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Abstract

We study the existence of pure Nash equilibrium (PNE)
for the mechanisms used in Internet services (e.g., on-
line reviews and question-answering websites) to incen-
tivize users to generate high-quality content. Most exist-
ing work assumes that users are homogeneous and have
the same ability. However, real-world users are hetero-
geneous and their abilities can be very different from
each other due to their diversity in background, culture,
and profession. In this work, we consider the follow-
ing setting: (1) the users are heterogeneous and each of
them has a private type indicating the best quality of
the content he/she can generate; (2) all the users share a
fixed total reward. With this setting, we study the exis-
tence of pure Nash equilibrium of several mechanisms
composed by different allocation rules, action spaces,
and information availability. We prove the existence of
PNE for some mechanisms and the non-existence for
some other mechanisms. We also discuss how to find a
PNE (if exists) through either a constructive way or a
search algorithm.

Introduction
More and more Internet websites rely on users’ contribu-
tions to collect high-quality content, including knowledge-
sharing services (e.g., Yahoo! Answers and Quora), online
product commenting and rating services (e.g., Yelp, mobile
app stores), and e-commerce websites (e.g., Amazon.com).
For simplicity, we call websites that rely on User-Generated
Content UGC websites. To attract more users and incentivize
them to contribute high-quality content, those sites usually
give high-quality contributors some rewards, in terms of ei-
ther virtual value or monetary return. To collect more re-
wards, some users might strategically interact with those
websites. Therefore, to maximize the quality of the content
generated from users, a UGC website needs to carefully de-
sign its mechanism and analyze users’ behaviors. We call the
mechanisms used by those UGC sites UGC mechanisms.

Recently, a lot of effort has been placed to the design and
analysis of UGC mechanisms (Ghosh and Hummel 2011;
Ghosh and McAfee 2011; Easley and Ghosh 2013). For ex-
ample, (Ghosh and McAfee 2011) designs a simple voting
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rule under a sequential and simultaneous model, in which
both the quality of contributions and the number of con-
tributors are endogenously determined. (Ghosh and Hum-
mel 2011) studies the rank-based allocation mechanism and
shows that the mechanism always incentivizes higher quality
equilibria than the proportional allocation rule. (Ghosh and
Kleinberg 2013) models the online education forums with
two parameters which represent the frequency of checking
forums by teachers and students separately. A brief survey
about UGC mechanisms can be found in (Ghosh 2012).

Most of those works assume that users are homogeneous,
i.e., they are of the same ability while contributing to the
sites. However, in the real world, users’ abilities can be very
different from each other due to their diversity in back-
ground, culture, and profession. For example, an experi-
enced photographer can write a high-quality comment to a
photo, which is very difficult for a non-experienced user.
Thus, in this work, we study the game-theoretic problem
raised in Internet services with heterogeneous users. We in-
troduce the concept of “type” for the problem, which de-
notes the ability of a user: the larger the type of a user is, the
better content he/she can contribute to the site. We further
assume that each user needs to afford a cost to participate in
the game and contribute content. The cost reflects the effort
of content generation, e.g., time spent on writing a review
and the payment for mobile network usage. In our work, we
assume the costs are bounded. We believe this assumption
is more reasonable and practical than the unbounded-cost
assumption used in (Easley and Ghosh 2013; Ghosh and
McAfee 2011).

We study two allocation rules: one is the top K alloca-
tion rule (Jain, Chen, and Parkes 2009; Easley and Ghosh
2013) in which users with the highest K qualities will share
the reward equally; the other is the proportional allocation
rule (Ghosh and McAfee 2011; Jain, Chen, and Parkes 2009;
Nisan et al. 2007; Chen 2009), in which all the participants
(who make non-zero contribution) will share the reward pro-
portionally to their contributed qualities.1 We consider two
action spaces: one is the binary action space, in which each
user can only choose to participate in or not; the other is the

1See (Kelly 1997; Kelly, Maulloo, and Tan 1998; Cachon
and Lariviere 1999; Sandholm and Lai 2010; Stoica et al. 1996;
Bachrach, Syrgkanis, and Vojnović 2013) for more details about
the proportional allocation rule.
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continuous action space, in which each user can choose the
quality of his/her contributed content. Besides, we study the
problem in both the full-information setting and the partial-
information setting.

