
Regret Transfer and Parameter Optimization

Noam Brown
Robotics Institute

Carnegie Mellon University
noamb@cs.cmu.edu

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
sandholm@cs.cmu.edu

Abstract
Regret matching is a widely-used algorithm for learning how
to act. We begin by proving that regrets on actions in one
setting (game) can be transferred to warm start the regrets
for solving a different setting with same structure but differ-
ent payoffs that can be written as a function of parameters.
We prove how this can be done by carefully discounting the
prior regrets. This provides, to our knowledge, the first prin-
cipled warm-starting method for no-regret learning. It also
extends to warm-starting the widely-adopted counterfactual
regret minimization (CFR) algorithm for large incomplete-
information games; we show this experimentally as well.
We then study optimizing a parameter vector for a player in
a two-player zero-sum game (e.g., optimizing bet sizes to
use in poker). We propose a custom gradient descent algo-
rithm that provably finds a locally optimal parameter vector
while leveraging our warm-start theory to significantly save
regret-matching iterations at each step. It optimizes the pa-
rameter vector while simultaneously finding an equilibrium.
We present experiments in no-limit Leduc Hold’em and no-
limit Texas Hold’em to optimize bet sizing. This amounts to
the first action abstraction algorithm (algorithm for selecting
a small number of discrete actions to use from a continuum of
actions—a key preprocessing step for solving large games us-
ing current equilibrium-finding algorithms) with convergence
guarantees for extensive-form games.

Introduction
Consider an agent that has a number of actions available to
choose from. Regret matching (Hart and Mas-Colell 2000)
is a widely-used, general algorithm for learning, over time,
how to act. While regret is a broadly applicable concept, for
this paper we will view it through the lens of game theory.
The agent is a player in a game and his payoffs can depend
on his and the other players’ actions. This setup subsumes
two important special cases: a game against nature and a
two-player zero-sum game. To start, we do not restrict the
number of players and we do not assume the game is zero
sum. Later we will present certain results that are specific to
two-player zero-sum games.

A normal-form (aka. bimatrix) game is defined as follows.
The game has a finite set N of players, and for each player
i ∈ N a set Ai of available actions. The game also has:

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• For each player i ∈ N a payoff function
ui : Ai × A−i → <, where A−i is the space of
action vectors of the other agents except i. Define
∆i = max〈ai,a−i〉 ui(ai, a−i) − min〈ai,a−i〉 ui(ai, a−i)
and define ∆ = maxi ∆i.

• For each player i, a strategy σi is a probability dis-
tribution over his actions. The vector of strategies
of players N \ {i} is denoted by σ−i. We define
ui(σi, σ−i) =

∑
a,a−i

pσi(a)pσ−i(a−i)ui(a, a−i). We
call the vector of strategies of all players a strategy profile
and denote it by σ = 〈σi, σ−i〉. Moreover, the value of σ
to player i is defned as vi(σ) = ui(σi, σ−i).
In regret-minimization algorithms, a strategy is deter-

mined through an iterative process. While there are a number
of such algorithms (e.g., (Greenwald, Li, and Marks 2006;
Gordon 2007)), this paper will focus on a typical one called
regret matching (specifically, the polynomially weighted av-
erage forecaster with polynomial degree 2). We will now re-
view how regret matching works, as well as the necessary
tools to analyze it.

Let σti be the strategy used by player i on iteration t. The
instantaneous regret of player i on iteration t for action a is

rt,i(a) = ui(a, σ
t
−i)− ui(σt, σt−i) (1)

The cumulative regret for player i on iteration T for action
a is

RcT,i(a) =
T∑
t=1

rt,i(a) (2)

The average regret, or simply regret, for player i on iteration
T for action a is

RT,i(a) =
1

T

T∑
t=1

rt,i(a) (3)

Also,RcT,i = maxa{RcT,i(a)} andRT,i = maxa{RT,i(a)}.
In the regret-matching algorithm, a player simply picks

an action in proportion to his positive regret on that action,
where positive regret is Rt,i(a)+ = max{Rt,i(a), 0}. For-
mally, at each iteration t+ 1, player i selects actions a ∈ Ai
according to probabilities

pt+1(a) =

{
Rt,i(a)+∑

a′∈Ai
Rt,i(a′)+

, if
∑
a′∈Ai Rt,i(a

′)+ > 0

1
|A| , otherwise

(4)

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

594

Analysis of regret matching uses a potential function

Φ(~RT,i) =
∑
a∈Ai

RT,i(a)2
+T

2 =
∑
a∈Ai

RcT,i(a)2
+ (5)

As shown in (Cesa-Bianchi and Lugosi 2006, p. 10), one can
bound the potential function in regret-matching by

Φ(~RT,i) ≤
T∑
t=1

∑
a∈Ai

rt,i(a)2 ≤ ∆2
i |Ai|T (6)

From this, one can also bound regret as

RT,i ≤ RT,i+ ≤
∆i

√
|Ai|√
T

(7)

Thus, as T →∞, RT,i+ → 0.

