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Abstract

Peer Designed Agents (PDAs), computer agents devel-
oped by non-experts, is an emerging technology, widely
advocated in recent literature for the purpose of replac-
ing people in simulations and investigating human be-
havior. Its main premise is that strategies programmed
into these agents reliably reflect, to some extent, the be-
havior used by their programmers in real life. In this
paper we show that PDA development has an important
side effect that has not been addressed to date — the
process that merely attempts to capture one’s strategy is
also likely to affect the developer’s strategy. The phe-
nomenon is demonstrated experimentally, using several
performance measures. This result has many implica-
tions concerning the appropriate design of PDA-based
simulations, and the validity of using PDAs for study-
ing individual decision making. Furthermore, we ob-
tain that PDA development actually improved the de-
veloper’s strategy according to all performance mea-
sures. Therefore, PDA development can be suggested as
a means for improving people’s problem solving skills.

Introduction
Peer-designed agent (PDA) technology has been gaining
much interest in recent years, mostly due to its potential of
reducing much of the complexities and overheads of using
people in laboratory experiments (Lin et al. 2010). Unlike
expert-designed agents, PDAs are developed by non-domain
experts, where the goal is to exhibit human-like rather than
optimal behavior. As such, PDA technology has been in-
creasingly used in recent years to replace people in system
evaluation (Rosenfeld and Kraus 2012) in various domain
such as negotiation (Lin et al. 2010), costly information
gathering (Elmalech and Sarne 2012), security systems (Lin
et al. 2011), parking allocation (Chalamish, Sarne, and Lin
2012) and training (Lin et al. 2013). Another common use
of PDAs is in studying individual decision making (Grosz
et al. 2004). The main premise in all these works is that the
developed PDAs adequately represent the strategy of their
developers.

The effectiveness of using PDAs as human behavior gen-
erators depends primarily on the similarity between the be-
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haviors exhibited by PDAs and their developers. Never-
theless, despite the great interest in this technology, the
applicability of PDA technology was evaluated, to date,
mostly through measuring the similarity between the be-
haviors exhibited by PDAs and their developers, either at
the macro level, i.e., comparing the collective or “average”
behavior (Lin et al. 2010; Azaria et al. 2014), or at the
micro level, i.e., comparing individual behaviors in simi-
lar decision situations (Chalamish, Sarne, and Lin 2012;
Elmalech and Sarne 2012). No prior research, to the best of
our knowledge, has attempted to investigate whether devel-
opers’ strategy undergoes some kind of transformation along
the process. This aspect is, however, of great importance,
since if indeed the process of developing a PDA has some ef-
fect on developers’ strategies, then much caution should be
taken when using this technology. In particular, one needs to
keep in mind that the change in the developers strategies pre-
cludes the consideration of the resulting set of strategies as
a reliable representative sample of the general population’s
strategies. Therefore, even if PDAs reliably represent their
developers, the results obtained by using them apply to a
population which is somehow different than the original one,
due to the strategy transformation this group has undergone
when developing the PDAs.

In this paper we attempt to test whether indeed the devel-
opment of a PDA changes one’s strategy using the classic
”Doors game” (Shin and Ariely 2004). For this purpose, we
present the experimental design and report the results of an
experiment comparing people’s strategies before and after
developing PDAs, and the strategies used by the PDAs they
developed.

The analysis of the results suggests that indeed people’s
strategies change during the development of a PDA. Fur-
thermore, we show that the change happens while devel-
oping the PDA rather than after, and that the change is fa-
vorable. This latter finding is based both on an increase in
the average score achieved, as well as in several additional
measures demonstrating the effectiveness of the strategy in
games played by the participants after, compared to prior to,
the development of the PDAs. This result has an important
implication concerning the possible use of PDA technology
as a means of improving people’s problem solving skills.

Developing a PDA requires several skills. In addition to
the actual programming, the developer needs to be able to
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express her strategy in a programmable manner. In order to
reason about the contribution of the expressive part to the
change in strategy, we report the results of a complemen-
tary experiment. This latter experiment follows the same
methodology, however instead of requesting that people de-
velop a PDA prior to playing the game they were requested
to express their strategy in free text. The results of this ex-
periment rule out any effect of the expressive part over peo-
ple’s strategies, according to all measures used. Therefore,
the effect of PDAs programming over people’s strategy is
attributed to the PDA development process as a whole.

