
Simpler Bounded Suboptimal Search

Matthew Hatem and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

mhatem and ruml at cs.unh.edu

Abstract

It is commonly appreciated that solving search prob-
lems optimally can take too long. Bounded subopti-
mal search algorithms trade increased solution cost in
a principled way for reduced solving time. Explicit Es-
timation Search (EES) is a recent state-of-the-art algo-
rithm for bounded suboptimal search. Although it tends
to expand fewer nodes than alternative algorithms, its
per-node expansion overhead is much higher, causing
it to sometimes take longer. In this paper, we present
simplified variants of EES (SEES) and an earlier algo-
rithm, A∗

ε (SA∗
ε ), that use different implementations of

the same motivating ideas to significantly reduce search
overhead and implementation complexity. In an empir-
ical evaluation, we find that SEES matches or outper-
forms classic bounded suboptimal search algorithms,
such as WA∗, on all domains tested. We also confirm
that, while SEES and SA∗

ε expand roughly the same
number of nodes as their progenitors, they solve prob-
lems significantly faster and are much easier to imple-
ment. This work widens the applicability of state-of-
the-art bounded suboptimal search by making it easier
to deploy.

Introduction
Heuristic search is a fundamental problem-solving tech-
nique in artificial intelligence. Algorithms such as A∗ [Hart,
Nilsson, and Raphael, 1968] have been developed to find op-
timal (lowest-cost) solutions. A∗ uses an admissible heuris-
tic function to avoid exploring much of the search space.
However, verifying that a solution is optimal requires ex-
panding every node whose f value is less than the optimal
solution cost, which we will denote by C∗. For many prob-
lems of practical interest, there are too many such nodes to
allow the search to complete within a reasonable amount of
time [Helmert and Röger, 2008]. A∗ maintains an open list,
containing nodes that have been generated but not yet ex-
panded, and a closed list, containing all generated nodes, in
order to prevent duplicated search effort. On problems with a
moderate number of duplicates, the memory required by A∗
is proportional to its running time, also making it impractical
for large problems.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

These concerns have motivated the development of
bounded suboptimal search algorithms. These algorithms
trade increased solution cost for decreased solving time.
Given a user-defined suboptimality bound w, they are
guaranteed to return a solution of cost C ≤ w · C∗.
A range of bounded suboptimal search algorithms have
been proposed, of which the best-known is Weighted A∗
(WA∗, Pohl [1973]). WA∗ is a best-first search using the
f ′(n) = g(n) + w · h(n) evaluation function.

WA∗ returns solutions with bounded suboptimality only
when using an admissible cost-to-go heuristic h(n). There
has been much previous work over the past decade demon-
strating that inadmissible but accurate heuristics can be
used effectively to guide search algorithms [Jabbari Ar-
faee, Zilles, and Holte, 2011; Samadi, Felner, and Schaef-
fer, 2008]. Inadmissible heuristics can even be learned on-
line [Thayer, Dionne, and Ruml, 2011] and used in bounded
suboptimal search [Thayer and Ruml, 2011]. Furthermore,
recent work has shown that WA∗ can perform very poorly in
domains where the costs of the edges are not uniform [Wilt
and Ruml, 2012]. In such domains, an estimate of the mini-
mal number of actions needed to reach a goal can be utilized
as an additional heuristic to effectively guide the search to
finding solutions quickly. This is known as the distance-to-
go heuristic of a node, and denoted by d̂(n).

A∗ε [Pearl and Kim, 1982] is a bounded suboptimal
search algorithm that incorporates distance-to-go estimates
by maintaining two orderings of the search frontier. While
A∗ε has been shown to perform better than WA∗ in some
domains, it is unable to enjoy the benefits of inadmissible
heuristics. Moreover, A∗ε must synchronize its two orderings
during search and can suffer significant overhead for each
node expansion.