Contributions and Outline of This Paper
In the next section we prove that regrets on actions in one
setting (game) can be transferred to warm start the regrets
for solving a different setting with same structure but dif-
ferent payoffs that can be written as a function of parame-
ters. We prove how this can be done by carefully discounting
the prior regrets. This provides, to our knowledge, the first
principled warm-starting method for no-regret learning. It
also extends to warm-starting the widely-adopted counter-
factual regret minimization (CFR) algorithm (Zinkevich et
al. 2007) for large incomplete-information games; we show
this experimentally as well. CFR is one of the two leading
algorithms for finding near-equilibrium in large imperfect-
information games (the other algorithm is based on different
principles (Hoda et al. 2010)); CFR is much more commonly
used.

In the section after that, we study optimizing a parameter
vector for a player in a two-player zero-sum game (e.g., op-
timizing bet sizes to use in poker). We propose a custom gra-
dient descent algorithm that provably finds a locally optimal
parameter vector while leveraging our warm-start theory to
significantly save regret-matching iterations at each step. It
optimizes the parameter vector while simultaneously finding
an equilibrium. We present experiments in no-limit Leduc
Hold’em and no-limit Texas Hold’em to optimize bet sizing.
This amounts to the first action abstraction algorithm (algo-
rithm for selecting a small number of discrete actions to use
from a continuum of actions—a key preprocessing step for
solving large games using current equilibrium-finding algo-
rithms (Sandholm 2010)) with convergence guarantees for
extensive-form games. Prior action abstraction algorithms
(bet sizing algorithms) have either had no convergence guar-
antees (Hawkin, Holte, and Szafron 2011; 2012) or have
been defined only for a much narrower game class, stochas-
tic games (Sandholm and Singh 2012).

Regret Transfer:
Initializing Regrets of Actions Based on
Regrets Computed for Related Settings

We consider a space of games with identical structure but
potentially differing rewards. Suppose that we ran T itera-
tions of regret matching on a game Γ1 and then made a very

small change to the rewards so that we are now in a game
Γ2. Intuitively, if the change was small, then most of what
we learned from Γ1 should still apply to Γ2, though perhaps
it will not be quite as relevant as before. Indeed, in this sec-
tion we build on that intuition and prove that we can transfer
most of what we learned, and therefore avoid restarting re-
gret matching from scratch. We will show that this can be
done by appropriately discounting the former regrets.

The fundamental idea is that since we make only a small
change to the payoffs, if the same exact sequence of strate-
gies that were played in the T iterations of regret matching
in game Γ1 were repeated in Γ2 (ignoring the regrets when
choosing actions in each iteration), then we can still bound
the regret in Γ2. If we then carefully scale those iterations
down so that they “weigh less”, we can fit them into a bound
that is equivalent to having played T ′ ≤ T iterations of re-
gret matching from scratch in Γ2. We then prove that we can
continue regret matching for some number of iterations T2

in Γ2, and our resulting bound is equivalent to having played
T ′ + T2 iterations of regret matching from scratch in Γ2.

Key to this algorithm is the assumption that we can re-
play the exact sequence of strategies from the T iterations
of regret matching from Γ1 in Γ2. In general, this is not
worthwhile to implement, as it would be better to simply
play T iterations of regret matching in Γ2 from scratch.
However, we can “replay” the T iterations in O(1) in the
case we mentioned previously, where payoffs are all func-
tions of a parameter vector ~θ, and we change only the value
of this vector. In this case, we can store the regret we ac-
cumulate in Γ1 as a function of this vector. For example,
consider the case of ~θ being just a scalar θ. If all payoffs
are of the form ui,〈ai,a−i〉 = αi,〈ai,a−i〉θ + βi,〈ai,a−i〉, then
we can store regret for every action with separate values
Rα(a) and Rβ(a). When we access the regret to determine
the action for the next iteration, we can simply calculate
R(a) = Rα(a)θ1 + Rβ(a), where θ1 is the value of θ in
Γ1. This way, if we move to Γ2 where θ is some different
value θ2, then we can simply evaluate Rα(a)θ2 + Rβ(a) to
get regret.

We will now proceed to proving that regrets can be trans-
ferred across settings by appropriately discounting the iter-
ations conducted at prior settings. First, we will present a
result that will be useful in our proof. The bound (6) on
the potential function requires us to play according to regret
matching at each iteration. But suppose, instead, we played a
sequence of arbitrary strategies first and only then start play-
ing according to regret matching. We will now show that we
can still bound the potential function.
Lemma 1. Suppose player i is given an initial potential
Φ(~RT0,i) ≤ wT0|Ai|∆2

i for a game where T0 iterations
have been played and w is an arbitrary scalar. If regret
matching is used in all future iterations, then at iteration
T0 + T , we can bound the potential:

Φ(~RT0,i + ~RT,i) ≤ (wT0 + T)|Ai|∆2
i (8)

All proofs are presented in an extended version of this
paper.

