
Signals in the Silence: Models of Implicit Feedback
in a Recommendation System for Crowdsourcing

Christopher H. Lin∗

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195
chrislin@cs.washington.edu

Ece Kamar and Eric Horvitz
Microsoft Research

Redmond, WA 98052
{eckamar,horvitz}@microsoft.com

Abstract
We exploit the absence of signals as informative observations
in the context of providing task recommendations in crowd-
sourcing. Workers on crowdsourcing platforms do not pro-
vide explicit ratings about tasks. We present methods that en-
able a system to leverage implicit signals about task prefer-
ences. These signals include types of tasks that have been
available and have been displayed, and the number of tasks
workers select and complete. In contrast to previous work,
we present a general model that can represent both positive
and negative implicit signals. We introduce algorithms that
can learn these models without exceeding the computational
complexity of existing approaches. Finally, using data from a
high-throughput crowdsourcing platform, we show that rea-
soning about both positive and negative implicit feedback can
improve the quality of task recommendations.

Introduction
Although the growth of crowdsourcing has facilitated an un-
precedented explosion of open-call work, such growth has
also brought to the fore new inefficiencies and opportuni-
ties for optimization. For example, the large number of tasks
presented in an unorganized way in marketplaces like Ama-
zon’s Mechanical Turk, where over 1,300 types of tasks can
be available at a given time 1, can make it challenging for
crowdworkers to identify tasks that they enjoy or that they
have special competency with solving. Such problems with
task identification can reduce overall throughput, accuracy,
and engagement in a crowdsourcing system.

We present methods that help crowdworkers discover
tasks that they have not yet worked on, but would be in-
terested in performing. A key challenge in crowdsourcing is
that users do not typically provide explicit feedback about
their preferences by asserting which tasks they like and dis-
like through ratings. To help workers find desirable tasks,
we explore methods for leveraging the absence of explicit
signals in task recommendation for crowdsourcing. We take
inaction in the face of displayed information on available
tasks as evidence of preferences. Rather than take a content-
based approach, we build a collaborative filter (Goldberg et

∗Research was performed while the author was an intern at Mi-
crosoft Research.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1retrieved February 2014

al. 1992). A collaborative filtering methodology can handle
the inherent diversity of crowdsourcing tasks; the creativity
encouraged by crowdsourcing makes it difficult to create ex-
plicit profiles using a fixed set of features for tasks and users.

Observing the behaviors of users in the crowdsourcing
marketplace provides evidence about users’ preferences in
the form of implicit feedback. Previous work in collabora-
tive filtering uses positive implicit feedback in the context of
a TV recommendation system, by representing the degree to
which a viewer likes a certain TV show with the number of
times that viewer watches the show (Hu, Koren, and Volin-
sky 2008). While we demonstrate that this approach can be
used to generate crowdsourcing recommendations, we show
that it has a significant shortcoming: the prior approach does
not address negative implicit feedback. For example, it does
not model when viewers may dislike certain shows, leading
to a system that only learns the shows that users like and not
the shows they dislike.

With crowdsourcing, worker behavior in the marketplace
provides both positive and negative implicit feedback that
can be used to learn more comprehensive models of work-
ers’ preferences. Workers who complete large quantities of
a task provide a signal that they have a preference for that
task, whereas workers who do not work on tasks that have
high availability on the system provide a signal that they
may not desire those tasks. We present a general-purpose
model that can represent both positive and negative implicit
feedback. Our model is expensive to learn with existing ap-
proaches. To address this computational challenge, we pro-
pose a modified coordinate-descent algorithm for tractable
learning. We show that the complexity of this approach does
not exceed the complexity of learning simpler models that
consider only positive implicit feedback. In addition, we
propose an alternative sampling-based approach that can
generate recommendations efficiently by combining multi-
ple models learned independently via sampling subsets of
the data.

We make the following contributions:

• We develop two new methods for incorporating negative
implicit feedback into a predictive modeling system in a
computationally efficient way.

• We present what we believe to be the first application of
recommendation systems to crowdsourcing. We demon-
strate how implicit signals can be extracted from the logs

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

908

of a crowdsourcing platform.

• We evaluate the proposed approaches on a dataset col-
lected from a live crowdsourcing platform and show that
the addition of negative implicit feedback is beneficial.