Explicit Estimation Search (EES) [Thayer and Ruml,
2011] is a recent state-of-the-art bounded suboptimal search
algorithm that incorporates inadmissible heuristics as well
as distance-to-go estimates to guide its search and has been
shown to expand fewer nodes than WA∗ and A∗ε across a
wide variety of domains. Unfortunately, like A∗ε , EES must
synchronize multiple priority queues, resulting in lower
node expansion rates than single queue algorithms such as
WA∗. As we explain further below, it is possible to reduce
some of the overhead by employing complex data structures.
However, as our results show, substantial overhead remains

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

856



and it is possible for WA∗ to outperform A∗ε and EES when
distance-to-go estimates and inadmissible heuristics do not
provide enough of an advantage to overcome this ineffi-
ciency.

The main contribution of this paper is a simpler approach
to implementing the ideas behind A∗ε and EES that preserves
their intention while allowing us to avoid maintaining mul-
tiple orderings of the search frontier. We call these new al-
gorithms Simplified A∗ε (SA∗ε ) and Simplified EES (SEES).
While they are merely approximations to the originals and
can offer different search behavior, they are both easier to
implement and have significantly less overhead per node ex-
pansion. In an empirical evaluation, we compare SA∗ε and
SEES with optimized versions of A∗ε , EES and WA∗ on a va-
riety of benchmark domains. The results show that while the
simplified implementations expand roughly the same num-
ber of nodes, they have much higher node expansion rates
and thus solve problems significantly faster, achieving a new
state-of-the-art in our benchmark domains and they are sig-
nificantly easier to implement. This work generalizes the
ideas inherent in contemporary bounded suboptimal search
by presenting an alternative implementation methodology,
and widens their applicability by simplifying their deploy-
ment.

Previous Work
WA∗ is a simple modification of A∗ and is perhaps the most
popular bounded suboptimal search algorithm in use today.
Unfortunately, WA∗ is far from state-of-the-art: it does not
enjoy the benefits of inadmissible heuristics or distance-to-
go estimates which have been shown to dramatically im-
prove performance for bounded suboptimal search. This has
led to the development of algorithms like A∗ε and EES.

Bounded suboptimal search attempts to find solutions that
satisfy the user-specified bound on solution cost as quickly
as possible. Solving time is directly related to the number of
nodes that are expanded during search. Finding shorter solu-
tions typically requires fewer node expansions. Intuitively,
we can speed up search by prioritizing nodes that are esti-
mated to have shorter paths to the goal.

Like A∗, A∗ε orders the open list using an admissible eval-
uation function f(n). A second priority queue, the focal list
contains a prefix of the open list: those nodes n for which
f(n) ≤ w · f(bestf ), where bestf is the node at the front
of the open list. The focal list is ordered by a potentially
inadmissible estimate of distance-to-go d̂(n) and is used to
prioritize nodes that are estimated to have shorter paths to
the goal. The node at the front of the focal list is denoted by
bestd̂.

With an admissible heuristic, the value f(n) will tend
to increase along a path. Newly generated nodes, including
those where d̂ has gone down, will often not qualify for entry
into the focal list. Shallower nodes with f(n) = f(bestf )
will tend to have higher estimates of distance-to-go and be
pushed to the back of the focal list. As a result, A∗ε suf-
fers from a thrashing effect where the focal list is required
to empty almost completely before bestf is expanded, fi-
nally raising the value of f(bestf ) and refilling the focal

1. if f̂(bestd̂) ≤ w · f(bestf ) then bestd̂
2. else if f̂(bestf̂ ) ≤ w · f(bestf ) then bestf̂
3. else bestf

Figure 1: Pseudo-code for node selection in EES.

list [Thayer, Ruml, and Kreis, 2009]. While A∗ε has been
shown to perform better than WA∗ in some domains, it is of-
ten worse, and it is also unable to take advantage of accurate
but inadmissible heuristics for search guidance.

Explicit Estimation Search (EES) is a recent state-of-
the-art bounded suboptimal search algorithm that uses an
inadmissible estimate of cost-to-go ĥ and an inadmissible
distance-to-go estimate d̂. To incorporate multiple heuris-
tics, EES maintains three different orderings of the search
frontier. The open list is ordered using an inadmissible esti-
mate of solution cost f̂(n) = g(n) + ĥ(n). The node at the
front of the open list is denoted bestf̂ . A focal list contain-

ing all nodes n for which f̂(n) < w · f̂(bestf̂ ) is ordered

using d̂(n). EES also maintains a cleanup list, containing all
open nodes, that is ordered using the admissible estimate of
solution cost f(n) = g(n) + h(n).