595

We now show specifically how to weigh the previous it-
erations. Suppose after T iterations we have some regret
RT , and then we modify the game by changing the pay-
offs slightly. We will analyze how one can initialize regret
matching in this new game.

We will find it useful to define weighted average regret:

RwT,T2,i(a) =
w
∑T
t=1 rt,i(a) +

∑T2

t=1 rt,i(a)

wT + T2
(9)

Theorem 1. Say we have played T iterations of regret
matching in a game. Assume all players play the same se-
quence of strategies over T iterations in some other game,
where the structure of the game is identical but the payoffs
may differ. We denote regret in this new game by R′. Con-
sider any weight wi for agent i such that

0 ≤ wi ≤
∆2
i |Ai|T

Φ(~R′T,i)
(10)

If we scale the payoffs of the first T iterations by wi and
then play according to regret matching for T2 iterations,
then weighted average regret in the new game is

R′wT,T2,i ≤
∆i

√
|Ai|√

(wiT + T2)
(11)

This is the same bound achieved from the player playing
wiT + T2 iterations of regret-matching from scratch.

Later in this paper we will find it useful to define wi
in terms of the maximum change in regret. We therefore
present the following proposition.
Proposition 1. Let

δi = max
{

max
a

[R′T,i(a)−RT,i(a)], 0
}

(12)

If we choose

0 ≤ wi ≤
1

1 +
2δi
√
|Ai|
√
T

∆i
+

δ2
i T

∆2
i

(13)

then Theorem 1 still holds.

Warm Start Toward Nash Equilibrium in
Zero-Sum Games
In general-sum games, regret matching converges to a
coarse correlated equilibrium (Gordon, Greenwald, and
Marks 2008). For the case of two-player zero-sum games,
we now strengthen Theorem 1 to show that we get
a warm start toward an approximate Nash equilibrium.
A Nash equilibrium (Nash 1950) is a strategy profile
σ such that ∀i, ui(σi, σ−i) = maxσ′i∈Σi ui(σ

′
i, σ−i).

An ε-Nash equilibrium is a strategy profile σ such that
∀i, ui(σi, σ−i) + ε ≥ maxσ′i∈Σi ui(σ

′
i, σ−i).

It is well known that if both players’ regrets in a two-
player zero-sum game are bounded by ε, then the average of
their strategies across all iterations form a 2ε-Nash equilib-
rium (see, e.g., (Waugh 2009, p. 11)). We now prove we can
obtain a similar result after regret transfer.

We first define a weighted average strategy as the aver-
age of a series of strategies where the first T iterations are
weighted by w and the latter T2 iterations by 1. Formally,
we define σwT,T2,i

such that

pσwT,T2,i
(a) =

w
∑T
t=1 pσt,i(a) +

∑T2

t=1 pσt,i(a)

wT + T2
(14)

Corollary 1. Say both players have played T iterations of
regret matching in a two-player game Γ. Let us transfer re-
gret for both players to a new two-player zero-sum game
with identical structure Γ′ according to Theorem 1, and let
w = mini{wi}. If both players play an additional T2 itera-
tions of regret matching, then their weighted average strate-
gies constitute a 2ε-Nash equilibrium where

ε = max
i

{ ∆i

√
|Ai|√

(wT + T2)

}
From (10), we see that the algorithm allows a range of

valid values for the weight wi. At first glance it may seem
always better to use the largest valid wi so as to get the most
aggressive warm start via discounting the prior iterations by
as little as possible. However, this is usually not the case in
practice. Because regret matching in practice converges sig-

nificantly faster than ∆i

√
|Ai|√
T

, it may be possible to get a
faster practical convergence by choosing a smaller wi, even
if this results in a theoretically worse convergence rate. One
option—consistent with our theory—is to usewi =

Φ(~RT,i)

Φ(~R′T,i)
;

this performed well in our preliminary experiments, but has
the slight downside of requiring repeated calculations of the
potentials. Another option is to calculate wi by replacing ∆i

with average payoff in (13). This performed well in practice
and maintains the theoretical guarantees because wi is guar-
anteed to be within the correct range. An additional benefit
is that this way we express wi as a function of the largest
change in regret, which is typically easy to bound—an as-
pect we will leverage in the next section. Therefore, in the
experiments in the rest of this paper we calculate wi accord-
ing to (13) with estimated average payoff instead of ∆i.1

Generalization to Extensive-Form Games
We now present a corollary that the same algorithm can
be applied to extensive-form games when solved using the
Counterfactual Regret Minimization (CFR) algorithm de-
scribed in (Zinkevich et al. 2007). CFR has emerged as the
most widely used algorithm for solving large imperfect in-
formation games, for example poker (Sandholm 2010). Be-
fore presenting our result, we review extensive-form games
and the CFR algorithm.