Background on Collaborative Filtering
Two common types of methods used in collaborative filter-
ing systems are neighborhood-based approaches and matrix
factorization approaches. Neighborhood-based approaches
(Herlocker et al. 1999) estimate ratings based on either the
ratings of like-minded users or the ratings for similar items
(Linden, Smith, and York 2003; Sarwar et al. 2001). Re-
cent work has shown that matrix factorization approaches
have superior performance compared to neighborhood-
based models (Koren, Bell, and Volinsky 2009), so we focus
on matrix factorization models but we present a comparison
of these models in the experimental section.

We first review matrix factorization approaches for ex-
plicit feedback domains. Then, we move on to approaches
for harnessing implicit feedback. Let m be the number of
users and let n be the number of items. Let R be an m × n
matrix where most entries are missing and each non-missing
rij ∈ R is an explicit rating given by user i to item j. The
goal is to learn an m×k matrix U and a k×n matrix V that
minimize the loss function

L(U, V) =
∑
i,j

(rij − uivj)2 + λ(||U ||22 + ||V ||22)

where ui denotes row i of U , vj denotes column j of V ,
and λ denotes a regularization parameter. Then, R̂ = UV
contains the desired predictions. k can be picked by cross
validation, and U and V can be estimated by a variety
of methods, including stochastic gradient descent (Funk
2006) and alternating least squares (Bell and Koren 2007;
Zhou et al. 2008). Learning U and V exactly is a non-convex
minimization problem (Srebro and Jaakkola 2003).

When explicit feedback is not available, implicit feedback
can be used to make predictions about users. We general-
ize the implicit feedback matrix factorization model (IFMF)
proposed by Hu, Koren, and Volinsky to use any function
of some positive implicit feedback signal as confidences in
matrix factorization. Given a set of positive implicit feed-
back signals cij ≥ 0, we fit and predict an m × n binary
matrix P , where the entry pij = 1 if cij > 0 and pij = 0
otherwise. Let wij = f(cij) be weights for each entry deter-
mined by some weighting function f . Then, we find factors
U and V that minimize the loss function:

L(U, V) =
∑
i,j

wij(pij − uivj)2 + λ(||U ||22 + ||V ||22)

Intuitively, pij denotes whether or not user i likes item j
and each of these entries is weighted by some function of the
implicit signal we receive, representing the confidence we
have in the signal. We can perform an iteration of alternating
least squares in time O(k2ω + k3(n+m)) (Hu, Koren, and
Volinsky 2008) , where ω is the number of non-zero entries
in P , which is usually much smaller than the total number
of entries in P .

Harnessing Implicit Positive Feedback for
Task Recommendation in Crowdsourcing

We use the terms workers and users interchangeably. Users
may have different backgrounds and capabilities and may
have preferences about which types of tasks to work on. A
user works on an abstract task by completing at least one
of a collection of instances of that task posted by a single
requester.

We define the problem of task recommendation in crowd-
sourcing as follows: Given a set of users and a set of tasks,
we would like to compile, for each user, a personalized rec-
ommendation list with tasks that the user has not worked on
yet but that we predict the user would like to work on in
the future. Since users cannot express explicitly which tasks
they like and which tasks they dislike, we use implicit sig-
nals about their behaviors as evidence about their interests.
Specifically, we take the number of times a worker com-
pletes a given task as a positive signal, such that more com-
pletions signal a stronger preference for the task.

IFMF can be applied to the problem of recommending
crowdsourcing tasks as follows: Let cij , the implicit posi-
tive signal, be the number of times user i worked on task j.
Let the weighting function f be f(cij) = 1+cij . Intuitively,
for every task j that user i has worked on, pij is set to 1, de-
noting that user i likes task j; and for any task j that the user
has not worked on, pij is 0, denoting that user i dislikes task
j. By weighting the positive entries of P with the number of
tasks a user has completed, we are able to express our con-
fidence in each pij = 1, and when we learn the factors U
and V , we try harder to fit the entries we have higher confi-
dence in. For instance, if a user has worked on a given task
10,000 times, then we are confident that the user likes that
task (p = 1), and we would very much like to predict p̂ = 1.