We study the existence of pure Nash equilibrium for sev-
eral UGC mechanisms (with different allocation rules and
action spaces). Our main results can be summarized as fol-
lows.

1. For the full-information setting, we prove the existence of
PNE for the mechanism with the proportional allocation
rule and the continuous action space. The key of the proof
is to construct a perturbed game, prove the existence of
PNE for the perturbed game, and then prove that the PNE
of the perturbed game will converge to the equilibrium of
the original game. We then design an efficient algorithm
to find a PNE for the mechanism. We also prove that the
PNE exists for the mechanism with the top K allocation
rule and the binary action space, as well as the mechanism
with the proportional allocation rule and the binary action
space. However, it does not exist for the mechanism with
the top K allocation rule and the continuous action space.

2. For the partial-information setting, we prove the exis-
tence of a symmetric PNE for the mechanism with the top
K allocation rule and the continuous action space. The
key of the proof is to construct a simple but (maybe) infea-
sible symmetric strategy and then convert it to a feasible
symmetric equilibrium strategy by repeated calibration.
Our proof also provides a method to construct a symmet-
ric PNE. For the binary action space, we prove the exis-
tence of equilibrium for the mechanisms with both the top
K allocation rule and the proportional allocation rule.

Model
In this section, we describe the model for analyzing the in-
centives created by various UGC mechanisms, when con-
tributors are strategic agents with heterogeneous abilities.

There is a set of N strategic users in a UGC website, and
user i has a private type qi ∈ [0, 1], which indicates the best
quality of the content he/she can contribute to the site. With-
out loss of generality, we number the users according to the
descending order of their types, i.e., q1 ≥ q2 . . . ≥ qN . Let
xi (0 ≤ xi ≤ qi) denote user i’s action, which indicates
the quality of the content he/she actually contributes to the
site, and ci as the corresponding cost he/she needs to af-
ford. In this work, we consider the linear cost for simplicity:
ci = cxi

qi
, where c is a constant denoting the upper bound of

the cost.2
We study two action spaces. The first is a binary ac-

tion space: each user can only choose either not to con-
tribute or to contribute some content with quality qi (i.e.,
xi ∈ {0, qi}). The second is a continuous action space: the
quality xi that user i contributes to the site is a real value
between 0 and qi (i.e., xi ∈ [0, qi]). We say that a user does
not participate in the game if xi = 0, and a user participates
in the game if xi > 0.

2If each user has a personalized cost upper bound Ci, we can
absorb Ci into the private type qi by means of scaling: qi = qic

Ci
.

The site has a fixed total reward R to be allocated to
the contributors, depending on their contributions. We study
two allocation rules: the top-K allocation (Jain, Chen, and
Parkes 2009) and the proportional allocation (Ghosh and
McAfee 2011). The former allocates R

K to each of the users
who contribute the K largest qualities. Note that if N < K,
each user can still get R

K reward only. The latter allocates
the reward to all users proportionally to their contributions:
the reward ri allocated to user i is xi∑

j xj
R if xi > 0 and 0

otherwise.
While analyzing the model, we consider two settings:

the full-information setting and the partial-information set-
ting. In the full-information setting, the types {qi}i∈[N ] are
deterministic and known to all the users. In the partial-
information setting, the type of each user is assumed to
be drawn from a publicly known distribution F , which has
a continuous first order derivative. Each user only knows
his/her own type qi.

With the above notations, the utility of user i can be writ-
ten as ui(xi, x−i) = ri(xi, x−i)− ci(xi), where r(xi, x−i)
is the reward of user i given his/her own strategy xi and
the strategies x−i of other players. We assume that all the
users are rational and target at the maximization of their (ex-
pected) utilities.

Full-information Setting
In this section, we study the mechanisms in the full-
information setting. In this setting, the type qi of any user
is known to all the users. This setting corresponds to the
real-world scenarios where the users are familiar with each
other. For example, considering a professional mathematical
question posted in Yahoo! Answer, there will be only a few
users in the community who can answer the question and
they know each other quite well.

