proposed Mechanisms
Our objective in this paper is to discuss preference structures
under which the above three properties can be simultane-
ously satisfied, instead of developing new exchange mecha-
nisms. However, the most natural and direct way to show the
compatibility is to develop such mechanisms. Therefore, in
this section we propose a new class of exchange mechanisms
for our exchange model with multiple goods. The basic idea
is natural; each agent i ∈ N is replaced by |wi| atomic
agents {ik|k ∈ wi}, each of which is endowed with good
k ∈ wi and agent i’s preferenceRi. Now that the augmented
market is a housing market problem with indifferences, run
the IR, PE, and SP exchange mechanism proposed by Saban
and Sethuraman (2013). Note that, since agents (not atomic
agents) may have more than one good in this model, each
agent’s demand must be appropriately updated during the
algorithm.

We next introduce some terms for directed graphs. A di-
rected graph is strongly connected if there is a path from
each node in the graph to every other node. The strongly
connected components of a directed graph are its maximal
strongly connected subgraphs. Strongly connected compo-
nent S is a sink if all the neighbors of each node in S are
also in S. A sink is a terminal-sink if all the nodes in it have
an edge pointing to themselves. In Fig. 1, all the components
circled by dotted lines are strongly connected, and the right-
most one is the only terminal-sink.

We also briefly describe three functions TTC-GRAPH,
TERMINAL-SINK, and CYCLE. Given a pair of a set N ′
of agents and a profile T = (Ti)i∈N ∈ (2K)n of bundles,
TTC-GRAPH returns directed graph G constructed from N ′

and T . Formally, for every remaining atomic agent ik ∈ N ′
and for each atomic agent i′k′ currently assigned one good
from Ti, add an edge from node ik to node i′k′ to graph G.
For a given G, TERMINAL-SINK returns a set of nodes that
are in a terminal-sink in G. For a given G, CYCLE returns a
set of all edges that are in a cycle in G.

Now we are ready to describe our proposed mechanisms,
whose formal description is given in Algorithm 1. At lines
2–8, each agent i is replaced by |wi| atomic agents {ik|k ∈
wi}, where N ′ indicates the set of all atomic agents. Lines
9–25 basically correspond to the procedure of the mecha-
nisms proposed by Saban and Sethuraman (2013), except
for lines 16–18. At line 9, the loop terminates if N ′ = ∅,
and go to line 26. Otherwise, at line 10, directed graph G is
constructed by the TTC-GRAPH function for given N ′ and
T . At lines 13–14, for each terminal-sink found in the graph,
each atomic agent ik is removed from the market, with the
good ωik currently assigned to it. Each atomic agent that
is still in the market updates its demand by the UPDATE-
TOPS function, and directed graph G is re-drawn at lines
16–19, and re-run TERMINAL-SINK. At line 21, for each
node (atomic agent), the F -RULE chooses only one outgo-
ing edge in some manner. At lines 22–24, each atomic agent
ik that is included in a cycle is assigned good ω′i′

k′
to which

she is currently pointing, and go to line 9. At line 26, each
agent i ∈ N is given set of goods φi =

⋃
k∈wi

ωik that were
removed from the market with its atomic agents.

Algorithm 1 New Trading Family
Input: N,K,w,R
Output: ϕ = (ϕi)i∈N

1: N ′ ← ∅, K ′ ← K
2: for i ∈ N do
3: φi ← ∅
4: Ti ← UPDATE-TOPS(Ri, φi,K

′)
5: for k ∈ wi do
6: N ′ ← N ′ ∪ {ik}, ωik ← k
7: end for
8: end for
9: while N ′ 6= ∅ do

10: G← TTC-GRAPH(N ′, T )
11: while TERMINAL-SINK(G) 6= ∅ do
12: for ik ∈ TERMINAL-SINK(G) do
13: φi ← φi ∪ {ωik}
14: N ′ ← N ′ \ {ik}, K ′ ← K ′ \ {ωik}
15: end for
16: for i ∈ N do
17: Ti ← UPDATE-TOPS(Ri, φi,K