Incorporating Implicit Negative Feedback
IFMF treats all tasks that a user has not worked on the same
by assigning the minimum weight to the corresponding en-
tries. Since this model cannot represent negative implicit
feedback, the loss function has little emphasis on learn-
ing about the tasks that users dislike. We introduce a novel
model, IFMF2, to address this shortcoming of the IFMF ap-
proach. IFMF2 uses IFMF as its building block and extends
it in the following way: Let pij = 1 if cij > 0 and pij = 0
otherwise. Then, let dij ≥ 0 be a set of negative implicit
negative signals. Then, we redefine the weights to be

wij =

{
f(cij) if pij = 1
g(dij) if pij = 0

where f and g are normalization functions. Because cij and
dij can have very different ranges, f and g can be used to
transform confidences appropriately.

We apply IFMF2 to the crowdsourcing domain by using
the availability of a task as a negative signal since ignor-
ing a task with high availability may indicate a strong dis-
like towards the task. Formally, we let dij denote the maxi-
mum total number of task instances available for task j. We
let f and g be logistic functions: f(x) = 1

1+eα1(log(x)+β1)

and g(x) = 1
1+eα2(log(x)+β2) We choose logistic functions

909

for normalization because they capture our intuition about
users. Consider the pairs of workers and tasks such that
pij = 0. When there are very few tasks available for a given
task type, we cannot be sure that the user does not like the
task simply because the user has not worked on the task.
The user may have just not seen it yet, because tasks with
low availability have much lower visibility in crowdsourcing
UIs. However, as the number of tasks available for a given
task type increases, thereby increasing the visibility of that
task type, we become more confident that the user is pur-
posely avoiding that task. When the task is overwhelmingly
available to the user, we become confident that the user does
not like the task, even though the user has given no such
explicit signal. Beyond a certain availability however, we
do not substantially increase our confidence hence agreeing
with the behavior of the sigmoid function. The reasoning is
similar for the weights for the tasks that users select (when
pij = 1).

Fast Optimization
We apply an alternating least squares approach to learn the
U and V factors that minimize the squared loss function. By
fixing one factor, say U , solving for the other factor, V , be-
comes a simple least-squares optimization and can be solved
in a closed form. Then, by iterating through the factors, we
effectively employ a coordinate descent to reach a local opti-
mum. This approach is efficient if the matrix is sparse or can
be made efficient when many entries have the same weight
(Hu, Koren, and Volinsky 2008). When negative feedback is
included, we increase the diversity of the weights and must
develop new methods for maintaining tractability. We now
present an algorithm that can learn with positive and neg-
ative feedback as efficiently as IFMF under certain condi-
tions.

Theorem 1. If one of the following conditions is true:

1. For all j, we have di1j = di2j for all i1, i2
2. For all i, we have dij1 = dij2 for all j1, j2
then each iteration of coordinate descent takes at most time
O(k2ω+k3(n+m)) where ω is the total number of nonzero
entries.

Algorithm (Proof): Our techniques are similar to those in
(Hu, Koren, and Volinsky 2008). We assume without loss
of generality condition (1) of the theorem. To solve for U
when V is fixed, we begin by writing down the least-squares
solution. Let W i be the diagonal m × m matrix such that
W i
ll = wil. This matrix contains all the weights for user i on

the diagonal. Let pi be the row in P corresponding to user i.
Then,

ui = (VW iV T + λI)−1VW ipTi

The computation is dominated by VW iV T . We can speed
up the computation of VW iV T . Let A be an n × n diag-
onal matrix such that All =

∑
i dil. This matrix contains

the availability for each task. Then, we note that VW iV T =
V AV T +V (W i−A)V T . Conveniently, V AV T can be pre-
computed once, and (W i−A) has only ωi nonzero elements,
where ωi is the number of tasks that user i completed. ωi is

typically much smaller than n. We can thus perform compu-
tation of each row ui in timeO(k2ωi+k3) and computation
of the factor U in time O(k2ω + k3m).