Combining the different choices of the allocation rule and
the action space, there are four mechanisms of our interest.
Due to space restrictions, we will provide detailed elabora-
tions on the mechanism with the proportional allocation rule
and the continuous action space only, and directly list the
results of the other three mechanisms.

M1: Proportional Allocation, Continuous Action
Space
We first prove the existence of PNE for the mechanismM1

and then present an algorithm to search its PNE.

Theorem 1 For the full-information setting, there exists a
PNE for the mechanismM1.

Proof. Consider an action profile {xi}i∈[N ]. Denote x−i =∑
j 6=i xj . If

∑N
i=1 xi > 0, the utility of user i is

ui(xi, x−i) = R
xi

xi + x−i
− xi
qi
c, (1)

constrained by 0 ≤ xi ≤ qi.
The first order derivative of ui w.r.t xi is

∂ui
∂xi

= R
x−i

(xi + x−i)2
− c

qi
. (2)
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By setting the above derivative to zero, we get the best-
response strategy of user i:

xi(qi, x−i) =

√
Rqix−i

c
− x−i. (3)

We have the following observations for this best response
strategy:

1. Clearly xi = 0 is not the best response when x−i = 0
because user i would not be rewarded with xi = 0. Actu-
ally there is no best response for user i when x−i = 0: if
he/she gets a positive utility by contributing δ > 0, he/she
will profitably deviate by contributing δ

2 . Therefore zero-
contribution (xi = 0, ∀i) is not an equilibrium strategy,
but it is a fixed point of Eqn. (3).

2. xi calculated from Eqn. (3) can be smaller than zero
or larger than qi, which is not a feasible action. If
xi(qi, x−i) < 0, it means that Eqn. (2) will be smaller
than zero when xi > 0, so it is better to make zero contri-
bution. If xi(qi, x−i) ≥ qi, Eqn. (2) will be larger than 0,
so ui(xi, x−i) increases w.r.t. xi, and it is better to con-
tribute qi.

Based on the above observations, we consider a perturbed
game (Feldman, Lai, and Li 2009), in which the action of
each user is lower bounded by a small quantity ε > 0 and
the best-response strategy of i is given as below.

x∗i (qi, x−i, ε) =


ε if xi(qi, x−i) ≤ ε
xi(qi, x−i) if ε < xi(qi, x−i) < qi
qi if xi(qi, x−i) ≥ qi

(4)
where xi(·, ·) is defined in Eqn. (3). In the remaining part
of the proof, we show that (1) there exists a PNE for the
perturbed game; (2) as ε→ 0, no PNE of the perturbed game
will converge to a zero-contribution point and (3) by setting
ε→ 0, we can get the PNE for the original game.

Denote the space [0, q1]×[0, q2]×· · ·×[0, qN ] asX , which
is convex and compact. Define a mapping f fromX to itself,
in which for any fixed ε, ∀i ∈ [N ], fi(x, ε) = x∗i (qi, x−i, ε).
It is easy to verify that f is a continuous mapping. Accord-
ing to Brouwer fixed-point theorem (Border 1989), f has at
least one fixed point in X , which is the equilibrium of the
perturbed game. Let xε denote one of the fixed points. Since
X is compact, we could always find a series of {εn} → 0
whose corresponding xεn converge (we denote the limit
point as x0).

Next we show x0 is not a zero-contribution point. Other-
wise,

∑N
i=1 x

εn
i could be infinitely close to zero as n→∞.

Furthermore, xεn1 and xεn2 are strictly less than q1 and q2 re-
spectively. We set

∑N
i=3 x

εn
i = δn and Q = c

q1
+ c

q2
. By

Eqn. (3) we obtain:√
Rq1(δn + xεn2 )

c
− (δn + xεn2 ) = xεn1√

Rq2(δn + xεn1 )

c
− (δn + xεn1 ) = xεn2 .

