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Abstract

Positional scoring rules in voting compute the score of an al-
ternative by summing the scores for the alternative induced
by every vote. This summation principle ensures that all votes
contribute equally to the score of an alternative. We relax this
assumption and, instead, aggregate scores by taking into ac-
count the rank of a score in the ordered list of scores ob-
tained from the votes. This defines a new family of voting
rules, rank-dependent scoring rules (RDSRs), based on or-
dered weighted average (OWA) operators, which, include all
scoring rules, and many others, most of which of new. We
study some properties of these rules, and show, empirically,
that certain RDSRs are less manipulable than Borda voting,
across a variety of statistical cultures.

Introduction

Voting rules aim at aggregating the ordinal preferences of a
set of individuals in order to produce a commonly chosen
alternative. Many voting rules are defined in the following
way: given a voting profile P, a collection of votes, where
a vote is a linear ranking over alternatives, each vote con-
tributes to the score of an alternative. The global score of
the alternative is then computed by summing up all these
contributed (“local”) scores, and finally, the alternative(s)
with the highest score win(s). The most common subclass
of these scoring rules is that of positional scoring rules: the
local score of x with respect to vote v depends only on the
rank of x in v, and the global score of x is the sum, over all
votes, of its local scores. Among prominent scoring rules we
find Borda, plurality, antiplurality, and k-approval. However,
there are occasionally undesirable features of scoring rules.

Example 1 Four travelers have been asked to try six restau-
rants and to rank them for TripAdvisor.com. The result-
ing profile is P = hacbde f ,bcade f ,dcaeb f ,ebad f ci, where
�1= hacbde f i means that the voter’s preferred alternative
is a, followed by c etc. The organizers of the competition
feel that the highest and lowest ranks given to each candi-
date should count less than median scores. Therefore, they
feel that c should win, followed by b, followed by a, then d,
then by e, and finally by f . Neither Borda (which would elect
a), nor k-approval for any k, gives this exact ranking.
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However, if we first compute the four local Borda scores
of the six candidates disregarding the two most extreme
scores for each, then we get the desired ranking. More gener-
ally, we can weight the scores according to their ranks in the
ordered list of scores; for instance, the two extreme scores
may have a weight 1/6 each while the middle scores would
have a weight 1/3 each. This rank dependent weighting can
be done in a natural way by coupling positional scoring rules
together with ordered weighted average operators (OWAs)
(Yager 1988), to create Rank Dependent Scoring Rules (RD-
SRs). Each RDSR is characterized by the combination of a
vector of both scores s,si 2 s,� 0 and weights w,wi 2w� 0.

RDSRs constitute an important class of aggregation pro-
cedures that are used commonly. Artistic sports in the
Olympics, such as diving and skating, are judged by first
removing the high and low scores and averaging the remain-
ing scores achieved. Before recent changes, the London In-
terbank Offer Rate (LIBOR) inter-day bank, responsible for
setting interest rates for most financial markets in the world,
was computed (and manipulated) by soliciting 18 estima-
tions of price, removing the high and low 4, and averaging
the remaining 10 (Anonymous 2012). Biased aggregators
such as RDSRs, a new area of study, are commonly used in
internet recommendation settings such as Yelp! and TripAd-
visor, and may affect rating behavior (Garcin et al. 2013).

Order weighted averages have been studied in the con-
text of cardinal utilities (Yager 1988). In this paper we use
OWAs to aggregate scores obtained by candidates according
to their ranks in the votes. This requires us to export these
rank dependent functions from cardinal settings to ordinal
settings, which allows us to apply rank dependent functions
in settings where eliciting cardinal utilities is not feasible
or expressible. Casting these functions as voting rules lets
us study these aggregation procedures with tools and tech-
niques we use to study voting rules in social choice. Rank
dependent functions have received much attention in multi-
criteria decision making (e.g., Yager et al. (2011)) and deci-
sion under uncertainty (e.g., Diecidue and Wakker (2001)).

Because w can give less weight to more extreme ranks
given to an alternative,1 we call these vectors extreme-
averse. We expect that rules using extreme-averse vectors

1We could also give more weight to more extreme ranks given
to an alternative, which is arguably much less desirable.
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will typically be less often manipulable by small voter coali-
tions than the corresponding rules obtained for a uniform w.