To solve for V when U is fixed, redefine W j to be the
diagonal n × n matrix such that W j

ll = wlj . This matrix
contains all of the weights for task j on the diagonal. Note
that these weights are not all the same. Only the weights for
users who did not do any of task j are the same. Let pj be
the column in P corresponding to task j. Then,

vj = (UTW jU + λI)−1UTW jpj

We now see that UTW jU = UT (AjjI)U + UT (W j −
AjjI)U , which is equal to (AjjI)UTU+UT (W j−AjjI)U .
While (AjjI)UTU must be computed for each task j, UTU
can be precomputed once, and multiplying every entry by
Ajj only takes time O(k2). Abusing notation, let ωj be
the number of users who have worked on task j. Because
W j − AjjI only has ωj nonzero entries, we can perform
computation of each column vj in time O(k2ωj + k3) and
computation of the factor V in time O(k2ω + k3n).

Then, with fixed k, we achieve the stated overall running
time for one iteration of coordinate descent for our model.
We note this running time is linear in the number of nonzero
entries in P , so this computation is highly scalable as more
users do more tasks. �

The conditions of the theorem reflect the characteristic
of negative implicit feedback seen in crowdsourcing. In our
model, the confidence on negative signals (i.e., task avail-
ability) is independent of individual users, which satisfies
condition 1. Note that the achieved running time means that
including negative implicit feedback makes the model no
harder to learn than a model with only positive implicit feed-
back.

Sampling-Based Learning
We now provide a sampling-based solution method for
IFMF2, which we denote IFMF2S. This method has simi-
larities to the approaches proposed in (Pan et al. 2008) and
(DeCoste 2006); it aggregates the predictions of multiple
independently learned models to improve the stability and
accuracy of predictions under noisy data. In addition, this
approach addresses a weakness in many matrix factoriza-
tion approaches in that no uncertainty is associated with
the predictions. In approaches that do output distributions
(e.g., (Koren and Sill 2011; Lawrence and Urtasun 2009;
Salakhutdinov and Mnih 2007)), the distributions are picked
a priori as a modeling decision instead of emerging intrin-
sically from the data. IFMF2S’s predictions are naturally
in the form of a distribution, where the prediction of each
learned model becomes a data point in this distribution.

We would like distributions on the entries of our pre-
dicted matrix as a point prediction frequently does not con-
tain enough information. For example, suppose IFMF2 pre-
dicts that user i ”rates” task j 0.5, which is right in the mid-
dle of the possible ”ratings.” At least two explanations exist
for such a rating. One, user i neither likes nor dislikes the
task and feels apathetic, or two, she either really enjoys or
really hates the task, but our model does not have enough
information to discriminate among these preferences.

910

In IFMF2S, we first constrain the normalization functions
f and g to be between 0 and 1. Now, instead of generating
weights for each entry in P , they denote the probability that
that entry will be selected in the following sampling proce-
dure. We sample Γ matrices P 1, . . . , PΓ from P according
to the probabilities of the entries. More precisely, if pij = 1,
then for each matrix P γ , we sample pγij as

pγij =

{
1 with probability f(cij)
Missing with probability 1− f(cij)

And if pij = 0, then

pγij =

{
0 with probability g(dij)
Missing with probability 1− g(dij)

The resulting P γ matrix is sparse with equal weights on all
entries and can be learned efficiently with traditional ap-
proaches. We can also apply this sampling-based learning
method to IFMF by sampling both ones and zeroes with just
f . We call this approach IFMFS.

An advantage of the sampling approach is that is it highly
parallelizable. Factors for each of the sampled matrices
P 1, . . . , PΓ are learned independently to get a series of pre-
dictions R̂1, . . . , R̂Γ. The point prediction for an entry can
be obtained by taking the mean of {r̂1

ij , . . . , r̂
Γ
ij}. In addition

to the point prediction, the collection of predictions from
each sample forms a distribution of predictions for each en-
try in R̂.

Experiments
Our experiments aim at answering the following questions
regarding the generation of task recommendations in crowd-
sourcing: 1) How do the performances of matrix factoriza-
tion approaches compare to simpler baselines? 2) By intro-
ducing implicit negative feedback, do our models IFMF2
or IFMF2S produce better recommendations than IFMF
and IFMFS? and 3) Is our matrix factorization approach
able to capture human-understandable trends in crowdsourc-
ing marketplaces in addition to providing improvements in
harder-to-understand quantitative metrics?