Details of the EES search strategy are given in Figure 1.
EES pursues nodes that appear to be near the goal by check-
ing the focal list first (line 1). If the front of the focal list
can not guarantee admissibility, then EES tries to expand
the node that appears to be on a cheapest path to the goal ac-
cording to the accurate but potentially inadmissible heuristic
by checking the front of the open list (line 2). If this node
cannot guarantee admissibility, then EES falls back to just
expanding the node on the frontier with the lowest admissi-
ble estimate of solution cost f (line 3) which helps the tests
in lines 1 and 2 succeed in the future.

Both A∗ε and EES suffer from overhead in having to syn-
chronize the focal list each time the f or f̂ of the node at
the front of the open list changes. A naive implementation
of A∗ε or EES would maintain a single list of nodes ordered
by f and, for each node expansion, perform a linear scan of
the list to find an admissible node with minimum d̂. With
a loose upper bound on solution cost, this implementation
could visit the entire open list for every node expansion.

To make A∗ε and EES practical, a more efficient imple-
mentation is required [Thayer, Ruml, and Kreis, 2009]. The
open list can be represented by a specialized red-black tree
and the focal list can be represented by a binary heap based
priority queue. These data structures allow us to identify the
node to expand in constant time, remove it from the focal list
and the open list in logarithmic time, and insert new nodes
in logarithmic time.

When the node with minimum f or f̂ changes, nodes may
need to be added or removed from the focal list. To do this
efficiently, we do a top-down traversal of the red-black tree,
visiting only the nodes that need to be added or removed. We
denote the upper bound (w · f(bestf ) in the case of A∗ε and
w · f̂(bestf̂ ) in the case of EES) for the focal list with b. For
each node expansion we assume that b will not change, and
all child nodes that qualify for the focal list according to the

857



current value of b are added. The value b is updated only af-
ter processing all children. If in fact b does not change, then
the focal list is already synchronized and no further process-
ing is necessary. If b decreases to b′, then a traversal of the
red-black tree is performed, visiting only nodes with a value
that is within the interval of b′ and b. Each visited node is re-
moved from the focal list. If b increases to b′, then a traversal
is performed, visiting only nodes within the interval b and b′,
and adding visited nodes to the focal list.

Unfortunately, even with this optimization, A∗ε and EES
can have significant node expansion overhead compared to
single queue based algorithms like WA∗, especially when
the upper bound for the focal list changes frequently. In the
worst case, the entire open list might need to be visited on
every node expansion. These algorithms only have a chance
of performing better than WA∗ when distance-to-go esti-
mates and inadmissible heuristics provide a significant ad-
vantage over heuristic guidance alone.

Simplified Bounded Suboptimal Search
The main contribution of this paper is an alternative ap-
proach to implementing multi-queue based search algo-
rithms without incurring the overhead of maintaining mul-
tiple queues. In this section we present two new algorithms
that can be viewed as simplified variants of A∗ε and EES. We
call these new algorithms Simplified A∗ε (SA∗ε ) and Simpli-
fied EES (SEES). We will start with a discussion of SA∗ε and
then extend the ideas to SEES by incorporating inadmissible
heuristics.

Simplified A∗
ε

A∗ε expands the node with lowest d̂(n) among those whose
f(n) is within a factor w of the lowest f(n) on open. In-
tuitively, A∗ε can be viewed as an algorithm that is do-
ing Speedy search (a best-first search on d̂ [Ruml and Do,
2007]) within an adaptive upper bound on solution cost. We
can approximate this search strategy by using a fixed up-
per bound that is updated if the Speedy search fails. This
approach, which is less adaptive but has far less overhead,
can be viewed as a combination of iterative deepening [Korf,
1985a] and Speedy search.