′)
18: end for
19: G← TTC-GRAPH(N ′, T )
20: end while
21: G← F -RULE(G), ω′ ← ω
22: for (ik, i

′
k′) ∈ CYCLE(G) do

23: ωik ← ω′i′
k′

24: end for
25: end while
26: return ϕ = (φi)i∈N

Now we introduce the UPDATE-TOPS function, which is
one key feature of our proposed mechanisms. When an agent
has more than one good as her endowment, her demand
varies during the algorithm based on the bundles she has ob-
tained so far; “I still want good a since I’ve never gotten any-
thing” and “I no longer want a because I just got another b.”
To guarantee Pareto efficiency, UPDATE-TOPS(Ri, φi,K

′)
prescribes the set of goods agent i currently wants among
remaining goods K ′, under her preference Ri and the bun-
dle φi she has gotten so far. Its formal description, which de-
pends on the structure of preference domains, will be given
in the following sections.
F -RULE is a “tie-breaking” scheme that chooses only one

good from given set Ti. As previously discussed (Saban and
Sethuraman 2013), F -RULE must be determined carefully
so that the algorithm eventually terminates and strategy-
proofness holds. To make the description in this paper self-
contained, we decided to use an F -RULE originally used in
the top trading absorbing sets (TTAS) mechanism (Alcalde-
Unzu and Molis 2011).

A priority ordering over K is given. For each atomic
agent ik, choose good g ∈ Ti with the highest priority
that has not been assigned yet to ik. If all goods in Ti
have been assigned to it at least m times, choose the
good with highest priority among those that have not
been assigned to her m+ 1 times yet.
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5 Top-Only Preferences
In this section we establish a preference domain called the
top-only preference domain, where our proposed mecha-
nisms are IR, PE, and SP.
Definition 4 (Top-Only Preferences). The top-only prefer-
ence domain RT is the set of all possible preferences Ri

satisfying that there is strict ordering �i of K s.t. for any
pair L,L′ ⊆ K, (i) LPiL

′ iff either t(�i, L) �i t(�i, L
′)

holds or t(�i, L) = t(�i, L
′) and |L| > |L′| hold, and (ii)

LIiL
′ iff t(�i, L) = t(�i, L

′) and |L| = |L′| hold, where
t(�i, L) denote the most preferred good in L under �i.

Intuitively, when agent i gets L ⊆ K, her utility is
solely determined by the most preferred good among L, i.e.,
t(�i, L). However, every other good also gives her a fixed
amount of utility. For example, consider a situation where
you have three tickets for different movies, all of which are
scheduled to be shown from 6pm to 9pm on the same night.
Since you can just use one, you choose the most interesting
movie. At the cinema’s box office, you get a refund for the
other two tickets, each of which will give you a fixed amount
of money.

The UPDATE-TOPS function of our proposed mechanisms
for the top-only preference domain is formalized as follows:

UPDATE-TOPS(Ri, φi,K
′) =

{
{t(�i,K

′)} if φi = ∅,
K ′ otherwise.

At each round of the algorithm, it returns (i) the most pre-
ferred good among all the remaining ones until the agent
receives something, and (ii) all remaining goods after she
receives something. Actually, each agent’s demand differs
before and after she first receives a good. To achieve Pareto
efficiency, UPDATE-TOPS considers such a dynamic change
in agents’ preferences.

Our proposed mechanisms are obviously IR under the
top-only preference domain, since (i) each agent weakly
prefers the good she first gets to any good she initially owns,
and (ii) the number of goods given to each agent is the same
as that of her initial endowment. In what follows we focus
on Pareto efficiency and strategy-proofness.

Example
Now we demonstrate the behavior of our proposed mecha-
nisms under the top-only preference domain. Consider N =
{1, 2}, K = {a, b, c}, w = ({a, b}, {c}), and preferences
R1, R2 ∈ R2

T whose corresponding strict orderings �1,�2

satisfy a �1 b �1 c and b �2 c �2 a, respectively. For
the F -RULE described in the previous section, a choice of
priority ordering does not matter for this example.