Data
We use data collected from Microsoft’s internal Universal
Human Relevance System (UHRS). Similar to other crowd-
sourcing marketplaces like Mechanical Turk, UHRS con-
nects a large number workers from around the globe with
human intelligence tasks. The training data was collected
between February 1st 2013 and May 1st 2013. The testing
data was collected between May 1st 2013 and May 14th
2013. The dataset overall includes over 17,000 users and
over 2,100 tasks. Summary statistics for cij > 0 are: min:
1, max: 66630, mean: 919.67, sd: 3090.279. We logged the
number of task instances done for each task and user pair
in training and testing periods. The availability of tasks in
the marketplace was not available to us. We use the num-
ber of instances completed by all users for a task as a proxy
for the availability of that task. No further information about
users or tasks (e.g., user demographics, task characteristics)
is provided to the approaches for generating their recom-
mendations.

Metrics and Methodology
We first learn R̂ = UV . Since explicit feedback is unavail-
able, our evaluation will be based on implicit signals: the
amount of work done for each task by each user in the testing
set. To generate task recommendations for a user, we multi-
ply each predicted rating with the number of tasks available
in the test set to produce expected throughputs, and produce
a sorted list of tasks accordingly.

The first metric we use in our evaluations is the Mean
Percentile Rank (MPR) (Hu, Koren, and Volinsky 2008):
MPR =

∑
ij cijρij

cij
where ρij is the percentile ranking of

task j within a ranked list of recommended tasks for user i,
and cij still refers to the number of tasks completed by user
i for task j, but now in the test set. A lower MPR is better,
and a random recommendation results in an expected MPR
of 50%. The MPR is minimized by a recommendation that
exactly matches the sorted list of tasks for each user with re-
spect to their throughput in the testing set. The MPR metric
is not perfect. It tends to give very high weight to tasks that
users work on a great deal and heavily penalizes mistakes in
predicting the exact ordering of tasks with high throughput.

We are less interested in whether or not we can perfectly
predict the correct order of recommendations, and focused
more on whether or not our recommendations can generally
predict the tasks that the user will do. To this end, we also
use a second metric that takes the form of a precision-recall
(PR) curve. To produce a PR curve, we pick a set of per-
centile thresholds. For each threshold t%, we take the top
t% predictions and compute a precision and recall on re-
trieving the top t% of tasks that each user has completed.
This metric allows us to evaluate the general correctness of
our predictions rather than how effective our models are at
exactly sorting the tasks users complete.

In all experiments, we compute metrics using only the
tasks that a user did not complete in the training set, since
predicting new tasks the user will do is much harder and in-
teresting than predicting tasks that we already know users
like. For all matrix factorizations, we perform 10 iterations
of coordinate descent. All results we present use the best reg-
ularization settings we find for each model. We set k = 20.
For normalization functions f and g, we find that setting
α1 = −1.4, β1 = −5, α2 = −1.0, β2 = −16.0 work the
best for their respective models. We use a 2.66 Ghz Intel(R)
Xeon(R) processor.

Baselines
We use three models as baselines. The first, which we call
Global, simply sorts the tasks based on their popularity.
Each user receives the same recommendation list, and the
top recommendation is the task that has been completed the
most number of times.

We also try a neighborhood approach (Hu, Koren, and
Volinsky 2008). First, for all pairs of tasks j1, j2, we com-

pute their similarity sj1j2 =
rTj1rj2

||rj1 ||||rj2 ||
where rj is column

j ofR. Then we compute our prediction for user i and task j
as r̂ij =

∑
l sjlril. Intuitively, two tasks are similar if users

show the same patterns of use for those two tasks. Train-
ing this approach takes ≈1734 seconds, which we will see

911

10000 20000 All
Global 45.693 27.711 39.055

Neighborhood 16.402 12.915 4.605
IFMF 11.482 8.790 3.351

IFMF2 10.528 8.803 3.365
IFMFS 9.928 6.267 2.189
IFMF2S 7.736 6.180 1.902

LB 0.0325 0.0216 0.0256

Table 1: Average testing MPR of various models on different
training sizes.

is about the same amount of time required for training the
matrix factorization approaches.

Finally, we use a model that we call LowerBound (LB),
which is not a baseline, but represents the best any model
can perform on the MPR metric. We simply assume that we
exactly know the data in the test set and construct a recom-
mendation to minimize the MPR.