Next, we formalize the notion of combining positional
scoring rules with OWAs to create rank dependent scor-
ing rules (RDSRs). We then provide background for and
study axiomatic properties of this new class of voting rules.
Next, we focus on a particular subclass of RDSRs, called
the “Borda family”, obtained by fixing the scoring vector s

to Borda, and allowing the OWA vector to vary. Then we
give experimental results that show that under several dis-
tributions over profiles, some typical members of the Borda
family are less frequently manipulable by a single voter than
the Borda rule.

Formal Definitions

An election is a pair E = (C,P) where C is the set of candi-
dates or alternatives {c1, . . . ,cm}, |C|= m, and P is a profile
consisting of a set of voters indexed by their preference or-
ders, {�1, . . . ,�n}, |P| = n. Each voter is represented by a
complete strict order (a vote) over the set of candidates.

Many voting systems are positional scoring rules (Smith
1973; Young 1975), where there is a score vector s =
ha1,a2, . . . ,ami, with a1 � a2 � . . . � am and a1 > am,
that assigns points, for each vote, to the alternative placed at
position ai in that vote. The winner(s) are the candidate(s)
maximizing the sum of points awarded over all the voters.
Arguably the most famous positional scoring rules are Borda
and plurality, with sBORDA = hm� 1,m� 2, . . . ,m�mi and
sPLURALITY = h1,0, . . . ,0i.

To combine positional scoring rules with OWAs (Yager
1988), we introduce a weight vector w= hw1,w2, . . .wni that
is normalized, (Ân

i=1 wi) = 1. Through this construction we
are able to maintain the property of anonymity in our voting
rules while at the same time moderating the results based on
the given weight vector over the ranks of candidates.

We formally define RDSRs in Definition 2 as irresolute
social choice functions, that output a possibly empty set of
(co)winners; as usual, irresolute rules can be made resolute
by being combined with a tie-breaking priority mechanism.2

Definition 2 Given a scoring vector s = hs1, . . . ,smi and an
OWA vector w= hw1, . . . ,wni, where m is the number of can-
didates and n the number of voters, we can define a voting
rule Fs,w(P) associated with s and w.

Let P = h�1, . . . ,�ni be a profile. For each voter �i and
alternative c j, let rank(c j,�i) be the rank of c j in vote �i.
Let r(c j,P) = hrank(c j,�1), . . . ,rank(c j,�n)i be the vector
of ranks received by candidate c j and r"(c j,P) be the sorting
of r(c j,P) in non-decreasing order such that the elements
r"1  r"2  . . . r"n.

For candidate c j we create a vector of the scores asso-
ciated with the ranks in all the votes to create the rank
score vector, S(c j,P) = hsrank(c j ,�1), . . . ,srank(c j ,�n)i. In or-
der to apply the OWA operators we need to sort S(c j,P) in

2As the composite scores also allow us to completely rank al-
ternatives, RDSRs can also be defined as social welfare functions,
that produce a set of weak orders on the set of alternatives.

non-decreasing order. Thus let S"(c j,P) be a reordering of
S(c j,P) where the elements S"

1  S"
2  . . . S"

n.
We can now define the score for each candidate c j as:

Ts,w(c j,P) = w ·S"(c j,P) =
n

Â
i=1

wi ⇥S"
i(c j,P)

and Fs,w selects the alternative(s) maximizing Ts,w(x,P).

Thus, w1 is associated with the worst score that an alter-
native receives, w2 to the second worst score, etc. We use
Pareto dominance to compare two score vectors: a vector
a = ha1, . . . ,ani dominates another vector b = hb1, . . . ,bni
if, for all i, ai � bi and ai > bi for some i.

Example 3 As in Example 1, let m = 6, n = 4 and P =
hacbde f ,bcade f ,dcaeb f ,ebad f ci. Now, let s = sBORDA =
h5,4,3,2,1,0i, and w = h0, 1/4, 1/4, 1/2i.

w = h 0 1/4 1/4 1/2 i Ts,w(x)
S"(a) = h 3 3 3 5 i 4.0
S"(b) = h 1 3 4 5 i 4.25
S"(c) = h 0 4 4 4 i 4.0
S"(d) = h 2 2 2 5 i 3.5
S"(e) = h 1 1 2 5 i 3.25
S"( f ) = h 0 0 0 1 i 0.5

Therefore, the (unique) winner is b. If we chose w0 =
wOLYMPIC = h0,1/2, 1/2,0i, then the scores are respectively
3.0,3.5,4.0,2.0,1.5,0.0 and the winner is c (followed by
badef).