Figure 2 (a) shows trading graphG drawn for the first time
at line 10. There exists a terminal-sink that only contains
good a, which is given to identity 1a and removed from the
market at lines 13-14. At lines 16-18, the UPDATE-TOPS
function changes T1 so that at line 19, its atomic agent 1b
points to both b and c. Here, the F-RULE chooses good c for
node 1b at line 21 (Fig. 2 (b1)), since good c has not been
assigned to 1b, and b has already been assigned.

At line 23, goods b and c are traded (but not yet removed
from the market), and the algorighm goes to line 9. In the

�
1�

�

�
2�

1�
(a) (b1)

�

�

(b2)

1�

2�
�

�
2�

1�

Figure 2: Behavior of our proposed mechanism

next round, identity 2c points to only good b that is currently
assigned to itself, i.e., there is a self-loop, so b is given to
identity 2c and removed from the market. The only remain-
ing good c, which is currently assigned to 1b, is then re-
moved in the same round. As a result, agents 1 and 2 get
{a, c} and {b}, respectively, which is Pareto efficient under
(R1, R2).

Note that without the UPDATE-TOPS function, the final
assignment would not be Pareto efficient, i.e., just splitting
each agent into atomic agents is not adequate. Actually, in
the above example, after the removal of identity 1a with
good a, identity 1b only points to itself (Fig. 2 (b2)) and
is also removed in the same round with good b. The final
assignment is then ({a, b}, {c}), which is Pareto dominated
by ({a, c}, {b}) (note that {a, b} and {a, c} are indifferent
for agent 1 under top-only preference R1).

Pareto Efficiency
In this section we show that our proposed mechanisms are
PE under the top-only preference domain. We first prove two
lemmas that will be used for the main theorem.

Lemma 1. For any R ∈ Rn
T , if there exists y, z ∈ XN

s.t. y ⇀R z, then there exists x ∈ XN s.t. x ⇀R z and
|xi| = |zi| for any i ∈ N .

Proof Sketch. Since the most preferred good almost solely
determines each agent’s utility under the preference do-
main, for each agent i ∈ N , it must not be the case that
t(�i, zi) �i t(�i, yi), and for some agent i′ ∈ N it must
be the case that t(�i′ , yi′) �i′ t(�i′ , zi′). Therefore, bal-
ancing the number of goods for each agent at assignment y
by re-allocating the non-top goods of the agents constructs
assignment x, which also Pareto dominates z.

Lemma 2. Let ϕ denote a proposed mechanism. For any
w ∈ XN , any R ∈ Rn

T , and any i ∈ N , let Di := {g ∈
K|g �i t(�i, ϕi(w,R))}. Then, for any i ∈ N and any
g ∈ Di, there exists i′ 6= i s.t. g = t(�i′ , ϕi′(w,R)).

Proof Sketch. From the description of Algorithm 1, such
good g is removed only when it is included in a terminal-
sink. When an atomic agent of an agent i′ is removed from
the market, none of its other atomic agents can be removed
until all other agents receive at least one good. Therefore, if
g is not the top good of any agent i′, then it must be removed
after all agents get their first goods, including agent i. How-
ever, agent i prefers g to her current top good, and thus it
cannot be assigned to such i′ who has already received her
top good.
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Theorem 1. Any proposed mechanism is PE under the top-
only preference domain.

Proof. We assume for the sake of contradiction that our pro-
posed mechanism ϕ is not PE under the top-only preference
domain. More precisely, ∃N , ∃K, ∃w ∈ XN , ∃R ∈ Rn

T ,
∃x ∈ XN s.t. x ⇀R ϕ(w,R). By applying Lemma 1, we
can assume w.l.o.g. that |xi| = |ϕi(w,R)| for any i ∈ N .
Therefore, from the definition of top-only preferences, there
must be at least one agent i ∈ N s.t. the top good is im-
proved, i.e., t(�i, xi) �i t(�i, ϕi(w,R)). To complete the
proof, we derive a contradiction by showing that no agent’s
top good is improved.