Baselines vs. Matrix Factorization
Table 1 compares the performances of baselines and the ma-
trix factorization models when varying sizes of training data
are available: a small 10,000 entry subset, a medium-sized
20,000 entry subset, and the full training dataset, contain-
ing over 70,000 entries. To account for randomness in ini-
tializations, we run each model 200 times and average the
MPRs. A single training of IFMF on the largest set takes
≈1739 seconds. The testing set always remains the same.
The figure shows that there is a large benefit in personal-
izing the recommendations; the global baseline has signifi-
cantly higher MPR values than all other recommendation ap-
proaches. The results also show that matrix factorization ap-
proaches perform consistently better than the neighborhood-
based approach, agreeing with results obtained in other do-
mains such as movie recommendations. Another trend we
see is that the performance of all personalized recommenda-
tion models improves with increases in the size of the train-
ing sets.

IFMF vs. IFMF2
Next, we evaluate how reasoning about negative feedback
in making recommendations affects performance. A single
training of IFMF2 takes ≈ 1741 seconds. As displayed in
Table 1, IFMF2 achieves the best MPR using the smallest
sized training sets, but performs slightly worse than IFMF
when trained on the other sized datasets.

This result is not surprising, because IFMF is very good at
learning the tasks that users like and perform large quantities
of. As we increase the amount of training data, IFMF be-
comes very good at “beating” the MPR metric, which heav-
ily weights tasks that users select often. The benefit of the
IFMF2 model is learning about tasks that users dislike and
the MPR metric does not highlight this characteristic. There-
fore, we look at the PR curves in Figures 1a, 1b, and 1c.
We see that despite achieving a slightly worse MPR on the
larger training sets, IFMF2 achieves large precision and re-
call gains for all training sets. This result means that while

Figure 1: PR curves for IFMF, IFMF2, IFMFS and IFMF2S
models trained on the small (a), medium (b), and large (c)
training sets.

our model may not be able to exactly rank the tasks that
users do by how many they have done, it is able to recall the
tasks that users like with higher precision at all levels of user
interest. In other words, while IFMF2 may not be able to or-
der the top 20 tasks for each user exactly, it is much better at
predicting the top 20 tasks, top 30 tasks, and so on.

Sampling-Based Learning
We also compare IFMF and IFMF2 when they are learned
using the sampling-based approach (IFMFS and IFMF2S).
We set the number of sampled matrices to be Γ = 200. The
settings of f and g result in sampled matrices that are very
sparse; each sampled matrix is 99.5% empty. We see in Ta-
ble 1 and Figure 1 that adding negative implicit feedback to
the model lowers MPR and increases precision and recall.

912

Figure 2: Starting from the bottom-left and moving clock-
wise, the circled clusters represent users who select tasks
relating to videos, who select tasks relating to images, Aus-
tralian users, and Irish users.

Table 1 shows that the models learned using sampling
achieve better MPRs for all training set sizes. However, we
also see that at least for the two smaller training sets, sam-
pling causes the models to produce worse PR curves than
their non-sampling counterparts. These results are not sur-
prising given the characteristics of the sampling approaches.
We can see the bagging effect on MPR values; by aver-
aging over many different samples, we improve the mod-
els’ abilities to learn exactly what the user will do and ex-
actly what the user will not do by minimizing the effect
of low-confidence entries as well as outliers. On the other
hand, each sample includes only a subset of the training
data, mostly missing entries with lower confidences. Thus,
the models are less able to learn about the tasks that do not
elicit extreme preferences. This explanation is further sub-
stantiated by observing the precipitous drops in precision as
we increase recall. The models are very good at learning
what the user likes, but are not so good at getting the mid-
dle ranges correct. On the full training set however, we see
that IFMF2S almost catches up to IFMF2 in precision and
recall, suggesting that the sampled data is now good enough
to learn more sophisticated models, and that IFMF2S can be
used as an alternative to IFMF2.