SA∗ε simplifies implementation by eliminating one of the
priority queues, namely the open list, replacing it with itera-
tive deepening on f . Like IDA∗, SA∗ε maintains a threshold
tf that is initialized to f of the initial state. Search proceeds
in iterations, expanding all nodes with f(n) ≤ w · tf in each
iteration. However, unlike IDA∗, within each iteration nodes
are expanded best-first in lowest d̂(n) order. Nodes that ex-
ceed the current upper bound on solution cost are pruned.
At the start of each iteration the threshold is updated to the
minimum cost of all pruned nodes. The completeness of SA∗ε
follows easily from the increasing bound.

The pseudo code for SA∗ε is given in Figure 2, ignoring
the code in brackets. SA∗ε begins by computing h of the ini-
tial state to initialize the tf threshold (line 1). Next, search
proceeds by performing a bounded speedy search (lines 2–
5). The initial state is added to the open list, a priority queue
that is sorted by d̂(n) (line 7). The speedy search proceeds

by expanding the best node on open, pruning all child nodes
where f(n) exceeds the current tf threshold (lines 14-19).
The minimum f(n) of all pruned nodes is remembered at
each iteration and is used as the threshold for the next iter-
ation (lines 3, 5 and 16). At each iteration, SA∗ε prunes all
nodes with f(n) > w · tf (line 15). If the heuristic is admis-
sible, SA∗ε can terminate when a goal node is expanded and
guarantee that the cost of the solution is w-admissible (lines
10-11). If a goal is not found in one iteration, the threshold
is updated (line 5) and the speedy search repeats.

Theorem 1 If SA∗ε terminates with a solution, it is w-
admissible if the heuristic is admissible.

Proof: Let C be the cost of the goal returned by SA∗ε and
assume for the sake of contradiction that C > w · C∗. Let
ti be the threshold used in the iteration when the goal node
was expanded. Since the goal node was expanded, it holds
that C ≤ w·ti. On the other hand, the goal was not expanded
in the previous iteration, where the threshold was lower than
ti. Since ti is updated to be the minimum f value of all nodes
that exceeded the previous bound, then at least one node p
that is on the optimal path to the goal has f(p) ≥ w · ti.
Therefore:

C ≤ w · ti ≤ w · f(p)
≤ w · (g(p) + h(p)) ≤ w · C∗

This contradicts the assumption that C > w · C∗. 2

SA∗ε approximates the search behavior of A∗ε by expand-
ing nodes that appear to be closer to the goal first, among
those nodes that guarantee admissibility. Because SA∗ε ex-
pands only nodes that guarantee admissibility, it can termi-
nate as soon as it expands a goal, just like A∗ε . Unlike A∗ε ,
which adaptively sets the upper bound for the focal list, po-
tentially at each node expansion, SA∗ε uses a fixed upper
bound at each iteration and must exhaust all nodes in the
focal list before increasing this bound.

Simplified EES
A∗ε and EES have similar motivations, and both algorithms
perform a speedy search within an adaptive upper bound on
solution cost. We refer to the nodes that are within the up-
per bound as the search envelope. EES differs from A∗ε in
that it incorporates an accurate but potentially inadmissible
heuristic ĥ to help shape the search envelope. This inadmis-
sible heuristic helps by pruning unpromising nodes from the
search envelope that would otherwise be expanded by A∗ε . To
approximate the search strategy of EES, we can apply the
same iterative deepening technique of SA∗ε . However, this
time we need to perform iterative deepening on two upper
bounds: the upper bound on solution cost f and the upper
bound on the inadmissible estimate of solution cost f̂ .

SEES orders node expansions according to d̂(n) and
prunes nodes with high f(n) and f̂(n). This emulates the
same criteria used to determine which nodes form the fo-
cal list in EES and which nodes are selected for expansion
(Figure 1). However, one critical difference is that SEES
only ever expands nodes from the focal list, because all

858



SA∗ε or SEES(init)
1. solution← nil; tf ← h(init); [tf̂ ← ĥ(init)]
2. while tf <∞ AND solution = nil
3. tfnext ←∞; [tf̂next ←∞]
4. Speedy(init)
5. tf ← tfnext ; [tf̂ ← tf̂next ]
6. return solution

Speedy(init)
7. open← {init}; closed← ∅
8. while open is not empty
9. n← remove node from open with min d̂