So far, we have used weight vectors where we drop some
extreme rankings. RDSRs are much more general than this.
There are several interesting cases that occur based on set-
tings to w. We define two families of OWA vectors and then
discuss a few specific cases of induced voting rules.

k-Uniform Interval (wk-INTERVAL

): Given parameter k,
we drop k scores at the beginning and ending of the OWA
operator: w = h01, . . . ,0k, 1/n�2k, . . . , 1/n�2k,01, . . . ,0ki. This
is a proper generalization of wOLYMPIC and allows us to cap-
ture other rules that are used in practice such as the LIBOR
interest rate setting aggregation rule (Anonymous 2012).
As specific cases of k-uniform intervals we have: the uni-
form vector wAVERAGE = h1/n, . . . , 1/ni, obtained for k = 0; the
Olympic Average wOLYMPICh0, 1/n�2, . . . , 1/n�2,0i; and the
median (wMEDIAN) wn+1/2 = 1 when n is odd and w(n/2)+1 = 1
when n is even, with wi = 0 for all other i. Using wAVERAGE

leads to recovering classical positional scoring rules.
k-Median (wk�MEDIAN

): Given k 2 {1, . . . ,n}, let
wk�MEDIAN = h01,02, . . . ,0k�1,1k,0k+1, . . . ,0ni.

When k = n, then under the condition s1 > s2, we get
the nomination rule where the co-winners are the candidates
that are ranked first (and thus have highest score) by at least
one voter. More generally, if s1 = . . . = si > si+1, then the
co-winners are the candidates ranked among the top i candi-
dates by some voter. Note that F

s,wNOMINATION = F
t,wNOMINATION

for any two scoring vectors s, t such that s1 > s2 and t1 > t2.
When k = 1, we recover a rule sometimes called “max-

imin” (Congar and Merlin 2012), that we prefer to call
“maximin-score” (so that it is not confused with the
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Simpson-Kramer rule, which is also often called “max-
imin”), where all co-winners maximize the least score they
receive, or equivalently, minimize the largest rank they re-
ceive. Note that this is independent of the setting of s, that
is, for any two strictly decreasing scoring vectors s, t, we
have F

s,wMAXIMIN = F
t,wMAXIMIN .

Finally, when n is odd, for k = n+1
2 we obtain again the

median rule, that for which the co-winners maximize their
median rank; again, this is “almost” independent of the set-
ting of s (and fully independent of the setting of s under the
restriction that all scores of s are distinct).

The median rank rule is reminiscent of the majority judg-
ment rule proposed by Balinski and Laraki (2007). However,
there is a crucial difference: majority judgment is defined for
a cardinal profile where each voter gives a score to each al-
ternative. The RDSRs we map from ordinal profiles, as it is
common in voting — this is important, especially when it
comes to position our voting rules with respect to others.

M -scoring rules: Taking

wM = h11,12, . . . ,1bn/2+1c,0bn/2+2c, . . . ,0ni
we obtain the family of M -scoring rules defined in (Elkind,
Faliszewski, and Slinko 2011).

Properties of RDSRs

There are many properties surveyed in the social choice lit-
erature. A rule is said to have or obey a property if the prop-
erty holds for all possible profiles. We focus on properties
important to us, and refer the reader to texts in the literature
for a more comprehensive survey, e.g., (Moulin 1991).

Some basic fairness criteria that most sensible voting rules
obey are: anonymity, insensitivity to permutations of the set
of voters in a profile P; neutrality, insensitivity to permuta-
tions of the set of candidates C; and universal domain, every
candidate in C can be a winner. Condorcet consistency states
that, when one alternative is majority pair-wise preferred to
all other candidates, that alternative is the unique winner.
Monotonicity states that, given a profile P and winning can-
didate x, if we modify any set of votes in P to produce P0

where the only change is promoting x, then x is still the win-
ner of the election run on the profile P0.

Other properties concern the behavior of voting rules
when splitting, combining, and expanding the given profiles.
Reinforcement states, given two disjoint profiles P1 and P2,
if F(P1)\F(P2) 6= /0 then F(P1 [P2) = F(P1)\F(P2). Ho-
mogeneity states, given a profile P, multiplying all voters in
the profile any number of times should not change the result.