(5)

From the above two equations, we can obtain

xεn1 + xεn2 =
1

2

(R
Q

+

√
(
R

Q
)2 + 4δn

R

Q

)
− δn, (6)

which will not converge to zero as n→∞. This contradicts
with the assumption that

∑N
i=1 x

εn
i could be infinitely close

to zero as n→∞.
Finally we prove x0 is the equilibrium strategy of the

original game by contradiction. There are three possible al-
ternative cases: user j would like to deviate i) from x0j = 0

to x
′

j > 0; ii) from x0j ∈ (0, qj) to x
′

j ∈ [0, qj ]\{x0j}; iii)
from x0j = qj to x

′

j < qj . We only discuss the first case and
the discussions on the other two cases are just similar. Sup-
pose user j could profitably deviate by contributing no less
than δ(> 0). Then we obtain√

Rqjx0−j
c

− x0−j ≥ δ. (7)

Since x0j = 0, given any sufficiently small positive ε, we
have ∃N ′ , ∀n > N

′
, xεnj < ε, i.e.,√
Rqjx

εn
−j

c
− xεn−j < ε. (8)

xεn → x0 implies xεn−j → x0−j . However, as ε → 0, we
can verify that xεn−j will not converge to x0−j by Eqn. (7) and
Eqn. (8) (details can be found in the extended version of this
paper (Xia et al. 2014)). This contradicts with xεn → x0.

Thus, x0 must be the equilibrium strategy of the original
game.

Given the existence of PNE, we can leverage the following
three lemmas about the properties of an equilibrium profile
to find a PNE strategy. Due to space restrictions, we leave
the proofs of them to the extended version of this paper (Xia
et al. 2014).

Lemma 2 In an equilibrium profile, a user with a larger
type will contribute no less than a user with a smaller type.
That is, if qi < qj , we have xi ≤ xj in an equilibrium.

Lemma 3 Consider two users with qi ≤ qj . If xi = qi in an
equilibrium, then we also have xj = qj in the same equilib-
rium.

Given MechanismM1, in whichN users compete for the
rewardR, we can induce a local game with n users, i.e., only
the first n users compete for the reward R. As shown in the
following lemma, an equilibrium of the induced local game
can be extended to an equilibrium of the original game (i.e.,
MechanismM1 with N users) under certain conditions.

Lemma 4 If {xi}i∈[n] is an equilibrium of the induced local
game with the first n users and

∑n
i=1 xi ≥

Rqn+1

c , then
{yi}i∈[N ], where yi = xi,∀1 ≤ i ≤ n and yi = 0,∀n+1 ≤
i ≤ N , is an equilibrium of the original game.

Based on the above lemmas, we propose Algorithm 1,
which judges whether a PNE of an induced game can be
extended to a PNE of the original game, and returns such a
PNE if it exists.
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Algorithm 1 Algorithm to find a PNE of the original game
from an induced local game
Input: q = (q1, q2, · · · qn) where q1 ≥ q2 ≥ · · · ≥ qn;
Output: x(n) = (x

(n)
1 , x

(n)
2 , · · · , x(n)n )

1: Calculate the yni ∀i ∈ [n] with Eqn. (9). If none of yni
is smaller than zero or larger than qi, x(n) ← yn; verify
whether it can be extended to a PNE of the original game
by Lemma 4; if so, return x(n).

2: for m← 1 : n do
3: Calculate xnim ∀i ∈ {m+1, · · · , n} with Eqn. (13).

x
(n)
i ← qi ∀i ∈ {1, · · · ,m}, x(n)i ← xnim ∀i ∈
{m+ 1, · · · , n} if they are all feasible;

4: if x(n) is a local PNE (verified by Lemma 5) then
5: Verify whether x(n) can be extended to a PNE of

the original game and return it if so;
6: end if
7: end for

yni =
R(n− 1)

c
∑n
k=1

1
qk

[1− n− 1

qi
∑n
k=1

1
qk

] (9)

Qm =
m∑
i=1

qi (10)

Anm =
n∑

i=m+1

c

Rqi
∀n ≤ N,n ≥ m+ 1 (11)

snm =
(n−m− 1) +

√
(n−m− 1)2 + 4QmAnm
2Anm

(12)

xnim = snm −
c

Rqi
s2nm (13)

Lemma 5 In Algorithm 1, x(n) is a PNE of the induced lo-
cal game with n users if the following condition holds:
• If m < n,

Rq1
2c

(1−
√

1− 4c

R
) ≤

n∑
k=1

x
(n)
i ≤ Rqm

2c
(1 +

√
1− 4c

R
);

• If m = n,

R ≥ cQ2
m

qi(Qm − qi)
, ∀i ∈ {1,m}.