Definition of an Extensive-Form Game An extensive
form game is defined as having the following features. This
presentation follows from Osborne and Rubinstein (1994).

1As a computational detail, we scale future iterations by 1
w

rather than scaling previous iterations by w. Both yield identical
results, but the former seems easier to implement.

596

• A finite set N of players.

• A finite set H of sequences, the possible histories of ac-
tions, such that the empty sequence is inH and every pre-
fix of a sequence in H is also in H . Z ⊆ H are the ter-
minal histories (those which are not a prefix of any other
sequences). A(h) = a : (h, a) ∈ H are the actions avail-
able after a nonterminal history h ∈ H .

• A function P that assigns to each nonterminal history
(each member of H \ Z) a member of N ∪ c. P is the
player function. P (h) is the player who takes an action
after the history h. If P (h) = c then chance determines
the action taken after history h.

• A function fc that associates with every history h for
which P (h) = c a probability measure fc(·|h) on A(h)
(fc(a|h) is the probability that a occurs given h), where
each such probability measure is independent of every
other such measure.

• For each player i ∈ N a partition Ii of
{h ∈ H : P (h) = i} with the property that
A(h) = A(h′) whenever h and h′ are in the same
member of the partition. For Ii ∈ Ii we denote by A(Ii)
the setA(h) and by P (Ii) the player P (h) for any h ∈ Ii.
We define |Ai| = maxIi |A(Ii)| and |A| = maxi |Ai|. Ii
is the information partition of player i; a set Ii ∈ Ii is an
information set of player i. We denote by |Ii| the number
of information sets belonging to player i in the game and
|I| = maxi |Ii|.

• For each player i ∈ N a payoff function ui from Z to
the reals. If N = 1, 2 and u1 = −u2, it is a zero-sum
extensive game. Define ∆i = maxz ui(z) − minz ui(z)
to be the range of payoffs to player i.

Counterfactual Regret Minimization In the CFR algo-
rithm (Zinkevich et al. 2007), ui(σ, h) is defined as the ex-
pected utility to player i given that history h has occurred,
and that all players then play according to σ. Next, coun-
terfactual utility is defined as the expected utility given that
information set I is reached, and all players play according
to σ except that player i plays to reach I . Formally, if πσ(h)
is the probability of reaching history h according to σ, and
πσ(h, h′) is the probability of going from history h to his-
tory h′, then

ui(σ, I) =
Σh∈I,h′∈Zπ

σ
−i(h)πσ(h, h′)ui(h

′)

πσ−i(I)

Further, for all a ∈ A(I), σ|I→a is defined to be a strategy
profile identical to σ except that player i always chooses ac-
tion a when in information set I . Immediate counterfactual
regret for an action is defined as

RTi,imm(I, a) =
1

T

T∑
t=1

πσ
t

−i(I)(ui(σ
t|I→a, I)− ui(σt, I))

and for an information set as

RTi,imm(I) = max
a∈A(I)

RTi,imm(I, a)

In CFR, on iteration T + 1 a player at an information set
selects among actions a ∈ A(I) by

pT+1(a) =

R
T,+
i (I,a)∑

a∈A(I) R
T,+
i (I,a)

, if
∑
a∈A(I) R

T,+
i (I, a) > 0

1
|A(I)| , otherwise

A key result is that the regret of an extensive-form game can
be bounded by the game’s immediate regret. Specifically:

RTi ≤
∑
I∈Ii

RT,+i,imm(I)

Moreover, one can bound immediate regret by

RTi,imm(I) ≤
∆i

√
|Ai|√
T

which gives

RTi ≤
∆i|Ii|

√
|Ai|√

T
In CFR, the entire game tree is traversed each iteration,

and each information set is updated accordingly. There are
also many variants of CFR that take advantage of sampling
to improve efficiency (see, e.g., (Lanctot et al. 2009)). In our
experiments, we use chance-sampled CFR, where actions in
chance nodes are sampled rather than being fully traversed.
This variant has also been proven to converge.

Warm Starting for CFR We are now ready to present our
result for extensive-form games.
Corollary 2. Let Γ be an extensive-form game. Suppose
player i has played T CFR iterations in Γ. Assume that all
players play the exact same sequence of strategies in some
other game Γ′ with identical structure but potentially differ-
ent payoffs. We define for each information set Ii ∈ Ii

δIi = max
{

max
a

[RT,imm(Ii, a)−R′T,imm(Ii, a)], 0
}

We also define wIi using δIi according to Theorem 1. Let
wi = minIi{wIi}. If we scale the payoffs of the T iterations
bywi and then play according to CFR for T2 iterations, then
weighted average regret for player i is bounded by

RwT,T2,i ≤
∆i|Ii|

√
|Ai|√

wiT + T2

(15)

If Γ′ is a two-player zero-sum game, then the weighted
average strategies form an ε-Nash equilibrium, with
ε = 2 maxiR

w
T,T2,i

.
Recall that in regret transfer we can replay the iterations

in the new game in O(1) by storing regrets as a function
of ~θ. For example, in the case where ~θ is one-dimensional,
we would need to store two values for regret instead of one,
and therefore require twice as much memory. However, in
extensive-form games, not every information set may be af-
fected by such a change in ~θ. If an information set’s possi-
ble payoffs are all constant (independent of ~θ), even though
there is a variable payoff somewhere else in the game, then
there is no need to use extra memory to store the coefficients
on ~θ at that information set. The exact amount of memory
used thus depends on the structure of the game.