Qualitative Evidence and Explainability
We investigate whether the factors learned by our models are
meaningful and can be explained qualitatively. Intuitively,
the learned user factor U can be thought of as a vector of
users, where each user is a vector of features. Although we
cannot easily determine what these features mean, we can
still cluster the users using their feature vectors. Therefore,
we cluster the users using the U learned by the IFMF2 ap-
proach by k-means into 100 clusters. We next create a visu-
alization of the users by performing a principal component
analysis on the users’ feature vectors to reduce the vectors to
2 dimensions, and plot each user in a 2D plane using Sand-
Dance2 (Figure 2). So that the picture is a little more inter-
esting, we color users corresponding to where they reside.
Notably, the “spokes” in this galaxy of users correspond to

2http://research.microsoft.com/en-us/projects/sanddance

clusters.
Inspection of these clusters reveals meaningful relation-

ships. Some clusters correspond to the type of task that users
select. For instance, one cluster is composed of users who se-
lect tasks with videos and another is composed of users who
select tasks with news articles. There are clusters of users
from the same countries, including clusters of users from
Brazil, India, Great Britain, Canada, France, Australia, and
many more. This visualization provides evidence that the
matrix factorization approach learns about important trends
in crowdsourcing marketplaces, such as users choosing tasks
based on the countries they reside in, the languages they
speak, and the interests and abilities that they have.

Related Work
Cosley et al. (2006) show that using smart but simple al-
gorithms to select tasks for users can improve throughput.
SuggestBot (Cosley et al. 2007) suggests Wikipedia arti-
cles for users to edit by analyzing article graphs and sim-
ilarities. Several works address the problem of dynamic
task routing. Pick-a-Crowd (Difallah, Demartini, and Cudre-
Mauroux 2013) is a content-based approach to recommend-
ing tasks to users that focuses on dynamically pushing tasks
to users to maximize accuracy. Ho et al. (2013; 2012) for-
malize the task routing problem for labeling tasks, and pro-
vide an algorithm that is provably near-optimal in minimiz-
ing a budget. Tran-Tranh et al. (2012) model task routing us-
ing bounded multi-armed bandits with the goal of maximiz-
ing the overall utility achieved. These models all assume that
users complete the tasks that they are assigned, whereas we
focus on producing a list of recommended tasks from which
users can freely pick, to improve discovery and throughput.

Steck (2010) points out that for conventional explicit
feedback domains, missing data is usually not missing at
random. Therefore, he inserts all missing data into the ma-
trix with some low rating, and shows that a weighted matrix
factorization where the inserted data has very small weight
can outperform conventional unweighted matrix factoriza-
tion methods on matrices with missing data.

Several studies (Gantner et al. 2012; Pan et al. 2008) con-
sider how to weight negative examples, but forego weight-
ing positive examples in a meaningful manner. Additionally,
their models are not built for implicit feedback. In contrast,
our work presents a general model for introducing negative
implicit feedback into existing implicit feedback models,
without sacrificing existing elements.

Some efforts (Paquet and Koenigstein 2013; Rendle et al.
2009) consider more complex models or different optimiza-
tion schemes for recommendation. Our goal is not to com-
pare and contrast various existing implicit or explicit posi-
tive feedback models, but to show that incorporating nega-
tive implicit feedback can generate better recommendations.

Conclusion and Future Work
We introduced a methodology for harnessing implicit feed-
back in a recommendation system that integrates negative
feedback. We presented two algorithms for learning our
model in a computationally feasible way. We demonstrated

913

and evaluated the work on the application domain of crowd-
sourcing and showed that the quality of task recommenda-
tions is improved with our models. Finally, we examined
qualitatively the user factor that is produced via learning our
models, and showed that we can cluster users into meaning-
ful groups that represent their backgrounds and interests.

We presented the best results that we had obtained for
each model via a limited search in the parameter space. We
believe that more efficient and principled methods for pa-
rameter selection would be beneficial. We considered offline
methods for learning. Faster online methods, like those pro-
posed in (Rendle and Schmidt-Thieme 2008), can be ben-
eficial for practical applications. In addition, the distribu-
tions generated by the sampling-based method can be used
by decision-theoretic systems. For example, such a system
might recommend tasks with high entropy in order to learn
more about users so as to maximize the utility gained from
future recommendations.

Our work can also be extended by developing more so-
phisticated implicit feedback models for crowdsourcing and
investigating the generalizability of our models to other
domains where negative implicit feedback can be helpful
in making recommendations. We foresee models for the
crowdsourcing domain that bring many factors together, in-
cluding task reward and task difficulty, in order to estimate
the probability that a user is aware of a task and is purposely
not selecting it. Further, the nature of UHRS is such that
many tasks are available for a long period of time, allow-
ing us to learn about them and recommend them before they
are removed. For platforms with more ephemeral tasks, one
can use clustering techniques to group tasks into task types
and then apply our models. Finally, while our experiments
showed that our approaches can make good recommenda-
tions, the ultimate evaluation requires deploying these rec-
ommendations in a live crowdsourcing system to understand
the effects on throughout, accuracy, and engagement.