Theorem 6 Recursively calling Algorithm 1 from n = 2 to
N , one obtains a PNE of an induced local game, which can
be extended to a PNE of the original game.

Proof sketch. Accordingly to Theorem 1, the induced local
game has a PNE.

For n ≤ N , if the algorithm stops at Step 1, then x(n) can
be extended to a PNE of the original game. Otherwise, given
the top m users contributing their types, Eqn. (13) could be
seen as the strategies that users m + 1, · · · , n do not want
to deviate if they are feasible. If the top m users do not want

to deviate either, we find a PNE of the induced local game.
Lemma 2 and 3 describe the structure of all the PNEs, and
therefore Algorithm 1 will traverse all the local PNEs of the
induced local game. Furthermore, we note that a PNE of the
original game is also a PNE of some induced local game. So
the PNE of the original game could certainly be found by
Algorithm 1.

Other Three Mechanisms
Due to space limitation, we list the results of the other three
mechanisms under the full-information setting in this sub-
section. The detailed analysis can be found in (Xia et al.
2014).
• Top-K allocation rule, binary action space: (1) If R <
Kc, zero contribution (i.e., no participation) is the unique
equilibrium. (2) If R = Kc, the contribution of any K
users can be an equilibrium. (3) If R > Kc, the contribu-
tion from the first K users is the unique equilibrium.
• Top-K allocation rule, continuous action space: No equi-

librium exists.
• Proportional allocation rule, binary action space: If R <
c, zero contribution (xi = 0, ∀i) is the unique equilibrium;
otherwise, there exist multiple equilibria.

Partial-information Setting
In this section, we investigate the existence of PNE for the
UGC mechanisms under the partial-information setting. We
discuss three mechanisms here and leave the fourth one to
the future work due to its complication.

M2: Top-K Allocation, Continuous Action Space
We first give a general description to a symmetric equilib-
rium strategy, then prove the existence of PNE when the dis-
tribution F is uniform, finally generalize the result to any
distribution.

Let us consider a symmetric increasing strategy β(·): each
user i with quality qi will contribute to the site with quality
β(qi).
Lemma 7 If β(·) is an equilibrium strategy, then qi > 0⇒
β(qi) > 0.

Proof. It is easy to see that for a given equilibrium strat-
egy β(·), if qi < qj and β(qi) > 0, we have β(qj) > 0.
Otherwise, user j can contribute xj = β(qi) + δ, where δ is
positive and sufficiently close to zero, to get a positive utility,
which contradicts with that β(·) is an equilibrium strategy.

Suppose that there exists some q > 0 such that β(q) = 0.
As a result, we have β(x) = 0, ∀x ∈ [0, q]. For a user whose
type falls in [0, q], if he/she contributes ε, his/her expected
utility is

R

K

N−1∑
n=N−K

(
N − 1

n

)
F (q)n(1−F (q))N−n−1− ε

qi
c (14)

We can always find an ε that is small enough so as to ensure
the above expected utility to be positive. Therefore β(qi)
is not an equilibrium, which leads to a contradiction. Thus,
there does not exist a q > 0 such that β(q) = 0.
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Let function T (x) denote the probability that a user with
type x wins the game (e.g., he/she is one of the top K con-
tributors) given all the users adopt the same increasing strat-
egy β(·). We have

T (x) =
K−1∑
j=0

(
N − 1

j

)
F (x)N−1−j(1− F (x))j . (15)

Suppose that users j 6= i follow the increasing symmetric
equilibrium strategy β(·). If user i pretends that his/her type
is x and contributes β(x), then his/her expected utility is

ui(x; qi) =
R

K
T (x)− β(x)

qi
c. (16)

The first order derivative of ui is3

∂ui(x; qi)

∂x
=
R

K

∂T (x)

∂x
− cβ

′
(x)

qi
. (17)

If β(qi) is an equilibrium strategy for user i, his/her ex-
pected utility should be maximized at x = qi. That is, we
should have

∂ui(x; qi)

∂x
|x=qi = 0. (18)

Note that β(0) = 0. Solving the above equation, we get

β(x) =
R(N − 1)

cK

(N − 2

K − 1

)∫ x

0

tF (t)
N−K−1

(1− F (t))
K−1

dF (t)

(19)

Then we have the following results.