The Doors Game
The doors game was initially introduced by (Shin and Ariely
2004), and is a variant of the famous exploration versus ex-
ploitation problem. In the basic version of the game, a player
is faced with three doors (alternatives), each associated with
a different distribution of payoffs. The payoff distribution
of each door is a-priori unknown to the player. The player
first clicks (i.e., chooses) a door to begin with, and from that
point on, any additional click on that door will yield a re-
ward drawn from that distribution. At any time, the player
can switch to any other door by clicking on it. Switching to
another door enables the player to receive rewards from the
payoff distribution characterizing that door via additional
clicks on it. The player can collect rewards only from the
door to which she has most recently switched. The player’s
goal is to maximize gains given a limited budget of clicks.
Once the player has used all of her allowed clicks, the game
terminates and she is paid the sum of her door-click payoffs.
The single click that the player needs to sacrifice to switch
doors is in fact a switching cost. This setting can be triv-
ially mapped to the Multi-Armed Bandit problem (Auer et
al. 1995).

With the above game, human subjects have been found to
be sufficiently efficient in the sense that they choose to en-
gage in “door exploration” in the first few clicks and then
stick with the door associated with the best expected yield
(Shin and Ariely 2004). Nevertheless, for a specific vari-
ant of this game it has been found that people’s strategies
are highly inefficient (Shin and Ariely 2004). This specific
game variant is identical to the original game, except that
unless clicked at current round, the door size is continuously
reduced, until it eventually vanishes. If the door is clicked
before vanishing, it returns to its original size. For a set-
ting where doors are reduced in size by 1

15 of their origi-
nal width, it has been found that players tend to switch from
door to door, in an effort to keep their options open. This
results in a substantial performance degradation (in terms of
the rewards accumulated) compared to sticking with the best
yielding door. Therefore, for our “doors game” experiment,
we used this latter variant to test the extent to which people’s
inherent tendency of keeping all options viable (even when
the cost of doing so is greater than the potential benefit) is
affected by PDA development.

The reason for choosing the doors game for demonstrat-
ing the effect is due to the simplicity of the game. The game
does not require advanced computational capabilities which
people are lacking, hence we expect people to develop a

PDA which its strategy will not be different than their own.
Also, due to the simplicity of the game, it is easy for par-
ticipants to understand the rules of the game and to come
up with a legitimate strategy – rather than a random strategy
which is observed in games where it is difficult to understand
the rules of the game.

Experimental Design
In this section we describe the experimental design applied
in our experiments, and specify the measures used. We im-
plemented the doors game in a way that it could be played
either using an interactive GUI client or through the use
of a PDA. For the PDA development task, we followed
the common practice from prior work (Sarne et al. 2011;
Lin et al. 2010), i.e., we provided a skeleton of a functional
PDA that lacked only its strategy layer. Strategy developers
thus had to develop only the strategy component, using a rich
API that was supported by the agent. Participants recruited
for the experiments were all senior undergraduate or grad-
uate computer science students, and were requested to de-
velop a PDA that will play doors game on their behalf. Each
participant received thorough instructions on the game rules,
her goal in the game and the compensation method, which
essentially was linear in her score in the game. This was fol-
lowed by taking part in several practice games. Participants
had to practice until stating that they understood the game
rules and they had a good sense of what their game strat-
egy was like. At this point participants were randomly di-
vided into two groups. Participants of the first group (31 stu-
dents) were requested to play a single instance of the game
after the training stage. Participants of the second group (48
students) were requested to develop a PDA, and immedi-
ately after were requested to play an interactive instance of
the game. While developing PDAs, the participants did not
have the infrastructure to test how well it performs. Results
were analyzed based on different measures as described be-
low. In addition to analyzing the behavior of participants in
the game played, we also measured the performance of the
PDAs developed when used with the same doors game set-
ting.