Reinforcement and homogeneity concern variable elec-
torates and are not immediately applicable to RDSRs, which
are defined for a fixed value of n. However, they apply to
families of rules {w(n),n � 1} of vectors (one for each pos-
sible number of votes), exactly like properties that concern
variable sets of alternatives need scoring rules (typically de-
fined for a fixed m) to be defined as families of rules for a
varying m. All RDSRs satisfy anonymity and neutrality. We
show that monotonicity (satisfied by all scoring rules) ex-
tends to rank-dependent scoring rules.
Proposition 4 For every w and s, Fs,w is monotonic.

Proof. Let P be a profile and x 2 F
s,w(P). Let P0 be ob-

tained by raising x from rank i to rank i� 1 in one of the
votes, leaving everything else unchanged. Let j be the num-
ber of votes in P who rank x in the first i � 1 positions.
Then S

"(x,P) = hS"
1, . . . ,S"

n� j, . . . ,S"
ni, with S

"
n� j = si,

and S

"(x,P0) = hS"0
1, . . . ,S

"0
n� j, . . . ,S

"0
ni with S

"0
k = S

"
k for

all k 6= n� j and S

"0
n� j = si�1. Because si�1 � si, S

"(x,P0)

weakly Pareto-dominates S

"(x,P0), therefore T
s,w(x,P0) �

T
s,w(x,P). Similarly, T

s,w(x0,P0) T
s,w(x0,P) for any x0 6= x;

therefore, the score of x remains maximal when moving
from P to P0, and x 2 F

s,w(P). q

The following example shows that RDSRs do not neces-
sary fulfill reinforcement nor homogeneity, even for natural
collection of scoring vectors and OWA vectors; a similar re-
sult was shown for M -scoring rules in (Elkind, Faliszewski,
and Slinko 2011).

Example 5 Set wOLYMPIC and sBORDA. Let C = {a,b,c,d,e}
and P = habcde,bcade,deacbi. This gives us S"(a,P) =
h2,2,4i, S"(b,P) = h0,3,4i, S"(c,P) = h1,2,3i, S"(d,P) =
h1,1,4i, and S"(e,P) = h0,0,3i, thus, Ts,w(a,P) = 2,
Ts,w(b,P) = 3, Ts,w(c,P) = 2, Ts,w(d,P) = 1, Ts,w(e,P) = 0,
and the winner is b.

Now, let 3 ⇥ P be the 9-voter profile obtained
by replacing each vote in P by three identical
votes. We now have S"(a,P) = h2,2,2,2,2,2,4,4,4i,
S"(b,P) = h0,0,0,3,3,3,4,4,4i, etc. Thus, Ts,w(a,P) = 18/7,
Ts,w(b,P) = 17/7, Ts,w(c,P) = 16/7, Ts,w(d,P) = 11/7,
Ts,w(e,P) = 6/7, and the winner is a.

Example 5 shows that some natural RDSRs are not homo-
geneous, and, a fortiori, do not satisfy reinforcement. This
implies that the class of RDSR contains elements that are
not generalized scoring rules (Xia and Conitzer 2009).

Proposition 6 For every m � 3 and n � 5, no rule Fs,w is
Condorcet-consistent.
Proof. Assume n � 5 and n 6= 8. Let X = {x1, . . . ,xm}.
Let k = b n

3c and q = n� 3k (note that q  2); let P be the
following profile: we have k votes x1 � x2 � . . .� xm, k votes
xm � x1 � . . . � xm�1 and n� 2k = k+ q votes x2 � . . . �
xm�2 � x1 � xm. Because n � 5 and n 6= 8, we have 2k >
n
2 and, a fortiori, 2k + q > n

2 , therefore x1 is a Condorcet
winner. Now, the nondecreasingly reordered score vector for
x1 is hn�2k⇥sm�1,k⇥s2,k⇥s1i and that of x2 is hk⇥s3,k⇥
s3,n�2k⇥ s1i, therefore the scores of x1 and x2 are

T
s,w(x1) = Âk+q

i=1 wism�1 +Â2k+q
i=k+q+1 wis2 +Ân

i=2k+q+1 wis1

T
s,w(x2) = Âk

i=1 wis3 +Â2k
i=k+1 wis2 +Ân

i=2k+1 wis1.

and T
s,w(x1)�T

s,w(x2)

= Âk
i=1 wi(sm�1 � s3)+Âk+q

i=k+1 wi(sm�1 � s2)

+Â2k
i=k+q+1 wi(s2 � s2)+Â2k+q

i=2k+1 wi(s2 � s1)
+Ân

i=2k+q+1 wi(s1 � s1).

