
Worst-Case Solution Quality Analysis When Not
Re-Expanding Nodes in Best-First Search

Richard Valenzano
University of Alberta
valenzan@ualberta.ca

Nathan R. Sturtevant
University of Denver
sturtevant@cs.du.edu

Jonathan Schaeffer
University of Alberta
jonathan@ualberta.ca

Abstract

The use of inconsistent heuristics with A∗ can result in in-
creased runtime due to the need to re-expand nodes. Poor per-
formance can also be seen with Weighted A∗ if nodes are re-
expanded. While the negative impact of re-expansions can of-
ten be minimized by setting these algorithms to never expand
nodes more than once, the result can be a lower solution qual-
ity. In this paper, we formally show that the loss in solution
quality can be bounded based on the amount of inconsistency
along optimal solution paths. This bound holds regardless of
whether the heuristic is admissible or inadmissible, though
if the heuristic is admissible the bound can be used to show
that not re-expanding nodes can have at most a quadratic im-
pact on the quality of solutions found when using A∗. We
then show that the bound is tight by describing a process for
the construction of graphs for which a best-first search that
does not re-expand nodes will find solutions whose quality is
arbitrarily close to that given by the bound. Finally, we will
use the bound to extend a known result regarding the solution
quality of WA∗ when weighting a consistent heuristic, so that
it also applies to other types of heuristic weighting.

1 Introduction
When an A∗ search is using an admissible heuristic, any so-
lutions it finds are guaranteed to be optimal (Hart, Nilsson,
and Raphael 1968). If the heuristic is also consistent, then
a node will only be expanded when the lowest cost path
to it has been found. This cannot be guaranteed when the
heuristic is inconsistent, in which case A∗ may expand the
same node multiple times. In some domains, these node re-
expansions can dominate runtime and thereby greatly de-
crease algorithm performance (Martelli 1977).

Re-expansions can also occur when using Weighted A∗
(WA∗) (Pohl 1970). This algorithm performs an A∗ search
using the inadmissible and inconsistent heuristic of H =
w · h, where h is an admissible heuristic and w ≥ 1 is a
constant. To avoid the negative impact of re-expansions, it is
common to modify WA∗ so that it never expands any node
more than once. For example, this technique has been ap-
plied in domains such as robot path planning (Likhachev,
Gordon, and Thrun 2003) and binary decision diagram min-
imization (Ebendt and Drechsler 2009).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yet there is still much that is not fully understood about
the impact that not re-expanding nodes has on a search. For
example, when this technique has been tested empirically
it has been shown to improve algorithm runtime in some
problems while harming it in others, and it also typically de-
creases the quality of the solutions found (Thayer and Ruml
2008; Ebendt and Drechsler 2009). However, there are still
no theoretical results that identify the properties of a state-
space that determine whether or not re-expanding nodes is
beneficial, and the only known guaranteed bounds on the
quality of solutions found when using this technique are
when weighting a consistent heuristic in WA∗ and A∗ε .

The goal of this paper is to begin to address this gap in
our understanding of this commonly used technique. Our
specific focus will be on formally analyzing how not re-
expanding nodes can impact the solution quality. In particu-
lar, we will show that the loss in quality that can result from
not re-expanding nodes can be bound based on the amount
of inconsistency along optimal solution paths. This will be
proven for a large class of best-first search algorithms and
will apply regardless of whether the heuristic is admissible
or inadmissible. The bound will then be used to show that
for admissible heuristics, the worst-case when using an A∗
which does not re-expand nodes is to find solutions that are
quadratic in the optimal solution cost. We will then identify
a family of worst-case graphs and corresponding heuristics
for which the given bound is exact. Finally, we will con-
sider the known bound on solution quality that is specific to
the use of a consistent heuristic with WA∗, and extend this
bound so that it applies to other types of heuristic weighting.