597

Regret Transfer Experiments
We now show experimental results on regret transfer. We
use Leduc hold’em poker (Southey et al. 2005) as the test
problem here. It has become a common testbed because the
game tree is rather large, but small enough that exploitability
of a strategy can be computed, and thereby solution quality
can be measured.

These experiments will show average exploitability as a
function of the number of iterations run. In a two-player
zero-sum game, if v∗i is the value of a Nash equilibrium so-
lution for player i, then exploitability of player i is

ei(σi) = v∗i − min
σ′−i∈Σ−i

ui(σi, σ
′
−i) (16)

Since u1 = −u2 in a two-player zero-sum game, we can
define average exploitability of a strategy profile σ as

ei(σi) + e−i(σ−i)

2

=
v∗1 −minσ′2∈Σ2

u1(σ1, σ
′
2) + v∗2 −minσ′1∈Σ1

u2(σ2, σ
′
1)

2

=
maxσ′1∈Σ1

u1(σ′1, σ2)−minσ′2∈Σ2
u1(σ1, σ

′
2)

2
(17)

In the experiments in this section, we consider warm start-
ing after the allowed bet sizes in our game model have
changed. We first estimated a solution to Leduc with 1 mil-
lion CFR iterations. We then considered a modified form of
Leduc where the bet sizes for the first and second round were
slightly different. Specifically, we changed the first-round
bet from 2 to 2.1 and the second-round bet from 4 to 4.1. In
other words, ~θ changed from 〈2, 4〉 to 〈2.1, 4.1〉. We tested
three approaches to solving this new game. In the first, we
simply solved the game from scratch using CFR. In the sec-
ond, we transferred the regret and average strategy from the
original Leduc game, but did not de-weight them. Finally,
in the third, we transferred regret and average strategy by
de-weighting by w = 0.125, a value chosen by the method
described in the previous section. Figure 1 shows the results.

Figure 1: Regret transfer after increasing the bet size in both
rounds of Leduc Hold’em by 0.1. The average over 20 runs
is shown with 95% confidence intervals. The warm start pro-
vides a benefit that is equivalent to about 125,000 iterations.
In the long run, that benefit becomes visually almost imper-
ceptible on the log scale. Unlike transferring regret without
scaling, our method does not cause long-term harm.

It is clear that while transferring without scaling provides
a short-term improvement, in the long-run it is actually detri-
mental (worse than starting from scratch). In contrast, when
the transferred regret is properly weighed using our method,
we see an equal improvement in the short-term without long-
term detriment. Since the transfer only gives us a head-start
of a fixed number of iterations, in the long run this gain,
of course, becomes negligible (on a logarithmic plot). Nev-
ertheless, if the change is small then this fixed number of
iterations can be a substantial portion of the run.

Parameter Optimization
We now incorporate the result from the previous section into
a custom gradient descent algorithm for two-player zero-
sum games. Our objective is to find the value of a parameter
vector ~θ that results in a locally maximal value for a Nash
equilibrium for a family of games with payoffs that are Lip-
schitz functions of ~θ. For example, we could be optimizing
the bet sizes for a player in no-limit poker. Without loss of
generality, in this section we present everything as if we are
maximizing the parameter vector for Player 1.2

To do this, we will simultaneously solve the parame-
terized game using regret matching (CFR in the case of
extensive-form games), storing regret in terms of ~θ, while
running our gradient descent algorithm. Specifically, at each
step s we will run some number of iterations, ts, of regret
matching. Then, for each θd ∈ ~θ we will calculate an esti-
mated derivative ĝd,s, as we will detail later. We will then
update θd as

θd,s+1 = θd,s + ĝd,s
α

`s
(18)

where `s is a learning rate (analyzed later) and α is any posi-
tive constant. We then multiply the weights of all prior steps
s′ ≤ s by ws, where ws is determined according to (10). So,
the previous step ends up being discounted by ws, the one
before that by ws · ws−1 (because it was multiplied by that
previous ws before), etc.