Acknowledgments
We thank Rajesh Patel, Steven Shelford, and Hai Wu for pro-
viding access to data and for discussions and feedback. We
thank Steven Drucker for assistance with using the Sand-
Dance visualization tool.

References
Bell, R. M., and Koren, Y. 2007. Scalable collabora-
tive filtering with jointly derived neighborhood interpolation
weights. In ICDM.
Cosley, D.; Frankowski, D.; Terveen, L.; and Riedl, J. 2006.
Using intelligent task routing and contribution review to
help communities build artifacts of lasting value. In CHI.
Cosley, D.; Frankowski, D.; Terveen, L.; and Riedl, J. 2007.
Suggestbot: Using intelligent task routing to help people find
work in wikipedia. In IUI.
DeCoste, D. 2006. Collaborative prediction using ensembles
of maximum margin matrix factorizations. In ICML.
Difallah, D. E.; Demartini, G.; and Cudre-Mauroux, P. 2013.
Pick-a-crowd: Tell me what you like, and i’ll tell you what
to do. In WWW.

Funk, S. 2006. Netflix update: Try this at home.
http://sifter.org/ simon/journal/20061211.html.
Gantner, Z.; Drumond, L.; Freudenthaler, C.; and Schmidt-
Thieme, L. 2012. Personalized ranking for non-uniformly
sampled items. Journal of Machine Learning Research
18:231–247.
Goldberg, D.; Nichols, D.; Oki, B. M.; and Terry, D.
1992. Using collaborative filtering to weave an information
tapestry. Communications of the ACM 35(12):61–70.
Herlocker, J. L.; Konstan, J. A.; Borchers, A.; and Riedl, J.
1999. An algorithmic framework for performing collabora-
tive filtering. In SIGIR.
Ho, C.-J., and Vaughan, J. W. 2012. Online task assignment
in crowdsourcing markets. In AAAI.
Ho, C.-J.; Jabbari, S.; and Vaughan, J. W. 2013. Adaptive
task assignment for crowdsourced classification. In ICML.
Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative
filtering for implicit feedback datasets. In ICDM.
Koren, Y., and Sill, J. 2011. Ordrec: An ordinal model for
predicting personalized item rating distributions. In Recsys.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix fac-
torization techniques for recommender systems. Computer
42(8):30–37.
Lawrence, N. D., and Urtasun, R. 2009. Non-linear matrix
factorization with gaussian processes. In ICML.
Linden, G.; Smith, B.; and York, J. 2003. Amazon.com rec-
ommendations: Item-to-item collaborative filtering. IEEE
Internet Computing 7(1):76–80.
Pan, R.; Zhou, Y.; Cao, B.; Liu, N. N.; and Lukose, R. 2008.
One-class collaborative filtering. In ICDM.
Paquet, U., and Koenigstein, N. 2013. One-class collabora-
tive filtering with random graphs. In WWW.
Rendle, S., and Schmidt-Thieme, L. 2008. Online-updating
regularized kernel matrix factorization models for large-
scale recommender systems. In RecSys.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. Bpr: Bayesian personalized ranking from
implicit feedback. In UAI.
Salakhutdinov, R., and Mnih, A. 2007. Probabilistic matrix
factorization. In NIPS.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In WWW.
Srebro, N., and Jaakkola, T. 2003. Weighted low-rank ap-
proximations. In ICML.
Steck, H. 2010. Training and testing of recommender sys-
tems on data missing not at random. In KDD.
Tran-Tranh, L.; Stein, S.; Rogers, A.; and Jennings, N. R.
2012. Efficient crowdsourcing of unknown experts using
multi-armed bandits. In ECAI.
Zhou, Y.; Wilkinson, D.; Schreiber, R.; and Pan, R. 2008.
Large-scale parallel collaborative filtering for the netflix
prize. In Algorithmic Aspects in Information and Manage-
ment.

914