None of the five terms can be strictly positive, therefore
T

s,w(x1)�T
s,w(x2) 0, which entails F

s,w(P) 6= {x1}, which
shows that whatever the value of w and s, F

s,w(P) is not
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Condorcet-consistent. The proof for n= 8 is similar, but tak-
ing 2 votes x1 � x2 � . . .� xm, 3 votes xm � x1 � . . .� xm�1,
and 3 votes x2 � . . .� xm�2 � x1 � xm. q

This result generalizes the known result from Fishburn
(Fishburn 1974) and Moulin (Moulin 1991) that no scoring
rule is Condorcet-consistent.

The Borda Family

IThis section focuses on the subclass of RDSRs obtained by
fixing the scoring vector to match the Borda scoring vector
sBORDA = hm� 1,m� 2, . . . ,m�mi. Maximizing an OWA
applied to scores is equivalent to minimizing an OWA ap-
plied to ranks, hence this family (all RDSRs realizable us-
ing a Borda scoring rule) is particularly meaningful (besides
the importance of the Borda rule in voting). A first question
is, are there any positional scoring rules, apart from Borda,
which belong to the Borda family? The answer is, somewhat
surprisingly, positive, when n and m are both fixed.

Proposition 7 Let n and m be fixed, and de-
fine: wLEXIMIN = hmn�1/W ,mn�2/W , . . . ,m/W , 1/Wi and
wLEXIMAX = h1/W ,m/W , . . . ,mn�2/W ,mn�1/Wi, where
W = 1 + m + . . . + mn�1. Then FsBORDA ,wLEXIMIN and
FsBORDA ,wLEXIMAX are classical scoring rules, associated
with the scoring vectors: sLEXPL = hnm�1,nm�2, . . . ,n2,n,1i
and sLEXAPL = hnm�1,nm�1 �n, . . . ,nm�1 �nm�2,0i.

Proof. Consider F
sBORDA ,wLEXIMIN . For any profile P and in-

teger k, let Ak(x,P) be the number of votes in P in which x
is ranked in position k, and Bk(x,P) = Â jk Ak(x,P) be the
number of votes in P in which x is ranked in position  k.
Recall: ri(x) is the ith best rank given to x, and m�ri(x) the
ith best Borda score given to x. Note that we have ri(x) = k
if and only if (1) Bk�1(x,P)< i and (2) Bk(x,P)� i.

We claim that (1) for any x,y, we have
T

sBORDA ,wLEXIMIN(x)> T
sBORDA ,wLEXIMIN(y) if and only if there is

a k  m� 1 such that (a) for all i < k, Ai(x,P) = Ai(y,P)
and (b) Ak(x,P)> Ak(y,P).

Assume (a) and (b) hold for some k. Let
i⇤ = Bk(y,P) + 1. Then we have ri⇤(x) = k and
ri⇤(y) � k + 1, and for all i  i⇤, ri(x) = ri(y).

Now, T
sBORDA ,wLEXIMIN (x)�T

sBORDA ,wLEXIMIN (y)
= 1

W Ân
i=1 mn�i(m� ri(x))� (m� ri(y))

= 1
W Ân

i=1 mn�i(ri(y)� ri(x))

= 1
W

⇣
mn�i⇤ (ri⇤ (y)� ri⇤ (x))+Âi>i⇤ mn�i(ri(y)� ri(x))

⌘

� 1
W

⇣
mn�i⇤ �Âi>i⇤ mn�i(m�1)

⌘

> 0.

Conversely, if (a) and (b) do not hold then for all k, we
have Bk(x,P)  Bk(y,P), therefore, for all i, ri(x) � ri(y),
which implies T

sBORDA ,wLEXIMIN(x) T
sBORDA ,wLEXIMIN(y).

Now, we claim that (2) the total score according to the
scoring rule associated with sLEXPL, T

sLEXPL(x)> T
sLEXPL(y) if

and only if there is a k  m� 1 such that (a) for all i < k,
Ai(x,P) = Ai(y,P) and (b) Ak,P(x)> Ak,P(y).

Assume (a) and (b). We have T
sLEXPL(x) = Âm

i=1 Ai(x,P) ·
nm�i. Note that, for any i, |Ai(x,P)�Ai(y,P)| n.