Our experiment with the doors game followed a specific
experimental design reported in (Shin and Ariely 2004),
where the game includes two phases, each with a “budget”
of 50 clicks. In the first phase (the exploration phase), the
participants did not receive any payoff and were only no-
tified of the payoff amount. The purpose of this phase is
for the participants to identify the best door. This phase is
long enough for an optimal player to select a single door
from which she does not need to divert for the entire sec-
ond phase (while ignoring the vanishing of the other doors).
In the second stage (the exploitation phase), the participants
received the payoff obtained from the door on which they
clicked. Following the original experimental design, we used
the three different distribution functions specified in (Shin
and Ariely 2004), all with a mean payoff of 6. The payoff
distribution of the first door was highly concentrated around
the mean (normal distribution with a variance of 2.25); the
second door also had values around the mean but the values
were much more diffused (normal distribution with a vari-
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(a)

(b)

Figure 1: A screen-shot of the doors game user interface:(a)
before user clicks on door (b) in the middle of the game after
user clicked on the middle door.

ance of 9); and the payoff distribution of the third door was
highly skewed toward high numbers (chi square distribution
with 8 degrees of freedom). The minimal and maximal val-
ues of the three distributions were −4 and 19, respectively.

In the GUI version of the game the system presented the
doors to the students, with each door size changing accord-
ing to the clicks made. Figure 1a is a screen-shot of a game
where the user has not yet clicked on any door. Figure 1b is a
screen-shot taken in the middle of the game, where the user
has picked the middle door and the other two doors have be-
gun to shrink. The subjects were told that their reward will
be proportional with the total amount of payoffs they receive
in the game (i.e., those accumulated over the last 50 rounds).

Following (Shin and Ariely 2004) we used three mea-
sures to evaluate the effectiveness of the strategies used. The
first measure, denoted “outcome performance”, is the aver-
age score of participants in the game (in the last 50 rounds).
Since the three doors in the game had the same expected
payoff of 6, the average outcome performance of the opti-
mal strategy is 6. The second measure, denoted “number of
switches”, is the average number of time players switched
doors in the last 50 rounds. As explained above, an effective
strategy in this game should result in an insignificant number
of switches at this stage, since all “explorations” should take
place during the initial 50 rounds of the game. A high value
of this measure leads to poor results in the game. The third
measure, denoted “elimination point”, is the average turn at
which participants stopped switching between doors in the
second stage of the game (last 50 rounds). For reasons simi-
lar to those given for the “number of switches” measure, an
effective strategy is typically characterized with a low value
for the “elimination point” measure (the closer to zero, the
better).

Results and Analysis
In this section we report the results of comparing the perfor-
mance of PDA developers without and post development of
a PDA. Statistical significance was tested using the student’s
t-test (two-sample assuming unequal variances). The results

are primarily reported as the group’s average since the game
is of a probabilistic nature and there is only one result for
each participant.

Figure 2 depicts the average outcome performance of the
group of students who played the game without develop-
ing a PDA (denoted “no-PDA”), the group of PDAs them-
selves (denoted “PDAs”) and the group of students who
played the game after developing PDAs (denoted “post-
PDA”). As demonstrated in the figure, there is a substan-
tial difference between the average performance of the no-
PDA and the post-PDA groups. The difference is statisti-
cally significant (p − value < 0.001), indicating that in-
deed different strategies were used. In particular, it is ap-
parent that the outcome performance measure of the post-
PDA group substantially improved. Since the outcome per-
formance when playing this game is bounded by 6 (as ex-
plained earlier), the inefficiency improvement between no-
PDA and the post-PDA is 64%.1 The PDAs score according
to the outcome performance measure is similar to the perfor-
mance of the post-PDA group (statistically indifferent), sug-
gesting that the change in the PDAs developers’ strategies
occurred while developing the PDAs and not after. The dif-
ference between PDAs and the no-PDA group is statistically
significant (p−value < 0.003), indicating that the PDAs use
strategies different than those of the no-PDA group, hence
they cannot be used as a reliable representation of the latter
in this specific domain.

Figure 2: Comparison of the outcome performance.

Figures 3 and 4 depict the difference in the average num-
ber of switches and the average elimination point between
the three groups (no-PDA, PDAs and post-PDA), respec-
tively. The results are consistent with those found for the out-
come performance measure: the difference between the av-
erage performance of the no-PDA and the post-PDA groups
is substantial and statistically significant (p−value < 0.001
for both), indicating that indeed different strategies were
used. In both cases the differences suggest an improve-
ment in the measure in the post-PDA group compared to
the no-PDA group. The inefficiency improvement between
no-PDA and the post-PDAs is 69% for the average number
of switches measure, and 60% for the average elimination
point measure (where the theoretical bound was considered

1The inefficiency improvement measures the decrease (in per-
centages) in the difference between the average result achieved and
the theoretical bound (6 in the case of outcome performance), as the
difference between the two represents the strategy’s inefficiency.
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to be 0 for both measures). The PDAs score according to the
two measures was similar to the performance of the post-
PDA group (no statistical difference), and different from the
performance of the no-PDA group (p − value < 0.001
for both), supporting, once again, the conclusions that the
change in the PDA developers’ strategies occurred prior to
completing the PDA development and not after, and that the
PDAs do not reliably represent the no-PDA group in this do-
main.