2 Not Re-Expanding Nodes Can Be Helpful
To motivate the need to study the relationship between not
re-expanding nodes and solution quality, we consider two
examples in this section in which algorithm runtime suffers
greatly when this technique is not used. The first is a well-
known family of graphs Gk(V,E) that were identified by
Martelli (1977), whereGk has k vertices for any k ≥ 4, each
with a corresponding admissible but inconsistent heuristic.
We omit a full description of Gk due to space constraints.
Martelli showed that if an A∗ search which re-expands nodes
is used on a problem that has Gk as a subgraph, then the
search will requireO(2|V |) expansions to explore that region
of the search space. Martelli introduced a modification to A∗

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

885

Ratio of Re-Expansion NR Ratio of
Weight Total Nodes Percentage Total Nodes

1.0 1.0 0% 1.0
1.5 0.86 16% 0.74
2 1.52 65% 0.56
5 3.17 90% 0.33
10 3.28 91% 0.30

Table 1: The impact of re-expanding nodes on WA∗.

which only requires O(|V |2) expansions to traverse through
such subgraphs while still ensuring that all solutions found
will still be optimal. However, by simply not re-expanding
nodes we guarantee that at most |V | expansions are needed,
though with a loss of guaranteed optimality.

As an example in which it is essential to not perform re-
expansions when using an inadmissible heuristic, consider
the use of WA∗ on the 35, 360 pathfinding problems from
the 10 8-connected, 512 × 512 maps with 40% random ob-
stacles given by Sturtevant (2012). The average optimal so-
lution cost of these problems is 733.87, and A∗ performs
an average of 36, 003 expansions per problem when using
the octile heuristic. When it is not weighted, this heuris-
tic is consistent. Table 1 shows the average performance of
WA∗ on these problems for a variety of weights. The first
column shows the weight, the second column shows the to-
tal number of expansions relative to A∗, and the third col-
umn shows what percentage of the total expansions were
re-expansions. The table shows that the higher weights ac-
tually expand more nodes than A∗, largely because of re-
expansions. For example, 91% of the expansions made by
the weight 10 search are re-expansions, which is why it is
much slower than A∗ despite expanding only 30% as many
unique nodes. The final column of the table shows the total
number of node expansions relative to A∗ when WA∗ does
not re-expand nodes. As shown, all weights greater than one
now result in a substantially faster search than A∗. Clearly,
not performing re-expansions is necessary in this domain.

Since the above examples suggest that not re-expanding
nodes can lead to significant runtime improvements, we now
turn to formally analyzing the impact of this technique on
solution quality. We will later compare the actual impact on
solution quality of not re-expanding nodes in these problems
to what the formal analysis predicts in Section 4.4.

3 Formal Notation
In this section, we will define the notation that will be used
throughout the paper.

Problem definition. The tasks we consider consist of find-
ing a path (defined below) in a graph G = (V,E) from a
given start node or vertex nstart ∈ V to one of a set of
goal nodes Vgoals ⊆ V . If (n,m) ∈ E (ie. there is an edge
from n to m), m is called a successor or child of n. κ(n,m)
will denote the cost of this edge, and we assume that for any
(n,m) ∈ E, κ(n,m) ≥ 0. All edges will also be assumed
to be directed edges. Note that we will often omit references
to G when the graph in question is clear from the context.

(2) (2) (0) (0) (3) (1)
n5n3n2n1n0 n4 n6

11 9 2 018 9142 1 2 4 19

Figure 1: Example path with INCH values shown below the
edge costs in parentheses.

Paths and path costs. A path is a sequence of nodes P =
n0, ..., nk in a given problem such that (ni, ni+1) ∈ E for all
0 ≤ i < k. The cost of a path is given by the sum of the costs
of the edges along the path. P will be called a solution path
to a task if n0 = nstart and nk ∈ Vgoals, and an optimal
solution path if it has the lowest cost of all solution paths.
C∗ will denote the cost of all optimal solution paths. We also
use g∗(n) to denote the cost of the optimal path from nstart
to n, h∗(n) as the cost of the lowest cost path from n to any
node in Vgoals (where h∗(n) = ∞ if no such path exists),
and g∗(n,m) to denote the cost of the optimal path from n
tom. This means that C∗ = g∗(ng) = g∗(nstart, ng) where
ng is the goal node with the lowest cost path to it.

Heuristics and heuristic properties. We define a heuris-
tic function H : V → R≥0 as any function from V to the
non-negative real numbers. The only restrictions we place on
H are that for any n, H(n) ≥ 0, H(n) = 0 if n ∈ Vgoals,
and H(n) 6= ∞ if h∗(n) 6= ∞. These assumptions cor-
respond to requiring that H never returns a negative value,
always returns 0 for goal nodes, and does not incorrectly
identify any node from which a goal node is reachable as a
dead-end, respectively.