Lemma 8 If β(x) ≤ x,∀x ∈ [0, 1], then the function β(·)
in the above equation is an increasing equilibrium strategy.

However, it is possible that β(x) expressed by Eqn. (19)
is larger than x. For example, if F is the uniform distribution
over [0, 1], β(x) can be written as below.

β(x) =
R

cK
(N − 1)

(N − 2

K − 1

)K−1∑
k=0

(−1)K−k−1
(K − 1

k

) xN−k

N − k
(20)

Then we have

β(1) =
R

cK

N −K
N

, (21)

which might be larger than 1.
If β(x) > x for some x ∈ [0, 1], β(x) will not be an equi-

librium strategy anymore. We need to calibrate β(x). For
ease of description, we first illustrate how to make calibra-
tion when F is the uniform distribution, and then extend the
result to any distribution.

With some derivations, one can get that the equation
β(x) = x has at most two solutions in the region (0, 1] when
the distribution F is uniform. If there exist two solutions (de-
noted as x1 and x2 (x1 < x2)), there will be an xp(> x1)

that satisfies β
′
(xp) = 1. Then we have:

3The computation of ∂T (x)
∂x

could be found in (Xia et al. 2014).

Theorem 9 If F is the uniform distribution over [0, 1] and
β(x) = x has two solutions in (0, 1], the following β∗(·)
function is an equilibrium, where x1 and xp are defined
above.

β∗(x) =


β(x) x ∈ [0, x1]

x x ∈ (x1, xp]

β(x)− β(xp) + xp x ∈ (xp, 1]

(22)

Proof. First, suppose x ∈ [0, x1]. Since β(x) ≤ x, we have
that β∗(x) = β(x) is the best response of type x.

Second, it is clear that the first order derivative β
′
(x) is

larger than 1 for any x ∈ (x1, xp). Suppose that all other
users follow strategy β∗(·) except user i with qi ∈ (x1, xp),
and suppose he/she pretends to have a type x.
• If x ∈ (x1, xp) and x ≤ qi, we have

ui(x; qi) =
R

K
T (x)− x

qi
c,

and

∂ui(x; qi)

∂x
>
R

K

∂T (x)

∂x
−β

′
(x)

qi
c ≥ R

K

∂T (x)

∂x
−β

′
(x)

x
c = 0.

Therefore, the larger x is, the larger utility he/she will get.
However, since the contributed quality is upper bounded
by his/her type qi, the best choice for the user is to take
the action xi = qi.

• If x ∈ [0, x1], we have

∂ui(x; qi)

∂x
=
R

K

∂T (x)

∂x
−β

′
(x)

qi
c >

R

K

∂T (x)

∂x
−β

′
(x)

x
c = 0.

So the user should pretend to have a type x1, which is,
however, still worse than revealing the true type qi.

Thus, for any x in (x1, xp], the best response is β∗(x) = x.
Third, for any x in (xp, 1], we have β

′
(x) ≤ 1. Integrating

β
′
(x) from xp to x and using β(xp) = xp, we get

β∗(x)− xp = β(x)− β(xp).

It is easy to verify that β∗(x) ≤ x for any x in (xp, 1]. There-
fore, we have that β∗(x) = β(x) + xp − β(xp) is the best
response for any x in (xp, 1].

Thus, the theorem is proved.

Figure 1 shows an equilibrium strategy for N = 11,K =
5, c = 1, R = 8.

Next we generalize the above results. For a general distri-
bution F over [0, 1], we first initialize β∗(x) = β(x),∀x ∈
[0, 1] and then calibrate β∗(x) as follows.

1. Check whether β∗(x) > x starting from x = 0 to x = 1.
2. Suppose [x1, x2] is the first interval that β∗(x) > x, and
xp is the point in this interval satisfying β

′∗(xp) = 1. Let
o denote the value of β∗(x) at xp (i.e., o = β∗(xp)), and
then calibrate β∗(x) = x,∀x ∈ [x1, xp] and β∗(x) =
β∗(x)− o+ xp,∀x ∈ (xp, 1].