We first observe that for each agent who gets (i.e., one of
her atomic agent is removed with) a good at round 1, the top
good is never improved. This is because every atomic agent
points to the most preferred good among K at round 1.

Assume that for each round s s.t. 1 ≤ s ≤ r, every agent i
who first gets a good at round s never satisfies t(�i, xi) �i

t(�i, ϕi(w,R)) on assignment x. Since x ⇀R ϕ(w,R),
the assumption implies t(�i, xi) = t(�i, ϕi(w,R)) for any
such i, i.e., the top goods are the same between xi and
ϕi(w,R).

Consider round s = r + 1. If there is agent i who first
gets a good at round r + 1 and satisfies t(�i, xi) �i t(�i

, ϕi(w,R)), good t(�i, xi) must be removed at some round
before r + 1 from the definition of the mechanism. Here,
from Lemma 2, good t(�i, xi) is the top good of another
agent i′ at assignment ϕ(w,R). That is, there is agent i′
who first gets a good at a round before r + 1 and loses
good t(�i′ , ϕi′(w,R)) = t(�i, xi) when the assignment
is changed to x, i.e., t(�i′ , ϕi′(w,R)) 6= t(�i′ , xi′). This
derives a contradiction.

Strategy-proofness
We next show that under the top-only preference domain,
our proposed mechanisms are SP.
Theorem 2. Any proposed mechanism is SP under the top-
only preference domain.

Proof Sketch. By definition, the mechanism gives each
agent the same number of goods as her initial endowment.
Therefore, for each agent, improving her top good is the only
way to get higher utility by a misreport.

However, for any agent and any misreport, all goods re-
moved from the market before round r in which she first
get a good in the truth-telling case are still removed from
the market in the exact same way as in misreport cases.
This is because, for any misreport of any agent, only the
difference in the TTC-GRAPH at each round is the outgo-
ing edges from her atomic agents, and then every originally
constructed cycle is still constructed even if these outgoing
edges are changed.

Theorems 1 and 2 show that there exists at least one pref-
erence domain, namely the top-only preference domain, out-
side the discussions of Sönmez (1999), where the impossi-
bility never carries over. In the next section we demonstrate
the opposite example; there also exists at least one prefer-
ence domain where the impossibility does carry over.

6 m-chotomous Preferences
In this section we define a different class of preference do-
mains, calledm-chotomous preferences, as another example
of preference domains that do not satisfy Assumption 1.
Definition 5 (m-chotomous preference domain). For given
integer m ∈ {1, . . . , |K|}, the m-chotomous preference do-
main Rm is the set of all possible preferences Ri satisfy-
ing that there is partition (A1, A2, . . . , Am) of K s.t. for
any pair L,L′ ⊆ K, (i) LPiL

′ iff ∃q ∈ {1, . . . ,m} s.t.
|Aq∩L| > |Aq∩L′| and ∀q′ ≤ q−1, |Aq′∩L| = |Aq′∩L′|,
and (ii) LIiL′ iff ∀q ∈ {1, . . . ,m}, |Aq ∩ L| = |Aq ∩ L′|.

The m-chotomous preference domain can be considered
a modification of the well known additively separable pref-
erence domain. The main difference of m-chotomous pref-
erences from additively separable ones is that, even if you
get arbitrarily many goods from one subset Aq , you strictly
prefer just getting only one good from more preferred sub-
set Aq−1. For any integer m ∈ {1, . . . , |K| − 1}, the m-
chotomous preference domain violates Assumption 1, while
the |K|-chotomous preference domain is a strict preference
domain and thus Assumption 1 holds.