Figure 3: Comparison of the average number of switches.

Figure 4: Comparison of the average elimination point.

A drill down analysis of the individual performance mea-
sure value sheds some light on the nature of the change and
its trend in people’s strategies due to the development of a
PDA in our experiments. Figure 5 depicts the distribution
of the number of switches recorded for the different partici-
pants in the no-PDA and post-PDA populations. The group-
ing was done according to “optimal” strategy (0 switches),
“close to optimal” (1-3 switches) and rather “inefficient”
strategies (4-9, 10-19, and 20 and above). As can be ob-
served in the figure, the process of PDA development re-
sulted in a substantial shift in strategy according to this clas-
sification: 43% of the “inefficient’ strategies changed to “op-
timal” and “close to optimal” (where the majority changed
to “optimal”). This indicates that the strategy development
does not have an equal effect on all PDA developers. While
some of them kept their inefficient strategy, those that ended
up revising their strategy shifted to a mostly efficient one.
Overall, while in the no-PDA population 32% of the sub-
jects used an optimal strategy, in the post-PDA group 65%
of the subjects were found to use that strategy. Similar qual-
itative results were found using a drill-down analysis of the

elimination point measure.2

Figure 5: Drill-down comparison between the number of
switches without and post development of PDAs.

Strategy Description
In this section we report the results of a complementary ex-
periment which we conducted to identify the reason why the
process of developing a PDA affects its developer’s strat-
egy. More specifically, to examine if the phenomenon is due
to the descriptive nature of developing a PDA. For this ex-
periment, however, since participants were not required to
exhibit any programming skills, but merely to describe their
strategy in a way that can be later programmed, we relied
on participants recruited from Amazon Mechanical Turk
(AMT) (AMT 2010)3 and had them play the doors game.
Overall, 100 people participated in this experiment, whereby
50 of them were asked to describe (i.e., express) their strat-
egy prior to playing the game and the rest were asked merely
to play the game. Both groups received detailed instructions
and practiced the game prior to expressing their strategy or
playing. The layout of the experiment and the experiment
design used were similar to those reported in the foregoing
section. Figure 6 depicts the performance of the two groups
according to the three measures defined for the doors game.
As depicted in the figure, the strategy expressing activity had
no influence whatsoever on performance in all three mea-
sures (all differences are statistically insignificant). These
results may indicate that the change in behavior reported in
the previous section is not due to the descriptive nature of
developing PDAs, but rather due to other characteristics of
PDA development. 4

Here, again we provide a drill-down analysis of the dis-
tribution of the number of switches in the individual level
(Figure 7). As illustrated in Figure 7, the change in the num-
ber of strategies that can be considered “optimal”, due to
strategy expression, is marginal, whereas most change is ob-
served between the different segments of the “inefficient”

2This kind of analysis for the outcome performance measure is
futile, since this measure, when taken individually, highly depends
on chance.

3For a comparison between AMT and other recruitment meth-
ods see (Paolacci, Chandler, and Ipeirotis 2010).

4We note that the differences observed could be because
of the differences in populations (programmers vs. mostly non-
programmers).

926



groups. The change pattern in the number of switches due to
the strategy description process is fundamentally different
than the one associated with PDA development reported in
the foregoing section. While in the ”strategy description ex-
periment” there is no shift in the strategies of the subjects, in
the ”PDA experiment” the strategies of the subjects shifted
from the “inefficient” group to the “optimal” group, support-
ing the conclusions drawn from Figure 6. Similar qualitative
results were found using a drill-down analysis of the elimi-
nation point measure.

Figure 6: Comparison of the results of people without and
post describing their strategy over the three measurements.

Figure 7: Drill-down comparison between the number of
switches without and post strategy description.