3. Continue to check whether β∗(x) > x starting from x =
xp to x = 1. If there is still some interval with β∗(x) > x,
we calibrate β∗(x) as shown in the previous step.
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Figure 1: An example equilibrium strategy

4. We repeat the checking and calibrating procedure until
β∗(x) ≤ x,∀x ∈ [0, 1].
After the calibration process, we obtain an equilibrium

strategy β∗(x) from β(x), which is shown in Eqn. (19), for
any distribution F . Therefore we have the following theo-
rem.
Theorem 10 M2 has at least one symmetric PNE.

M3: Proportional Allocation, Binary Action Space
Now we study the existence of PNE for the mechanism with
the proportional allocation rule and the binary action space
in the partial-information setting.

For user i, let us consider such a symmetric cut-off equi-
librium strategy (Fudenberg and Tirole 1991):

βi(x) =

{
qi if x ≥ x∗

0 if x < x∗,
(23)

where x∗ is a threshold parameter. Suppose that users j 6= i
follow the above strategy. Then the expected utility of user i
can be written as follows if he/she participates in the game
(xi = qi).

ui(qi; x
∗
) =

N−1∑
k=0

(N − 1

k

)
F (x

∗
)
N−1−k

(1− F (x
∗
))

k
ui(qi, k; x

∗
)

− c def
= y(qi, x

∗
)− c,

(24)
In the above equation, ui(qi, k;x∗) is the expected utility of
user i given another k users participating in the game whose
qualities are larger than x∗. This can be written as

R

∫ 1

x∗
...

∫ 1

x∗

qi
qi + t1 + t2 + . . .+ tk

dF (t1|x∗)...dF (tk|x∗),

where F (t|x∗) represents the conditional probability distri-
bution given one’s type is larger than x∗. In Eqn. (24), when
k = 0, ui(qi, k;x∗) = R, which means that user i gets all
the reward R since no other user participates in the game
(k = 0 means xj = 0,∀j 6= i).

If Eqn. (23) is an equilibrium strategy, the best response
of user i is also to follow the strategy given that all the other
users follow the strategy. That is,

ui(qi;x
∗) =


> 0 if qi ≥ x∗

= 0 if qi = x∗

< 0 if x < x∗
(25)

It is not difficult to get that

• y(qi, x∗) increases w.r.t. qi,

• y(0, 0)− c = −c < 0 and y(1, 1)− c = R− c > 0.

We further assume that F (·|·) is a continuous function; con-
sequently, y(t, t) is continuous. Therefore, there exists an x∗
satisfying the three conditions in Eqn. (25); in turn, this x∗
makes Eqn. (23) a (symmetric) equilibrium strategy. Thus
we have the following theorem.

Theorem 11 M3 has at least one PNE if R > c.

M4: Top-K Allocation, Binary Action Space

We can construct a symmetric equilibrium using a similar
method toM3, which is also a cut-off strategy for everyone:

Theorem 12 Denote the unique root of the following equa-
tion as x∗.

N−1∑
n=N−K

(
N − 1

n

)
F (x)n(1− F (x))N−1−n =

cK

R
(26)

∀i ∈ [N ], we have

β(qi) =

{
qi if qi ≥ x∗

0 if qi < x∗
(27)

is an equilibrium strategy ofM4.

Conclusions and Future work
In this paper, we have studied the UGC mechanisms under a
new framework: users are heterogeneous and the best qual-
ities users can contribute are different from each other. Un-
der this framework, we have considered several mechanisms
involving two allocation rules, two action spaces, and two
information settings. We proved the existence of multiple
PNE for some mechanisms, the existence and uniqueness of
PNE for some mechanisms, and the non-existence of PNE
for some other mechanisms.

As for the future work, there are quite a few interesting
points worth investigating. First, the study on the mecha-
nism with the proportional allocation rule and the continu-
ous action space is missing for the partial-information set-
ting in this paper. We plan to investigate on this setting in
the future. Second, we plan to conduct the efficiency anal-
ysis for those mechanisms whose equilibria are proven to
exist. Third, we plan to study the mixed Nash equilibrium
for the UGC mechanisms. Fourth, we will investigate more
general cost functions (e.g., concave functions). Fifth, we
will make comparisons between different UCG mechanisms
and identify the best one for practical use.
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