The number of regret matching iterations we conduct at
step s is

ts = dKs− wsK(s− 1)e (19)

for some constant K.3 Thus, at the end of step s we
will have run an equivalent of Ks regret matching itera-
tions, and by Theorem 1 we have weighted average regret

RwsK(s−1),ts,i
≤ ∆i

√
|Ai|√
Ks

.
We compute the estimated derivative ĝd,s (for each di-

mension d of ~θ separately) as follows. Define ~ξd to be the
unit vector in the vector space of ~θ along dimension θd ∈ ~θ.
In concept, we will estimate the value of the game at two

2The function used to maximize the parameter vector can be
independent of the zero-sum game. It can be maximized for either
player, or parts of it could be maximized for one player or the other.
It could even be maximized to the preferences of some third party.

3Theoretically, any positive constant K works, but in practice
K could be chosen to ensure the overhead of stepping (conducting
the re-weighting, calculating the gradient, etc.) is small compared
to the cost of conducting the regret matching iterations.

598

points ~θs ± s−
1
4 ~ξd. We do this by running the equivalent of

Ks iterations of regret matching at each of the two points.
Then we use the slope between them as the estimated deriva-
tive. We later prove that this converges to the true derivative.

There is a problem, however, because ~θ changes at each
step and running Ks iterations from scratch becomes in-
creasing expensive as s grows. To address this, we could
transfer regret from a maintained strategy at ~θs using The-
orem 1, but even this would be too expensive because s−

1
4

shrinks very slowly. As a better solution to address the prob-
lem, we do the following. For each dimension d we main-
tain a strategy profile σd− for the game at ~θs − s−

1
4 ~ξd and

a strategy profile σd+ for the game at ~θs + s−
1
4 ~ξd, and we

estimate the derivative using those points, as well as transfer
regret from them. At each step s, we run ts iterations of re-
gret matching at each of these 2N points. As ~θs moves, these
points move with it, so they are always at ±s− 1

4 ~ξd from it
along each dimension d, respectively.

The pseudocode of the full algorithm is shown as Algo-
rithm 1. The following theorem proves that Algorithm 1 is

Algorithm 1 Parameter optimization in two-player zero-
sum games

Choose K, `s
Choose U ≤ ∆i // In the experiments we used average payoff of the player.
Initialize s← 1, t← 0
Initialize N-dimensional parameter vector ~θ
Initialize Θ← {~θd− = ~θ − ~ξd, ~θd+ = ~θ + ~ξd : d ∈ {1...N}}
Initialize avg regret tables: ∀p ∈ Θ ∀I ∀a, rp(I, a)← 0
Initialize avg strategy tables: ∀p ∈ Θ ∀I ∀a, σp(I, a)← 0
loop

while t < sK do
for all p ∈ Θ do

rp, σp ← One-Iteration-of-Regret-Matching(rp)

t← t+ 1
for all d in 1 to N do // Loop over the parameters

ĝd ←
vi(σ~θd+

)−vi(σ~θd−
)

2s
− 1

4
// Estimate derivative wrt. θd

θ′d ← θd + ĝd
α
`(s)

// Revise value of parameter θd

for all d in 1 to N do // Narrow the interval around each θd
~θd− ← ~θ′ − ~ξd(s+ 1)−

1
4

~θd+ ← ~θ′ + ~ξd(s+ 1)−
1
4

δ ← max
{

maxp∈Θ,I∈I,a∈A
{
r′p(I, a)− rp(I, a)

}
, 0
}

w ← 1

1+
2δ
√
|A|t
U

+ δ2t
U2

// Calculate weight based on Theorem 1

for all p ∈ Θ, I ∈ I, a ∈ A do
rp(I, a)← wrp(I, a) // De-weight old regret
σp(I, a)← wσp(I, a) // De-weight old average strategy

~θ ← ~θ′, t← wt, s← s+ 1

correct and shows its speed advantage.

Theorem 2. Let Γ~θ be a family of two-player zero-sum
games with identical structure. Assume each payoff is,
across games, an identical function of some N -dimensional
parameter vector ~θ that is bounded so that ∀d, θd ∈ [ad, bd].
Assume also that ∀d, these functions are Lipschitz continu-
ous in θd. Let the learning rate `s be such that `s = Ω(

√
s)

and 1
`s

diverges as s → ∞. Define v∗i (~θ) to be the Nash
equilibrium value of Γ~θ. As s → ∞, Algorithm 1 converges
to a locally optimal ~θ with respect to v∗i (~θ), and to a Nash
equilibrium strategy profile at that ~θ.

Let

ĝd,s =
vi(σd+)− vi(σd−)

2s−
1
4

(20)

and let ĝs = maxd ĝd,s. At each step s, Algorithm 1 con-
ducts O(s

3
2 ĝs

1
`s

) iterations of regret matching.

This represents a substantial improvement over naı̈ve gra-
dient descent. If we were to do gradient descent without re-
gret transfer, we would require Θ(s) iterations at each step,
and thus take Θ(s2) time. With regret transfer, however, if
we use a learning rate `s = s, and even if the gradient did
not converge at any significant rate (although in reality it
does), we only do O(

√
s) iterations at each step, thus taking

O(s
√
s) time overall.