10. if n is a goal
11. solution← n; break
12. else
13. closed← closed ∪ {n}
14. for child ∈ expand(n)
15. if f(child) > w · tf [or f̂(child) > w · tf̂ ]
16. tfnext ← min(tfnext , f(child))

17. [tf̂next ← min(tf̂next , f̂(child))]
18. else if child is not a duplicate
19. open← open ∪ {child}

Figure 2: Pseudo-code for SEES. Ignoring the code in square
brackets gives pseudo-code for SA∗ε .

nodes in the focal list guarantee admissibility. In contrast,
not all nodes that form the focal list for EES guarantee w-
admissibility and EES can potentially expand nodes from
either of three priority queues during search.

The pseudo code for SEES is given in Figure 2 includ-
ing the code in square brackets. SEES is the same algorithm
as SA∗ε with the addition of an inadmissible node evaluation
function for pruning (lines 1, 3, 5, 15 and 17). Compared to
EES, the priority queue for the open list is replaced by iter-
ative deepening on f̂ and the priority queue for the cleanup
list is replaced by iterative deepening on f . This leaves just
one priority queue, the focal list, ordered by d̂(n). The proof
for EES being w-admissible is identical to the proof for SA∗ε .

The iterative-deepening search, with thresholds tf and tf̂ ,

results in a best-first search order on both f and f̂ when
these functions are monotonic, and approximates a best-first
search order otherwise. These thresholds play a similar role
both to bestf and bestf̂ from the original algorithms – re-
stricting search to nodes that are estimated to guarantee w-
admissibility.

SA∗ε and SEES have far less overhead than their progen-
itors. Each requires only a single priority queue, sorted ac-
cording to one evaluation function. Each node only needs
to be stored in one priority queue, requiring less memory to
store each node. Moreover, the focal list does not need to be
synchronized.

Experiments
To determine the effectiveness of our simplified approach,
we implemented SA∗ε and SEES and compared them to A∗ε ,
EES and WA∗ on 4 different domains, including 3 of the

simplest and most reproducible of the original 6 domains
used by Thayer and Ruml [2011]. For all experiments, we
used path-based single step error correction of the admis-
sible heuristic h to construct a more accurate but poten-
tially inadmissible heuristic ĥ, as described by Thayer and
Ruml [2011]. All algorithms were written in Java and com-
piled with OpenJDK 1.6.0.24. We implemented the opti-
mizations recommended by Burns et al. [2012] and Hatem,
Burns, and Ruml [2013] with the exception of bucket based
priority queues and C++ templates. All experiments were
run on a machine with a CoreDuo 3.16 GHz processor and
8 GB of RAM running Linux.

15-Puzzle
We evaluated the performance of SA∗ε and SEES on a simple
unit-cost domain by comparing them to A∗ε , EES and WA∗
on Korf’s 100 15-puzzles [Korf, 1985b] using the Manhat-
tan distance heuristic for both heuristic and distance-to-go
estimates. The upper plot in the first column in Figure 3
shows mean node expansions at suboptimality bounds 1.5,
2, 3, 4 and 5. As the suboptimality bound increases, each al-
gorithm requires fewer node expansions and all algorithms
require roughly the same number of node expansions be-
yond a suboptimality bound of 3. However, when we exam-
ine solving times, the lower plot in the first column, we see
that EES and A∗ε are significantly slower overall while SEES
performs as well as WA∗. EES performs poorly compared to
SEES and WA∗ because the overhead of maintaining multi-
ple orderings of the search frontier outweighs the benefits of
the search guidance provided by the inadmissible heuristic
ĥ. The node expansion rate for SEES is roughly 2.5 times
faster than EES in this setting. SA∗ε is faster than A∗ε but the
difference is not as dramatic.