A heuristic H is admissible if for any node n, H(n) ≤
h∗(n). Unless otherwise stated, we do not assume admis-
sibility, which is why we use H to refer to heuristics in-
stead of h which has most often been used in the literature
to denote an admissible heuristic. H is said to be consis-
tent if for any edge (p, c) ∈ E, H(p) ≤ H(c) + κ(p, c),
and inconsistent if there exists an edge (p, c) ∈ E such that
H(p) > H(c) + κ(p, c). We define the inconsistency of a
heuristic H on an edge from p to c as how far away the
heuristic H is from being consistent on the edge from p to c.
This value, denoted by INCH(p, c), is given by

INCH(p, c) = max(H(p)−H(c)− κ(p, c), 0)
Notice INCH(p, c) > 0 if and only if H is inconsistent on
edge (p, c), and 0 otherwise. As such, the standard definition
of consistency is equivalent to requiring that INCH(p, c) =
0 for any (p, c) ∈ E. We also define the inconsistency of
a heuristic H along a path P of nodes as the sum of the
inconsistency of H on each of the edges along P .

As an example of how these metrics are calculated, con-
sider the path n0, ..., n6 given in Figure 1. In this figure, the
heuristic values are shown inside the nodes, the edge costs
are shown above the edges, and the value of the inconsis-
tency of H on each edge is shown in parentheses below
the edges. For example, H is inconsistent on edge (n4, n5),
which is why INCH(n4, n5) = 9 − 2 − 4 = 3, while the
value of INCH(n2, n3) and INCH(n3, n4) are both 0 since
H is consistent on these edges.

The inconsistency of H along the path in Figure 1 is then
given by the sum of the numbers in the parentheses. In this
case, the result is 8. The path in Figure 1 also demonstrates

886

Algorithm 1 Best-First Search
1: g(nstart) = 0, parent(nstart) = NONE
2: OPEN← {nstart}, CLOSED← {}
3: while OPEN is not empty do
4: n← argminn′∈OPEN g(n

′) +H(n′)
5: if n is a goal node then
6: return solution path extracted from CLOSED
7: for all child nc of n do
8: if nc ∈ OPEN then
9: if g(n) + κ(n, nc) < g(nc) then

10: g(nc) = g(n) + κ(n, nc), parent(nc)← n
11: else if nc ∈ CLOSED then
12: if g(n) + κ(n, nc) < g(nc) then
13: g(nc) = g(n) + κ(n, nc), parent(nc)← n
14: CLOSED← CLOSED−{nc}
15: OPEN← OPEN ∪{nc}
16: else
17: g(nc) = g(n) + κ(n, nc), parent(nc)← n
18: OPEN← OPEN ∪{nc}
19: CLOSED← CLOSED ∪{n}
20: return no solution exists

the importance of the max function for ensuring that INCH

is non-negative. If INCH(p, c) were calculated as H(p) −
H(c)−κ(p, c) without taking the maximum with 0, the sum
along this path would be−1, and this value does not capture
that there is inconsistency along this path.

INCH is also related to an existing metric for measur-
ing heuristic inconsistency called the inconsistency rate of
an edge (IRE) (Felner et al. 2005; Zahavi et al. 2007). This
metric, which is calculated as |H(p)−H(c)|, was intended
for graphs with only unit-cost, undirected edges. The di-
rected version of IRE would beH(p)−H(c), though this is
still only suitable for unit-cost edges. To see this, notice that
the IRE of edges (n2, n3) and (n5, n6) in Figure 1 are both
2, even though H is consistent on (n2, n3) and inconsistent
on (n5, n6). Since IRE can be negative, we also cannot use
the sum of the IRE values along a path P as a measure of
the inconsistency along P for the same reason that INCH is
forced to be non-negative. As such, INCH was found to be
a more convenient metric than IRE for this paper.

Best-First Search (BFS). Best-first search is a well-
known algorithm framework that includes A∗ and WA∗.
Pseudocode for this framework is shown in Algorithm 1
though we assume the reader’s familiarity with the concepts
of OPEN and CLOSED lists, and parent pointers as typi-
cally used in such algorithms.