These preferences seem quite realistic in situations where
there is (or at least there seems to be) some “domination
relation” between goods, and each agent can utilize several
goods at one time. For example, when a university is hir-
ing lecturers for different levels of mathematics courses, it
prefers those who can teach Ph.D. students to those who can
only teach undergraduates, since the former can also teach
undergraduates. For this example, we have a 2-chotomous
(or a dichotomous) preference over possible subsets of lec-
turers.

Impossibility Result
We first show that under the m-chotomous preference do-
main for any integer m ∈ {3, . . . , |K| − 1}, there exists no
exchange mechanism that satisfies IR, PE, and SP The result
show that, even without Assumption 1, the compatibility of
those three properties is not trivial.
Theorem 3. For any integer m ∈ {3, . . . , |K| − 1}, there
exists no exchange mechanism that is IR, PE, and SP under
the m-chotomous preference domain.

Proof. We assume K = {a, b, c, d} and m = 3, i.e., the
trichotomous preference. Assume N = {1, 2}, (w1, w2) =
({b, c, d}, {a}), and R1, R2 ∈ R3 have the following parti-
tions of K, respectively:

R1 : ({a, b}, {c}, {d})
R2 : ({b}, {a, c}, {d})

Note that for any K s.t. |K| > 4 and any m > 3, we can
modify this example and derive the non-existence of possi-
ble assignments in the same form as the proof below, by as-
signing each additional good in K \ {a, b, c, d} to different
agents 3, 4, . . . who solely prefers their initial endowment.
Thus, focusing on this example is without loss of generality.

In that case, the followings are the only possible assign-
ments under their truth-tellings for an IR and PE exchange
mechanism; i) ({a, b}, {c, d}), ii) ({a, b, d}, {c}), and iii)
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({a, c, d}, {b}). When i) or ii) occurs, agent 2 reports R′2
with partition ({b}, {a}, {c, d}) and changes the assignment
to ({a, c, d}, {b}), which is the only possible assignment un-
der preference profile (R1, R

′
2). Therefore, the mechanism

violates strategy-proofness.
When iii) occurs, agent 1 reports R′1 with partition

({b}, {a}, {c, d}) and changes the assignment to either
({a, b}, {c, d}) or ({a, b, d}, {c}), which are the only pos-
sible assignments under preference profile (R′1, R2). There-
fore, the mechanism violates strategy-proofness.

When m = |K|, the preferences are strict, and thus the
impossibility shown by Sönmez can be applied. On the other
hand, when m = 1, the “no-trade” mechanism trivially sat-
isfies all the properties, since the initial endowment itself is
already Pareto efficient. When m = 2, clarifying whether
they are SP in the dichotomous preference domain remains
future work.

Pareto Efficiency
Although the impossibility was shown in the previous sub-
section, there might be situations in which we have to design
a trading mechanism form-chotomous preferences. Here we
show that our proposed mechanisms are PE under the m-
chotomous preference domain for any integer m ≤ |K|. We
first formally describe the UPDATE-TOPS function of our
proposed mechanisms for m-chotomous preferences:

UPDATE-TOPS(Ri, φi,K
′) = {g ∈ K′|∀h ∈ K′, {g}Ri{h}}

In other words, at each round of the algorithm, it returns a
set of goods that is comprised of the highest ranked among
all goods that remain in the round. Note that the output does
not depend on φi, i.e., the set of goods given to agent i so far
during the mechanism.

We are now ready to show the Pareto efficiency of our
mechanisms under the m-chotomous preference domain for
any integerm ≤ |K|. We first prove a lemma, which is quite
similar to Lemma 1, and thus the proof is omitted for space
limitations.

Lemma 3. For any integer m ≤ |K|, and any R ∈ Rn
m, if

there exists y, z ∈ XN s.t. y ⇀R z, then there exists x ∈ XN

s.t. x ⇀R z and |xi| = |zi| for any i ∈ N .

Theorem 4. For any integer m ≤ |K|, any proposed mech-
anism is PE under m-chotomous preference domain.