Next, we change the domain slightly by modifying the
cost function such that the cost to move a tile is the inverse of
the number on the face of the tile. This provides a wide range
of edge costs in a simple, well understood domain and pre-
vious work has shown that inverse costs make the problems
harder to solve and differentiate algorithms more [Thayer
and Ruml, 2011]. Moreover, distance-to-go estimates pro-
vide a significant advantage over using the Manhattan dis-
tance heuristic alone. In this domain WA∗ is not able to solve
all instances with our timeout of 60 seconds at any subop-
timality bound. The plots in the second column in Figure 3
show that while SA∗ε expands roughly the same nodes as its
progenitor, it solves problems faster as the bound loosens.
SEES is the fastest algorithm at lower suboptimality bounds.
All these algorithms are able to dramatically outperform
WA∗ on this domain because they are able to incorporate
distance-to-go estimates in search guidance.

These plots provide evidence that SEES is merely an ap-
proximation to EES, as it expands fewer nodes on average in
this domain. We believe the difference in node expansions
can be attributed to the non-monotonic upper bounds. While
SEES uses fixed upper bounds that never decrease, EES
sets this bound adaptively. Since the upper bounds never de-
crease for SEES, it may be able to find admissible paths to
a goal sooner than EES. However, if bestf̂ significantly de-

859



Sliding tiles Inverse tiles Heavy Pancakes Vacuum World
M

ea
n

E
xp

an
si

on
s

L
og

1
0

Suboptimality Bound
5432

5

4

SEES

SA*ep

WA*

A*ep

EES

Suboptimality Bound
963

4.8

4

EES

SA*ep

A*ep

SEES

Suboptimality Bound
432

3

2

WA*

SEES

EES

SA*ep

A*ep

Suboptimality Bound
3.63

4.8

4

WA*

EES

SEES

A*ep

SA*ep

M
ea

n
C

PU
Ti

m
e

L
og

1
0

Suboptimality Bound
5432

0

-0.5

-1

EES

A*ep

SEES

SA*ep

WA*

Suboptimality Bound
963

-0.5

-1

EES

A*ep

SA*ep

SEES

Suboptimality Bound
432

-1.2

-1.8

WA*

EES

SEES

A*ep

SA*ep

Suboptimality Bound
3.63

-0.4

-0.8

WA*

EES

A*ep

SEES

SA*ep

Figure 3: Comparison between SA∗ε , SEES, EES and WA∗ on sliding tiles, pancakes and vacuum world domains. Plots show
mean node expansions and mean CPU time in seconds log10.

creases during search, then SEES might expand more nodes
than EES and if it is roughly stable then SEES and EES
should expand roughly the same nodes.

Pancake Puzzle
We also evaluated the performance of these algorithms on
the heavy pancake puzzle using the gap heuristic. In this do-
main we must order a permutation of {1, ..., N}, where N
is the number of pancakes, by reversing a contiguous prefix.
The gap heuristic is a type of landmark heuristic that counts
the number of non adjacent pancakes or “gaps” for each pan-
cake in the stack [Helmert, 2010]. This heuristic has been
shown to be very accurate, outperforming abstraction based
heuristics. In heavy pancakes, the cost to flip a pancake is
the value of its id. This produces a wide range of integer
edge costs and distance-to-go estimates provide additional
search guidance over using the heuristic alone. In our ex-
periments we used 100 random instances with 14 pancakes.
For the admissible heuristic, we adapted the gap heuristic
and we used the basic unit cost form of the gap heuristic for
the distance-to-go estimate. The plots in the third column
show the number of node expansions and the mean solving
time. WA∗ is the worst performing algorithm and A∗ε and
SA∗ε were only able to solve all instances within our mem-
ory limit of 8GB or our timeout of 500 seconds for subopti-
mality bounds greater than 2. In this domain SEES expands
more nodes than EES. This is because at lower suboptimality

bounds, SEES performs many iterations, resulting in many
node re-expansions. However, SEES still solves problems
as fast or faster than EES because it has significantly less
overhead per expansion. SA∗ε is faster than A∗ε but again the
difference is not as dramatic.