BFS algorithms maintain a g-cost for each node n, de-
noted g(n). In an A∗ search which uses a consistent heuris-
tic, g(n) is the cost of the path from nstart to n stored
implicitly using parent pointers. In other BFS algorithms,
g(n) can only be said to be an upper bound on the cost of
this path. This is because an earlier portion of the path to n
may be improved through re-expansions and this improve-
ment will not be immediately propagated to g(n), thus lead-
ing to g-cost inaccuracy. Since the value of g(n) can change,
we use gt(n) when we need to refer to the g-cost of n after t
expansions. Using this notation, if the g-cost of some n is not
updated during the t+ 1-st iteration, then gt+1(n) = gt(n).

The algorithms in this framework differ in the evaluation
function used to order nodes. In this paper, we only consider
evaluation functions of the form g(n) + H(n) where H is
some heuristic function (see line 4 in Algorithm 1). This re-
striction still allows for the framework to include A∗ (which
corresponds to the use of an admissible H), WA∗ (which
corresponds toH = w·hwhere h is admissible), and the use
of many other evaluation functions. However, this frame-
work does not include Greedy Best-First Search since that
algorithm does not include g in its evaluation function.

NR-BFS. We use NR-BFS to refer to a BFS which does
not re-expand nodes. NR-BFS is identical to BFS except in
lines 12 to 15 of Algorithm 1. These lines are responsible for
moving a node from CLOSED to OPEN when a lower cost
path has been found to it. By simply removing these lines
and leaving this branch of the conditional empty, the result
is a search that can never re-expand a node. Alternatively, we
can leave the updates made in line 13, while removing only
lines 14 and 15 which are responsible for actually making a
node a candidate for expansion by moving it back to OPEN.
This approach allows for the path to a node in CLOSED to
be improved without allowing that node to be re-expanded.
We will refer to this technique as parent pointer updating.
Note that the theorems and proofs below will all apply re-
gardless of whether this technique is used or not.

g-cost error. In the remainder of this paper, it will be con-
venient to let gδt (n) = gt(n) − g∗(n), which we refer to
as the g-cost error of node n after t node expansions. No-
tice that like g(n), gδt (n) can never increase as the search
progresses. This is because g(n) is only updated if it will de-
crease. Formally, this means that if n is first generated by the
t-th node expansion then for any t′ and t′′ where t ≤ t′ ≤ t′′,
gt′(n) ≥ gt′′(n) and gδt′(n) ≥ gδt′′(n).

4 Worst-Case Solution Quality Analysis
Having established the needed notation, we now show that
for any problem, the inconsistency of H along any optimal
path is an upper bound on the suboptimality of any solution
found by NR-BFS. To show this bound, we first require the
following lemma and a resulting observation.
Lemma 4.1. Let Popt be an optimal solution path to a given
problem. At any time prior to the expansion of a goal node by
NR-BFS, there will be a node from Popt which is in OPEN.

The proof of this lemma has been omitted as it is almost
identical to the proof given for Lemma 1 of Hart, Nilsson,
and Raphael (1968) which is specific to A∗.

We can now use this lemma to show how the evaluation
of a node from Popt that is in OPEN can be related to C∗.
To do so, suppose that the t + 1-st node expanded by NR-
BFS is a goal node ng ∈ Vgoals, and let n be the node from
Popt that is guaranteed to be in OPEN after t expansions
according to Lemma 4.1. Consider the following derivation
of the evaluation of n:
gt(n) +H(n) = g∗(n) + gδt (n) +H(n)

= g∗(n) + gδt (n) + h∗(n)− h∗(n) +H(n)

= C∗ + gδt (n) + (H(n)− h∗(n)) (1)

887

This shows that the evaluation of n differs from C∗ by no
more than the sum of the g-cost error and (H(n) − h∗(n))
which, if positive, is how inadmissible H is on n. Since ng
was selected for the t + 1-st node expansion instead of n,
gt(ng) +H(ng) ≤ gt(n) +H(n) by the definition of NR-
BFS. Where C is the cost of the solution found by NR-BFS,
this inequality can be simplified to C ≤ gt(n)+H(n) since
ng ∈ Vgoals implies that H(ng) = 0 and since C ≤ g(ng)
(as explained when discussing g-cost above). Substituting
this into equation 1 allows for the following:

Observation 4.2. If the t+ 1-st node expanded by NR-BFS
is a goal node ng , then there is a node n from some optimal
path which is in OPEN after t expansions such that the cost
of the solution found to ng will be no more than

C∗ + gδt (n) +H(n)− h∗(n)

Below we will show that gδt (n)+H(n)−h∗(n) is bound
by the inconsistency of H along the optimal path that n is
on. To do so, we will first show in Section 4.1 that the inad-
missibility of H on any ni which is on an optimal solution
path Popt = n0, ..., nk is bound by the inconsistency of H
along the portion of Popt from ni to nk. We will then show
in Section 4.3 that there is at least one node ni from Popt
which is in OPEN after t expansions such that the g-cost er-
ror of ni is no larger than the inconsistency of H along the
portion of Popt from n1 to ni. These two results will then be
used to derive the main theorem given in Section 4.3.