Related Work
The use of agents in general for human behavior simula-
tion is quite extensive in the AI literature (Zhang et al. 2001;
Bosse et al. 2011; Chalamish, Sarne, and Lin 2012; Lin et
al. 2010). Within this rich literature, two primary method-
ologies for simulating human behavior with agents can be
identified: experts designed agents (EDAs) and agents de-
veloped by non-experts (PDAs).

EDAs typically are agents whose strategies are developed
by the simulation designers. Over the years simulation de-
signers have used various methods for setting human-like
behavior in the agents they developed (EDAs). These in-
clude, among other methods, statistical-data based modeling
(Takahashi et al. 2002), pre-specification of agents’ roles us-
ing a set of parameters according to which the agents act
(Massaguer et al. 2006), using pre-defined events and re-
actions (Musse and Thalmann 2001), defining a number of

basic behaviors from which all of the agents’ more com-
plex behaviors are constructed (Shao and Terzopoulos 2007;
Terzopoulos, Tu, and Grzeszczuk 1994) or using a combina-
tion of rules and finite state machines to control an agent’s
behavior using a layered approach (Ulicny and Thalmann
2002). The main advantages of using EDAs for simulation
purposes (compared to recruiting people) are their capabili-
ties to interact among themselves and scale. The main diffi-
culty of this method is that the simulation designer and even
domain experts are quite limited in the number of different
individual behaviors they can generate and the time it takes
them to develop them.

The success of designing efficient EDAs, i.e., ones that
reliably simulate human behavior, is controversial. For ex-
ample, it has been shown (Gode and Sunder 1993) that there
is a resemblance between the transaction price path of agent
traders designed using bounded rational theories and the
transaction price path of human subjects in a double auction
environment. However, other research claimed that these re-
sults do not hold once the value of one of the market pa-
rameters slightly changes (Van Boening and Wilcox 1996;
Brewer et al. 2002).

PDAs technology has been widely used in recent years.
For example, in Kasbah (Chavez and Maes 1996) PDAs that
buy and sell were used for evaluating an electronic mar-
ketplace. In Colored Trails (Grosz et al. 2004), PDAs were
used for reasoning about players’ personalities in uncertain
environments. Other works, e.g., (Lin et al. 2010; 2011;
Chalamish, Sarne, and Lin 2012; Rosenfeld and Kraus 2012)
used PDAs for evaluating specific mechanisms in various
domains such as evaluating security algorithms and evaluat-
ing automated negotiators.

In some respects, the idea of using people to program
agents as a means for achieving a reliable set of strategies
for specific decision situations was inspired by the “strat-
egy method” paradigm from behavioral economics (Sel-
ten, Mitzkewitz, and Uhlich 1997). In the strategy method
people state their action for every possible situation that
may arise in their interaction. The main difference be-
tween the strategy method and PDAs technology is that
in the first participants need to describe their choices for
each possible state, whereas with PDAs the requirement is
to express a cohesive formulation of their strategy (Cha-
lamish, Sarne, and Lin 2012; Rosenfeld and Kraus 2012;
Cheng et al. 2011). This entails various implications related
to the time it takes to capture one’s strategy (an advantage
for the PDAs in cases where the possible number of sys-
tem’s states is large and an advantage for the strategy method
when the game is extremely simple, e.g., in the ultimatum
game), the ability to understand one’s strategy (an advantage
for PDAs, as their code can be analyzed afterwards) and the
ability to use the strategy when the setting slightly changes
(impossible with the strategy method).

The main motivation for using PDAs in simulations is
the premise that PDAs reliably represent their designers’
strategies. This, however, is not straightforward. Evidence
of discrepancies between actual and reported human behav-
ior is a prevalent theme in research originating in various
domains, in particular in metacognition research (Harries,
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Evans, and Dennis 2000). Examples of such discrepancies
include over-reporting of political participation (Bertrand
and Mullainathan 2001) and contrasting results between
self-reported and performance-based levels of physical lim-
itations (Kempen et al. 1996). Yet, much of the PDA litera-
ture tends to assume that people can successfully (to some
extent) capture their real-life strategy in a given domain
when programming an agent (Cheng et al. 2011; Rosenfeld
and Kraus 2012). Even in cases where some discrepancy be-
tween PDAs and people’s behavior is reported, the average
performance is reported to be similar, suggesting that PDAs
can replace people in mechanism evaluation (Lin et al. 2010;
2011). None of the above literature deals with the question
of whether the PDA developing process itself affects the de-
veloper’s strategy, which is the focus of this paper.