Vacuum World
The Vacuum World domain is the first state space introduced
in Russell and Norvig [2003]. In this domain a vacuum robot
must clean up dirt distributed across a grid world. In the ver-
sion considered here, actions have different costs depending
on how much dirt the robot is carrying. This variant is called
the Heavy Vacuum World. In our experiments we used the
same heuristic and distance estimates used by Thayer and
Ruml [2011]. The admissible heuristic is computed by find-
ing a minimum spanning tree for all remaining dirt piles,
ignoring blocked locations. The edges of the tree are sorted
by decreasing length and we sum the product of each edge
and weight of the robot, starting with the current weight and
increasing it for each edge. The distance-to-go estimate is
a greedy traversal of all remaining dirt. The distance-to-go
estimates provide a significant advantage over using just the
heuristic alone. The fourth column of Figure 3 summarizes
the results for the heavy vacuum world. As the suboptimal-
ity bound increases, all algorithms except WA∗ require less
time to solve all instances. WA∗ expands more nodes as the
bound increases in some cases. However, the performance of

860



IDA∗ A∗ SA∗ε SEES A∗ε EES
CC 13 203 204 207 270 374

LoC 50 886 928 947 1,166 1,433

Table 1: McCabe’s Cyclomatic Complexity (CC) and lines
of code (LoC) metrics for our implementations.

the algorithms that incorporate distance-to-go estimates im-
prove consistently and are significantly faster than WA∗. In
this domain SA∗ε performs better than SEES at higher subop-
timality bounds. This is likely because the heuristic for this
domain are misleading and SEES is also being guided by f̂ .
SA∗ε has the advantage in this domain of being guided only
by the distance-to-go estimate.

Code Complexity
Although it is hard to quantify code complexity, we use two
popular metrics to measure how much simpler SEES and
SA∗ε are to implement. We counted lines of code and com-
puted the Cyclomatic Complexity [McCabe, 1976] for our
implementations of IDA∗, A∗, A∗ε , EES, SEES, and SA∗ε .
Cyclomatic Complexity is a metric commonly used by soft-
ware engineers to predict the number of defects that are
likely to occur in a program. This metric indirectly mea-
sures the linearly independent paths through a program’s
source code. Table 1 shows the Cyclomatic Complexity of
our implementations, along with the number of lines of Java
code (excluding comments). From this table we see a wide
range in complexity. IDA∗ is a variation on simple depth-
first search and does not keep an open or closed list so it
requires no data structures. A∗ is the next most complex
algorithm. Our implementation uses a generalized binary
heap for the open list and a hash-table with open address-
ing and quadratic collision resolution. SEES and SA∗ε are
just slightly more complex than A∗. They use the same bi-
nary heap and hash-table for the open and closed lists. EES
is by far the most complex program. It uses the same binary
heap and hash-table from our A∗ implementation but also
requires a red-black tree to store the open list. SEES rep-
resents a 45% reduction in complexity over EES and SA∗ε
represents a 24% reduction in complexity over A∗ε .

Discussion
While we have focused on presenting very simple alterna-
tives to A∗ε and EES, optimizations are possible that will
further improve performance in certain situations.

Thayer and Ruml [2011] present an optimistic variant of
EES, EESopt, that borrows ideas from Optimistic Search
[Thayer and Ruml, 2008], a bounded suboptimal search al-
gorithm that ignores the admissible evaluation function un-
til an incumbent solution is found. After an incumbent is
found, a cleanup search phase uses the admissible heuris-
tic to prove the incumbent is w-admissible. Like Optimistic
Search, EESopt ignores the admissible heuristic, expanding
just nodes in the focal list until an incumbent is found. Once
an incumbent is found EESopt proceeds just like EES until
f(incumbent) ≤ w · f(bestf ). We can use a similar tech-
nique to formulate an optimistic variant of SEES (SEESopt).
We do this by simply ignoring the ft threshold until an

incumbent solution is found. Once an incumbent is found
SEESopt proceeds just like SEES until it can prove the in-
cumbent is w-admissible or until it finds a new incumbent
that is. This is advantageous when ĥ is very accurate.