4.1 Bounding Inadmissibility with Inconsistency
In this section, we will show that the inadmissibility of the
heuristic value of a node n on any optimal path Popt is
bounded by the inconsistency along Popt from n on. We be-
gin by showing the following more general statement:

Lemma 4.3. If P = n0, n1, ..., nk is an optimal path from
n0 to nk and H(ni) 6=∞ for all 0 ≤ i ≤ k, then

H(n0)−H(nk)− g∗(n0, nk) ≤
k−1∑
i=0

INCH(ni, ni+1)

Proof. Notice that INCH(p, c) ≥ H(p) − H(c) − κ(p, c)
by the definition of INCH . As such, the following is true:

k−1∑
i=0

H(ni)−H(ni+1)−κ(ni, ni+1) ≤
k−1∑
i=0

INCH(ni, ni+1)

In the left side of this inequality, −H(ni+1) appears in the
i-th term of the sum while H(ni+1) appears in the i + 1-
st term. As such, when evaluating the sum, all such terms
will cancel out except for H(n0) and −H(nk). Since P is
an optimal path from n0 to nk, the sum of the −κ(ni, ni+1)
terms will be −g∗(n0, nk). Therefore, the left side of the
equation above is equal to H(n0) − H(nk) − g∗(n0, nk),
and the statement follows.

This lemma immediately leads to the following bound on
the inadmissibility of the heuristic value of any node from
which the goal is reachable:

Theorem 4.4. If P = n0, n1, ..., nk is a path from n0 to
some nk ∈ Vgoals such that h∗(n0) = g∗(n0, nk), then

H(n0)− h∗(n0) ≤
k−1∑
i=0

INCH(ni, ni+1)

This follows from Lemma 4.3 since nk ∈ Vgoals implies
that H(nk) = 0, and since g∗(n0, nk) = h∗(n0).

4.2 Bounding g-cost Error with Inconsistency
In this section, we will show that the g-cost error of any node
n from an optimal solution path Popt can be bound by the in-
consistency from nstart to n along Popt, at any time after n
is put in CLOSED. For this theorem, we will first need the
following definition. Where Popt = n0, ..., nk, a node ni
will be said to be the shallowest node from Popt that is in
OPEN after t expansions if all predecessors of ni from Popt
are not in OPEN after t expansions. Formally, this means
that for any j where 0 ≤ j < i, nj is not in OPEN. If t > 1,
then we can also guarantee that the parent of ni on Popt will
be in CLOSED. This is because for ni to be the shallowest
node from Popt in OPEN after t expansions, all the prede-
cessors of ni must be in CLOSED. To see this, notice that
n0 will be in CLOSED for any t > 1 since n0 is the first
node expanded. Since n1 must have been generated by this
expansion, n1 must either be in OPEN or CLOSED after t
expansions. If n1 is in OPEN, then n1 = ni since ni is the
shallowest node from Popt in OPEN. If n1 is in CLOSED,
then n2 was generated when n1 was previously expanded.
As such, n2 is either in OPEN (in which case ni = n2) or
n2 is in CLOSED. By this inductive argument, it is easy to
see that for any j where 0 ≤ j < i, nj is in CLOSED. There-
fore, the parent of the shallowest node from Popt which is in
OPEN after t node expansions must be in CLOSED.

We now use this property to prove the following theorem:
Theorem 4.5. Let Popt = n0, n1, ..., nk be an optimal solu-
tion path. If ni is a node from Popt that is in CLOSED after
t ≥ 0 node expansions of NR-BFS, then

gδt (ni) ≤
i−1∑
j=1

INCH(nj , nj+1)

Proof. The proof is by induction on the number of node ex-
pansions, denoted by t. If t = 0, the statement is vacuously
true since CLOSED is empty. If t = 1, only n0 = nstart is
in CLOSED and g(n0) = g∗(n0) = 0. Since this means that
gδ1(n0) = 0, the statement is also true for this base case.