Parameter Optimization Experiments
Leduc Hold’em As we mentioned in the regret transfer
experiments, one can view Leduc as having two parameters:
the first-round bet size θ1 and the second-round bet size θ2.

In the first experiment here, we held θ1 fixed at 2.0 (the
standard in Leduc), and ran Algorithm 1 to optimize θ2. We
used a learning rate ls = s

3
4 ,α = 50, andK = 100. We con-

ducted three runs of the algorithm, starting from three differ-
ent initial values for θ2, respectively. Each run converged to
θ2 = 9.75± 0.01 within 108 iterations (Figure 2).

As a sanity check, we ran CFR on 41 models of the game
where we fixed θ2 ∈ {3.0, 3.25, ..., 12.75, 13.0}. Indeed,
θ2 = 9.75 maximized Player 1’s payoff.

Figure 2: Parameter optimization where θ is the second-
round bet size in Leduc Hold’em.

In the next experiment, we ran Algorithm 1 to simulta-
neously optimize θ1 and θ2. The same learning rate, α, and
K were used as in the previous experiment. Three initial
points were chosen: (θ1, θ2) = (2.0, 4.0), (4.0, 2.0), and
(4.0, 8.0). Within 5 · 108 iterations, all runs converged to
θ1 = 1.69± 0.01 and θ2 = 8.56± 0.01. The results of these
experiments are shown in Figure 3, with θ1 on the bottom
and θ2 on the top. The value of the game at the converged
(θ1, θ2) = (1.69, 8.56) was 0.1645±0.002. This was an im-
provement over the 1-dimensional optimization in the pre-

599

vious experiment, which fixed θ1 = 2.0 and converged to
θ2 = 9.75. The value of the game there was 0.1611±0.002.

Figure 3: Parameter optimization where θ1 is the first-round
bet size in Leduc, and θ2 is the second-round bet size.

No Limit Texas Hold’em We also provide results demon-
strating that our algorithm even scales to two-player no-limit
Texas Hold’em poker. The rules of the game can be found,
for example, in Ganzfried and Sandholm (2013).

The following experiments were done with the betting ab-
straction used by Tartanian5 in the 2012 Annual Computer
Poker Competition. For the card abstraction, we used the
leading algorithm (Johanson et al. 2013) for generating an
imperfect-recall abstraction. We used no abstraction on the
first round of the game (aka “preflop”), i.e., 169 buckets, and
200 buckets for each of the remaining three rounds. This re-
sulted in an abstracted game with roughly 1.4 million infor-
mation sets.

The 2012 betting abstraction allows the first player to act
to either fold, call, raise, or go all-in. The raise amount is set
to 1x the pot. This choice of bet size was based on human in-
tuition, and may not be optimal. In these experiments we ran
Algorithm 1 to find the raise amount that would be optimal
for the first action of the game (in this abstraction).4

No-limit Texas Hold’em with an imperfect-recall card ab-
straction posed a challenge in that evaluating v(σ) is diffi-
cult in large imperfect-recall games. To get around this, we
estimated v(σ) while running CFR at each step using the
same public card samples. This resulted in some noise in the

4As the initial bet size changed, it was necessary to adhere to
the chipstack limitations in No-limit Texas Hold’em. We dealt with
this by maintaining the structure of the game, but limiting all pay-
offs to the size of the chipstack. When the initial bet size increased,
all actions remained valid. However, some actions essentially had
no consequence, as the chipstack limit had already been reached.
When the initial bet size decreased, the all-in actions would never-
theless result in all chips being bet, up to the pre-determined chip-
stack limit. In this way we were able to maintain the structure of the
game across parameter settings. However, when transferring regret,
we did not explicitly consider the constraints of chip stacks. That
is, if regret from an iteration with a parameter of 1.0 was trans-
ferred to a parameter of 1.1, then we would implicitly assume that
the new chipstack was 1.1x the original. This was only the case for
iterations that were transferred, and not for iterations being played
at the current bet size. Moreover, as the parameter converged, this
became an increasingly insignificant issue.

steps.5 Nevertheless, after 109 iterations of chance-sampled
CFR, all 4 runs converged to 0.77± 0.01 (Figure 4).

Figure 4: Parameter optimization where θ is the first action
bet size in no-limit Texas Hold’em. Runs with four different
initializations are shown. The learning rate was s

3
4 . For ini-

tializations at 0.5 and 1, α = 0.3. For initializations at 1.5
and 2.0, α = 1.0.

As a sanity check, we ran CFR on models of the game
with a fixed bet size in {0.5, 0.6, ..., 1.0}. Indeed, 0.8 re-
sulted in the highest expected payoff for Player 1, followed
by 0.7.