SA∗ε and SEES use an iterative deepening search strat-
egy inspired by IDA∗. Like IDA∗, SA∗ε and SEES expand a
super-set of the nodes in the previous iteration. If the size of
iterations grows geometrically, then the node regeneration
overhead is bounded by a constant. The number of nodes
expanded by IDA∗ can be O(n2) [Sarkar et al., 1991] in
the worst case when the number of new nodes expanded in
each iteration is constant. To alleviate this problem, Sarkar
et al. introduce IDA∗CRwhich tracks the distribution of f val-
ues of the pruned nodes during an iteration of search and
uses it to find a good threshold for the next iteration. This is
achieved by selecting the bound that will cause the desired
number of pruned nodes to be expanded in the next iteration.
We can apply a similar technique to SA∗ε and SEES. How-
ever, we did not find node re-expansion overhead to result
in worse performance for SA∗ε and SEES when compared to
their progenitors so we did not incorporate this technique.

We can eliminate all node re-expansion caused by it-
erative deepening by simply remembering search progress
between iterations. Rather than deleting nodes that exceed
the current thresholds, they are placed on a separate open
list for the next iteration. The closed list persists across all
iterations. This technique is reminiscent of Fringe search
[Björnsson et al., 2005], an algorithm that has been shown
to perform better than A∗ in some domains by replacing the
priority queue with a iterative layered search. This optimiza-
tion adds complexity to the implementation and we did not
use it in any of our experiments.

Conclusion

In this paper, we presented simplified variants of A∗ε (SA∗ε )
and EES (SEES) that use a different implementation of the
same fundamental ideas to significantly reduce search over-
head and implementation complexity. In an empirical evalu-
ation, we showed that SA∗ε and SEES, like the originals, out-
perform other bounded suboptimal search algorithms, such
as WA∗. We also confirmed that, while SA∗ε and SEES ex-
pand roughly the same number of nodes as the originals,
they solve problems significantly faster, setting a new state
of the art in our benchmark domains, and they are signifi-
cantly easier to implement. This work provides a general ap-
proach that may be applicable to other complex multi-queue
based search algorithms. We hope this work leads to faster,
simplified and wider adoption of inadmissible heuristics and
distance estimates in bounded suboptimal search.

Acknowledgments

We gratefully acknowledge support from the NSF (grants
0812141 and 1150068) and DARPA (grant N10AP20029).
We also thank Jordan Thayer and Ethan Burns for helpful
discussion and sharing code and experiments.

861



References
Björnsson, Y.; Enzenberger, M.; Holte, R. C.; and Schaef-
fer, J. 2005. Fringe search: beating A* at pathfinding on
game maps. In Proceedings of IEEE Symposium on Compu-
tational Intelligence and Games, 125–132.
Burns, E.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing fast heuristic search code. In Proceedings of
SoCS-12.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cybernet-
ics SSC-4(2):100–107.
Hatem, M.; Burns, E.; and Ruml, W. 2013. Faster problem
solving in Java with heuristic search. IBM developerWorks.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proceedings of AAAI-08.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Proceedings of SOCS-10.
Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artificial Intel-
ligence 175(16-17):2075–2098.
Korf, R. E. 1985a. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 1985b. Iterative-deepening-A*: An optimal
admissible tree search. In Proceedings of IJCAI-85, 1034–
1036.
McCabe, T. 1976. A complexity measure. IEEE Transac-
tions on Software Engineering SE-2(4):308–320.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-4(4):391–399.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putation issues in heuristic problem solving. In Proceedings
of IJCAI-73, 12–17.
Ruml, W., and Do, M. B. 2007. Best-first utility-guided
search. In Proceedings of IJCAI-07, 2378–2384.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In Proceedings of AAAI-08.
Sarkar, U.; Chakrabarti, P.; Ghose, S.; and Sarkar, S. D.
1991. Reducing reexpansions in iterative-deepening search
by controlling cutoff bounds. Artificial Intelligence 50:207–
221.
Thayer, J. T., and Ruml, W. 2008. Faster than weighted A*:
An optimistic approach to bounded suboptimal search. In
Proceedings of ICAPS-08.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
Proceedings of IJCAI-11.
Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. In Proceedings of
ICAPS-11.

Thayer, J. T.; Ruml, W.; and Kreis, J. 2009. Using distance
estimates in heuristic search: A re-evaluation. In Proceed-
ings of SoCS-09.
Wilt, C. M., and Ruml, W. 2012. When does Weighted A*
fail? In Proceedings of SoCS-12.

862