Proof. Let ϕ be any proposed mechanism. For the sake of
contradiction, we assume that there exist N , K, m ≤ |K|,
w ∈ XN , R ∈ Rn

m, and x ∈ XN s.t. x ⇀R ϕ(w,R).
From Lemma 3, we assume without loss of generality that
|xi| = |ϕi(w,R)| for any i ∈ N .

Now letM ⊆ N be the set of agents who receive different
bundles under these assignments x and ϕ(w,R). Since x
Pareto dominates ϕ(w,R), at least one such agent exists.
Then for each i ∈ M , let us define two bundles of goods
πi := ϕi(w,R)\xi and τi := xi \ϕi(w,R). In other words,
πi is the set of goods that i ∈ M loses after a change of
assignment from ϕ(w,R) to x, and τi is the set of goods
that she acquires after the change. We can easily observe
that πi∩τi = ∅, |πi| = |τi|, and τiRiπi hold for any i ∈ N .

Also, τjPjπj must hold for some j ∈M ; otherwise x never
Pareto dominates ϕ(w,R).

Under the m-chotomous preference domain, for any such
i ∈M , there is good t∗i ∈ τi s.t. ∀pi ∈ πi, {t∗i }Ri{pi}; oth-
erwise πiPiτi holds and x never Pareto dominates ϕ(w,R).
Since such good t∗i is assigned to different agent j(6= i) ∈
M under original assignment ϕ(w,R), i.e., ∀i ∈M , ∃j 6= i
s.t. t∗i ∈ πj , we can construct a finite “cycle” of length
l ≤ |M | by a subset of agents M ′ ⊆ M with |M ′| = l
so that for any i′ ∈ M ′, {t∗i′}Ri′{t∗(i′mod l)+1}. There are
only two cases; (i) ∃i′ ∈ M ′, {t∗i′}Pi′{t∗(i′mod l)+1}, and (ii)
∀i′ ∈M ′, {t∗i′}Ii′{t∗(i′mod l)+1}.

If (i) occurs, then assignment ϕ(w,R) is simply Pareto
improved by a trading cycle of single goods, i.e., a trade
by the constructed cycle. However, from the definition of
UPDATE-TOPS for m-chotomous preference domains, pro-
posed mechanismϕ is just applying TTAS (or another mech-
anism in the class introduced by (Saban and Sethuraman
2013)) for the augmented market. Thus, the existence of
such an improvement violates the fact that the TTAS mech-
anism is Pareto efficient for the augmented market.

If (ii) occurs, the trade of single goods by the cycle
never changes any agent’s utility from original assignment
ϕ(w,R). Therefore, we define ϕ′ as a new assignment af-
ter the trade by the cycle. Obviously it holds that x ⇀R ϕ′.
Here we define set of agents M̃ ⊆ N who receives different
bundles under x and ϕ′. Obviously M̃ ⊆ M , and we apply
the same argument above iteratively. This iteration must ter-
minate in a finite step by holding the condition (i), since the
number of goods is finite.

7 Conclusion
In this paper we discussed the compatibility of individual ra-
tionality, Pareto efficiency, and strategy-proofness. We first
showed that under the top-only preference domain, our pro-
posed mechanisms satisfy all these properties. We also re-
vealed that they are incompatible under many m-chotomous
preference domains. All these domains, except for the |K|-
chotomous preference domain, violate Assumption 1, and
thus those complement Sönmez’s findings.

We strongly believe that these results will initiate research
for comprehensively understanding the (in)compatibility of
these three properties in markets without monetary transfers.
As future work, we will completely characterize the class of
preference domains under which the existence of exchange
mechanisms satisfying the three properties is guaranteed.
For this direction, we must also investigate the richness of
preference domains; actually the problem is quite easy when
there is only one preference. Even if we identify some pref-
erence domains that are not in that class, a complexity ap-
proach may help us obtain somewhat positive results, e.g.,
proving that finding the best manipulation is NP-hard (Teo,
Sethuraman, and Tan 2001; Pini et al. 2011).
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