Then T
sLEXPL (x,P)�T

sLEXPL (y)
= Âm

i=1 Ai(x,P) ·nm�i �Âm
i=1 Ai(y,P) ·nm�i

= (Ak(x,P)�Ak(y,P))nm�k +Âm
i=k+1(Ai(x,P)�Ai(y,P))nm�i

� nm�k +(n) ·nm�k+1

> 0.
Conversely, if (a) and (b) do not hold then for all k 

m � 1, we have Ak(x,P)  Ak(y,P); this means that ei-
ther there is a k  m � 1 such that (a) for all i  k,
Ai(x,P) = Ai(y,P) and (b) Ak(y,P)> Ak(x,P), in which case
T

sLEXPL(y)� T
sLEXPL(x,P) � 0, or that for all k, Ak(x,P) =

Ak(y,P), in which case T
sLEXPL(y)�T

sLEXPL(x)� 0 as well.
(1) and (2) together imply that F

sBORDA ,wLEXIMIN is the scor-
ing rule associated with scoring vector sLEXPL. The proof that
F

sBORDA ,wLEXIMAX is the scoring rule associated with scoring
vector sLEXAPL is similar. q

Example 8 Let m = 4, n = 6, and P =
hxtzy,xtzy,ytxz,ytxz,zyxt, tzxyi. The vectors of ranks,
reordered non-decreasingly, are r"(x) = h1,1,3,3,3,3i;
r"(y) = h1,1,2,4,4,4i; r"(z) = h1,2,2,2,4,4i;
r"(t) = h1,2,2,3,3,4i. We have A1(y,P) = A1(x,P)
and A2(y,P) > A2(x,P), therefore TsLEXPL(y) > TsLEXPL(x);
and we have A1(y,P) > A1(z,P) and A1(y,P) > A1(t,P),
therefore TsLEXPL(y) > TsLEXPL(z) and TsLEXPL(y) > TsLEXPL(t):
the winner for sLEXPL is y. We can also check that the winner
for sLEXAPL is x.

Note that if n is not fixed, then F
sBORDA ,wLEXIMIN and

F
sBORDA ,wLEXIMAX are not scoring rules in the usual sense, be-

cause all weights but one would have to be infinitesimals.
Therefore, when n and m are fixed, at least three rules

are in the intersection of the family of scoring rules and
the Borda family (Borda, lexicopraphic plurality and lexi-
cographic antiplurality), whereas when only m is fixed, only
Borda is known to be both in the family of scoring rules and
in the Borda family. We conjecture that the intersection (on
both cases, n fixed and n not fixed) do not contain any other
rules than these, but did not come up with a proof.

RDSRs and Fairness

The use of the OWA operator in RDSRs allows an election
designer to favor a fair distribution of satisfaction among
voters, whenever this is desirable. The score T

s,w(c j,P) can
act as an inequality measure (see, e.g., (Weymark 1981)) tak-
ing into account the distribution of scores srank(c j ,�k),k =
1, . . . ,n whenever weights satisfy w1 > w2 > .. . > wn > 0.

The intuition behind choosing strictly decreasing weights
can be given as follows: one puts more weight on the least
satisfied voter (smallest score), then on the second least sat-
isfied voter and so on. This is a natural extension of the min
and leximin operators. These operators allow for more com-
pensation between scores assigned to alternatives by the vot-
ers. With a proper choice of weights, there remains some
possibility for the election designer to compensate the dis-
satisfaction of one agent by the satisfaction of some others,
while still preserving a somewhat egalitarian notion of fair-
ness by favoring alternatives that have a well-balanced scor-
ing profile. Specifically, we want to favor candidates whose
vectors of scores do not contain too many extreme scores.
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This can be stated more formally using transfers that re-
duce societal inequality, also known as Pigou-Dalton tran-
fers (Moulin 2003), by the following proposition.

Proposition 9 Let P = (�1, . . . ,�n) be a preference profile
and c a candidate such that rank(c,�k) < rank(c,�i) for
some pair of voters (i,k). Then for any candidate c0 such
that vector r(c0,P) and r(c,P) satisfies:

srank(c0,�k) = srank(c,�k)� e
srank(c0,�i) = srank(c,�i) + e
srank(c,� j) = srank(c0,� j), 8 j 2 N \{i,k}

for some e 2 (0,sk � si), then Ts,w(c0,P) > Ts,w(c,P) when-
ever w is strictly decreasing.

Proof. Let L and L0 be the two vectors of Rn defined by
L j = Â j

k=1 S

"
k(c,P) and L0

j = Â j
k=1 S

"
k(c0,P) for all j 2 N.