Finally, we note that work in psychology, computer sci-
ence and education presented evidence that computer pro-
gramming can be a powerful tool for improving thinking and
for developing good problem-solving skills (Feurzeig, Pa-
pert, and Lawler 2011; Nickerson 1982; Jeffries et al. 1981;
Clements and Gullo 1984). In addition, the programming
process can be used for teaching students fundamental con-
cepts in mathematics and logic. The main difference be-
tween these related works and the work presented in this
paper is that while the first focus on the general effect of
programming over the cognitive skills of the programmer in
general, our work focuses on whether the process of devel-
oping an agent for a specific problem changes the develop-
ers strategy for solving that specific problem. In addition,
in prior work the question of when the change in strategy
occurs was not addressed.

Conclusions
Based on the results reported and their analysis, we conclude
that indeed the development of a PDA affects and reshapes
one’s strategy in the domain used for our experiments. Since
the effect reported in this work was demonstrated over one
domain we do not claim that this effect occurs in all do-
mains. The aim of this work was to demonstrate the exis-
tence of the effect rather than its magnitude as a function of
the decision problem’s characteristics. This important aspect
of PDA technology, which has not been investigated to date,
has many important implications. In particular, system de-
signers (e.g., simulation designers) interested in using PDAs
for generating human behaviors need to reveal the extent to
which PDA development indeed changes individuals’ strate-
gies in their simulated domains. Based on the extent of the
change found, they will need to tradeoff the loss incurred
by the fact that the strategies embedded in the PDAs are not
necessarily the ones that would have been used by their de-
velopers if they had not been requested to develop the PDAs,
and the many benefits of using PDAs (such as reduced over-
head, flexibility in the number of settings that can be tested
and the ability to perform any experiment in a timely man-
ner). This main result also contributes to PDA literature in
the sense that it provides a possible explanation for discrep-
ancies observed between the behaviors of PDAs and their
developers.

PDAs’ performance was found to be significantly differ-
ent from the performance of those that played our games
without developing a PDA, and insignificantly different
from those playing after developing a PDA. This suggests
that the change in developers’ strategies occurs while work-
ing on their PDA and before completing it — by the time
the PDA is complete, it is already equipped with the re-
vised strategy. When requesting that participants express
their strategy, rather than actually develop a PDA, no change
in behavior was observed. This suggests that the effect of the
development of PDAs goes beyond the need to express one’s
strategy, whereas the design and programming themselves
account for the change.

One may argue that the reason for the change in the PDA
developer’s strategy is due to trial-and-error which occurs
during a standard process of designing PDAs. This, however,
is not the case. In our game, when programming the strategy
the participants did not have the infrastructure to test how
well it performs. Therefore the effect is not due to trial-and-
error.

We observed substantial inefficiencies in the strategies
used by the no-PDA population. Interestingly, the ineffi-
ciencies characterizing strategies of individuals in the doors
games are primarily rooted in people’s tendency to keep all
their options available (Shin and Ariely 2004), which is a
psychological effect. Through the development of PDAs a
large portion of the population managed to overcome these
inefficiencies. This suggests that PDA development can be
used as a means of improving one’s strategy in scenarios
where the source of inefficiency is due to a psychological ef-
fect. In fact, we see much room for future research aiming at
developing tools and methods for identifying domains and
conditions where PDA development is strategy-improving.
Furthermore, the benefit of PDA development should not
be limited only to those who are capable of programming.
Within this scope we suggest repeating our experiments with
the general audience, using semi-programming tools (e.g.,
Scratch (Resnick et al. 2009)) and a bit more structured
methods for expressing one’s strategy to see if any of these
benefits can be useful for the general population.

We note that despite the effect that the process of develop-
ing a PDA has on its developer, this technology is extremely
useful in settings where such effect is tolerable. The use of
PDAs in such cases can save substantial resources and fa-
cilitate the evaluation of numerous potential configurations,
in a relatively short time, without having to recruit people
over and over again for expensive experiments. In particu-
lar, this technology is useful for simulating and researching
large-scale systems due to the relatively low cost of cloning
agents.

Finally, we suggest further research which will be aimed
at better explaining which aspect of PDA development is re-
sponsible for the change in its developer’s strategy. While
our complementary experiment ruled out the expressive as-
pect of the process as an explaining factor, we do believe
that further research will shed some light on this interesting
question.
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