Conclusions
Regret matching is a widely-used algorithm for learning how
to act. We began by proving that regrets on actions in one
setting (game) can be transferred to warm start the regrets
for solving a different setting with same structure but dif-
ferent payoffs that can be written as a function of parame-
ters. We proved this can be done by carefully discounting the
prior regrets. This provides, to our knowledge, the first prin-
cipled warm-starting method for no-regret learning. It also
extends to warm-starting the widely-adopted counterfactual
regret minimization (CFR) algorithm for large extensive-
form incomplete-information games. Experiments on Leduc
Hold’em poker verified the benefits of the technique. It pro-
vided a significant head start over running CFR from scratch.
Furthermore, if one were to warm start without our careful
discounting of prior iterations, one would get a warm start
that is no better in the short run than ours, and is worse in
the long run than starting from scratch. Our technique has
no such detriment.

We then studied optimizing a parameter vector for a
player in a two-player zero-sum game (e.g., optimizing bet
sizes to use in poker). We proposed a custom gradient de-
scent algorithm that provably finds a locally optimal param-
eter vector while leveraging our warm-start theory to signif-
icantly save regret-matching iterations at each step. It opti-
mizes the parameter vector while simultaneously finding an
equilibrium. To conduct s steps, it takes O(s

√
s) time (and

significantly less than that in practice) while straightforward
gradient descent takes Θ(s2) to conduct those same steps.

We ran experiments in no-limit Leduc Hold’em and no-
limit Texas Hold’em to optimize bet sizing. This amounts to

5Due to the challenge of evaluating vi(σ) in large imperfect-
recall games, K was set to a minimum of 5,000 and a maximum of
200,000. We stepped when we had statistical significance that the
derivative was of the right sign; otherwise we stepped at 200,000.

600

the first action abstraction algorithm (algorithm for selecting
a small number of discrete actions to use from a continuum
of actions—a key preprocessing step for solving large games
using current equilibrium-finding algorithms) with conver-
gence guarantees for extensive-form games. Very few action
abstraction algorithms have been presented to date, and the
prior ones either have no convergence guarantees (Hawkin,
Holte, and Szafron 2011; 2012) or are for a much narrower
game class, stochastic games (Sandholm and Singh 2012).

Acknowledgements
This material is based on work supported by the Na-
tional Science Foundation under grants IIS-1320620, CCF-
1101668, and IIS-0964579, as well as XSEDE computing
resources provided by the Pittsburgh Supercomputing Cen-
ter.

References
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, learn-
ing, and games. Cambridge University Press.
Ganzfried, S., and Sandholm, T. 2013. Action translation
in extensive-form games with large action spaces: Axioms,
paradoxes, and the pseudo-harmonic mapping. In Proceed-
ings of the International Joint Conference on Artificial Intel-
ligence (IJCAI).
Gordon, G. J.; Greenwald, A.; and Marks, C. 2008. No-
regret learning in convex games. In Proceedings of the
25th international conference on Machine learning, 360–
367. ACM.
Gordon, G. J. 2007. No-regret algorithms for online con-
vex programs. Advances in Neural Information Processing
Systems 19:489.
Greenwald, A.; Li, Z.; and Marks, C. 2006. Bounds for
regret-matching algorithms. In ISAIM.
Hart, S., and Mas-Colell, A. 2000. A simple adaptive
procedure leading to correlated equilibrium. Econometrica
68:1127–1150.
Hawkin, J.; Holte, R.; and Szafron, D. 2011. Automated
action abstraction of imperfect information extensive-form
games. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI).
Hawkin, J.; Holte, R.; and Szafron, D. 2012. Using sliding
windows to generate action abstractions in extensive-form
games. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI).
Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010.
Smoothing techniques for computing Nash equilibria of
sequential games. Mathematics of Operations Research
35(2):494–512. Conference version appeared in WINE-07.
Johanson, M.; Burch, N.; Valenzano, R.; and Bowling, M.
2013. Evaluating state-space abstractions in extensive-form
games. In International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS).
Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo sampling for regret minimization in ex-

tensive games. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), 1078–1086.
Nash, J. 1950. Equilibrium points in n-person games. Pro-
ceedings of the National Academy of Sciences 36:48–49.
Osborne, M. J., and Rubinstein, A. 1994. A Course in Game
Theory. MIT Press.
Sandholm, T., and Singh, S. 2012. Lossy stochastic game
abstraction with bounds. In Proceedings of the ACM Con-
ference on Electronic Commerce (EC).
Sandholm, T. 2010. The state of solving large incomplete-
information games, and application to poker. AI Magazine
13–32. Special issue on Algorithmic Game Theory.
Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2005. Bayes’ bluff: Oppo-
nent modelling in poker. In Proceedings of the 21st Annual
Conference on Uncertainty in Artificial Intelligence (UAI),
550–558.
Waugh, K. 2009. Abstraction in large extensive games. Mas-
ter’s thesis, University of Alberta.
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).

601