Since we pass from S

"(c,P) to S

"(c0,P) using a Pigou-
Dalton transfer of size e from component srank(c,�k) to com-
ponent srank(c,�i) then we know that L0 Pareto-dominates L
(Marshall and Olkin 1979; Shorrocks 1983).

Now, let w

0 be the vector derived from w by setting: w

0
n =

wn and w

0
j = w j �w j+1 for j = {1, . . . ,n� 1}, we observe

that T
s,w(c,P) = w

0 ·L and T
s,w(c0,P) = w

0 ·L0. Then, due to
the strictly decreasing property on w, we know that w

0
j > 0

for all j 2 N. Hence w

0
j ·L0

j � w

0
j ·L j for all j 2 N, one of

these inequalities being strict by Pareto dominance. Hence
w

0 ·L0 > w

0 ·L and therefore T
s,w(c0,P)> T

s,w(c,P). q

Hence, when using strictly decreasing weights, an alter-
native c maximizing an OWA score T

s,w(c,P) over the set
of alternatives has a scoring vector S

"(c,P) that cannot be
improved in terms of Pigou-Dalton transfer by another vec-
tor S

"(c0,P). This is a way of rewarding fairness in score
aggregation as illustrated in the following Example.

Example 10 Let m = 4, n = 3, P = hacbd,cbad,dbaci, s =
sBORDA, and w = h1/2, 1/3, 1/6i.

w = h1/2 1/3 1/6 i Ts,w(x)
S"(a) = h 1 1 3 i 8/6
S"(b) = h 1 2 2 i 9/6
S"(c) = h 0 2 3 i 7/6
S"(d) = h 0 0 3 i 3/6

Here b is the winner whereas a,b,c would remain indif-
ferent under the Borda rule, while the maximin-score rule
(cf. Footnote 4) would also be indifferent between a and b.
Note that the Leximin refinement of the maximin-score rule
would yield the same ranking b � a � c � d as Ts,w, but
this is not always the case. Consider the scoring vectors
S"(x) = h0,3,3i and S"(y) = h1,1,1i. We get Ts,w(x) = 3/2
whereas Ts,w(y) = 1. In such drastic cases where fairness
is strongly conflicting with overall efficiency (measured by
the sum of scores), RDSRs allow the election designer the
possibility of sacrificing a minority of opinions so as to pre-
serve a high average score, thus departing from the Leximin
refinement of the maximin-score rule.

Manipulation: Empirical Experiments

We conjecture that RDSRs that drop the extreme ranks may
be, on average, less manipulable than standard scoring rules.
Since all voting rules are manipulable we can only hope that
by dropping some of the extreme ranks we have defined a
class of voting rules that is manipulable less often in expec-
tation. Since RDSRs are used in practice in situations with
small numbers of voters, such as Olympic artistic scoring
and interest rates, we investigate settings that contain one
manipulator and just a handful of voters.

Take the definition of manipulation from classical social
choice (Barberà 2011): “given a profile, can the manipula-
tor change her vote so that the outcome is better than with
her original, sincere, vote?” This requires lifting preferences
over alternatives to sets of alternatives. We use the defini-
tion from Duggan and Schwartz (2000) known as the op-
timistic manipulator assumption (also known as the non-
unique winner model in computational social choice). For-
mally, a manipulation by voter i exists if if there is a vote
�0

i and candidate p such that p 2 F
s,w({P\ �i}[ �0

i) and
rank(p,�i)> rank( j,�i) for all j 2 F

s,w(P).
Worst-case results about the hardness of manipulation

abound in social choice (Bartholdi, Tovey, and Trick 1989;
Conitzer, Sandholm, and Lang 2007; Faliszewski and Pro-
caccia 2010) but these results may not reflect the cost
in practice to compute manipulations (Walsh 2011; Mat-
tei, Forshee, and Goldsmith 2012; Procaccia and Rosen-
schein 2007). Many such analyses assume that all prefer-
ences are equally likely, but that is not supported by stud-
ies in behavioral social choice (Regenwetter et al. 2006;
Popova, Regenwetter, and Mattei 2013) or studies on real
data (Mattei 2011; Regenwetter et al. 2006). In order to un-
derstand how the manipulability RDSRs changes with re-
spect to the underlying distribution of votes we use five gen-
erative statistical cultures to create profiles for our testing.

We study manipulation under several assumptions about
the distribution of preferences over the m candidates. The
Impartial Culture (IC) assumes the probability of observ-
ing any of the m! preference orders is equally likely for each
voter; namely p = 1

m! . This is a worst case assumption — we
known nothing about the feelings of the voters so we assume
no bias in the generation process. The Impartial Anony-

mous Culture is a strict generalization of IC which assumes
the probability of observing any probability distribution over
the m! possible orders is equally likely (Berg 1985).

The Mallows Mixture Models assumes there is a true
ranking and that individuals deviate from the ground truth
with decreasing probability as the ranking moves away from
the reference. Formally, given reference rankings s1, . . .sn,
probabilities f1, . . . ,fn, and mixture model (discrete proba-
bility distribution) p1, . . . ,pn, we generate rankings with a
Kendall Tau distance t = (s ,s 0) from the reference ranking
that is proportional to f t

i . We select from the n models ac-
cording to the given probability distribution (Mallows 1957;
Lu and Boutilier 2011). We use two flavors of Mallows Mod-
els in our experiments: a pure Mallows model with one ref-
erence order and a Mallows Mixture with five.

Single Peaked Impartial Culture assumes each single
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Figure 1: Graphs showing the frequency of manipulation for OWAs using the wk-INTERVAL weight vector versus normal Borda
scoring for instances with 10 voters. Generally, as we increase k towards the median we have less opportunity for manipulation.
This relationship becomes particularly strong as we increase the correlation among the votes.

peaked preference profile compatible with m candidates is
equally likely. Single-peakedness is an important domain re-
striction introduced by Black (1948) and widely studied in
the computational social choice community for its strategic
(Faliszewski et al. 2011) and empirical properties (Mattei
2011). Intuitively, single-peakedness is the idea that all vot-
ers have a point along a shared axis where they would be
happiest, and rank candidates farther from this point worse.

In Figure 1 we compare the manipulability of the Borda
scoring vector with OWAs using variants of the wk-INTERVAL
weight vectors. For each of the statistical cultures men-
tioned, we generate 1000 random instances and test, via
brute force search, whether a single agent that is randomly
drawn from the set of voters can successfully manipulate the
instance. Any election where the outcome is the same as the
manipulator’s honest preference was discarded and a new in-
stance generated. Thus, in all 1000 elections, the results are
never the same as the manipulators true preference.

We see that, as we induce more correlation between
the voters, we decrease the opportunities for manipulation.
Thus, in the limit for a fixed dispersion parameter, a Mallows
Mixture with a large number of reference orders tend more
towards the IC model (all orders are increasingly, equally
likely), while a Mallows model with a single reference will
have a more tightly correlated set of votes, tending towards
profiles that exhibit the Single-Peaked domain restriction.

Even with the decreased opportunities for manipulation in
these correlated models, RDSRs do better when we drop a
small percentage of the extreme ranks. This is probably be-
cause, in these small settings, one extreme voter can move a
particular candidate up or down based on an extreme rank.
If a particular candidate is receiving 1’s and 2’s on average
and we give him a 9, then this score is very out of line with
the feelings of the group. However, using wk-INTERVAL vec-
tors we can downplay these extreme scores and move more
towards the median view of all the voters. Similar results
were shown by Cervone et al. (2012) in their work on voting

rules that use the mediancenter to aggregate preferences.
We ran the same experiment for settings with 20 and 30

voters. As expected, as the pool of voters grows larger, the
opportunities for manipulation decrease. In the uncorrelated
models there is still a (relatively) large chance for manip-
ulation; when we go to the correlated models we eliminate
these opportunities. This may be why variants of wk-INTERVAL
are used for artistic sports in the Olympics and other places
where there is general consensus about technical ability with
small perturbations in the final orderings of the individual
voters. In these settings, as our experiments indicate, mix-
ing scoring rules with OWA vectors can help to eliminate
incentives for individuals to misreport their preferences.

Conclusion

We defined and analyzed a broad class of voting rules, RD-
SRs, that take into account the weighted rank that a can-
didate receives in the ordered list of scores obtained from
a profile of voters. RDSRs include many frequently used
rules, including positional scoring rules and Olympic style
scoring. We showed that some RDSRs, which drop extreme
ranks, seem less manipulable in practice than traditional
scoring rules. We would like to have a complete axiomatic
characterization of this class of rules so that we can correctly
position it with respect to traditional scoring rules and other
families of aggregation procedures. We plan to extend our
empirical analysis with additional statistical models and data
from real-world elections (Mattei and Walsh 2013).
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