Suppose the statement is true after all of the first t ≥ 1
node expansions. This means that any n from Popt which is
in CLOSED after t node expansions must satisfy the bound
above. Since gδt′′(n) ≤ gδt′(n) for any t′′ ≥ t′, the statement
will still apply to any such n after t+ 1 node expansions.

Now consider the node selected to be the t + 1-st ex-
pansion, since this is the only node that is newly added to
CLOSED on this iteration. If this node is not on Popt, then
the statement is true after t+1 node expansions. If this node
is on Popt, we denote it as ni for some i > 0. We now con-
sider two cases: when the parent of ni, ni−1, is in CLOSED
after t node expansions, and when it is not.

888

First suppose that ni−1 is in CLOSED. This requires that
ni−1 was the t′-th node expanded where t′ ≤ t. This ex-
pansion will have necessarily generated ni and so gt′(ni) ≤
gt′(ni−1)+κ(ni−1, ni). As ni−1 is the parent of ni on Popt,
this means that gδt′(ni) ≤ gδt′(ni−1). If i > 1, the fact that
gδt (ni) ≤ gδt′(ni) allows for the following derivation:

gδt (ni) ≤ gδt′(ni−1) (2)

≤
i−2∑
j=1

INCH(nj , nj+1) (3)

≤
i−1∑
j=1

INCH(nj , nj+1) (4)

Line 3 holds by the induction hypothesis on gδt′(ni−1), while
the final line holds since INCH(ni−1, ni) ≥ 0. If i = 1
(ie. ni = n1), then gt(ni) = g∗(n1) = κ(n0, n1) and
gδt (n1) = 0. Therefore, the inequality in line 4 also applies
in this case since the right hand side evaluates to 0. As such,
the statement holds for ni after t+1 node expansions if ni−1
is in CLOSED after t expansions. Notice that this argument
also shows that for any ni from Popt that is in OPEN, if
ni−1 is in CLOSED and its g-cost error is bound by the in-
consistency of H along Popt from n1 to ni−1, then gδt (ni) is
bound by the inconsistency from n1 to ni. This fact will be
used later in this proof and when proving Theorem 4.6.

Now suppose that ni−1 is not in CLOSED after t expan-
sions. Since t ≥ 1 this means that i 6= 1 since n0 will always
be in CLOSED. Let ni′ be the shallowest node from Popt
which is in OPEN after t node expansions. As the parent of
ni′ , ni′−1, is in CLOSED it must be the case that ni 6= ni′
since ni−1 is not in CLOSED. Since ni was selected for ex-
pansion instead of ni′ , the evaluation of ni must be no larger
than that of ni′ . This allows for the following:
gt(ni) +H(ni) ≤ gt(ni′) +H(ni′) (5)

gδt (ni) ≤ g∗(ni′) + gδt (ni′)− g∗(ni)
+H(ni′)−H(ni) (6)

≤ gδt (ni′)
+H(ni′)−H(ni)− g∗(ni′ , ni) (7)

Line 6 is derived by expanding gt(n) to g∗(n) + gδt (n), and
rearranging the terms. Line 7 then holds since ni′ is along
an optimal path to ni and so g∗(ni) = g∗(ni′)+g

∗(ni′ , ni).
Since ni′−1 is in CLOSED, gδt (ni′−1) is bound according

to the induction hypothesis. As such, gδt (ni′) is bound by the
inconsistency of H along Popt from n1 to ni′ by the same
argument used to derive inequality 4. By substituting this,
along with the upper bound onH(ni′)−H(ni)−g∗(ni′ , ni)
given by Lemma 4.3, we can continue from line 7 as follows:

gδt (ni) ≤
i′−1∑
j=1

INCH(nj , nj+1) +
i−1∑
j=i′

INCH(nj , nj+1)

(8)

≤
i−1∑
j=1

INCH(nj , nj+1) (9)

where the final line holds by combining the sums. Therefore
the statement holds for ni after t+ 1 expansions in the case
that ni−1 is not in CLOSED after t expansions. Having han-
dled all cases for ni, the statement is true by induction.

Notice that the bound given in this theorem does not de-
pend on the inconsistency of the edge from n0 to n1. As
described in the proof, this is because n1 will always have
an optimal g-cost since n0 is necessarily expanded.

4.3 Bounding Solution Quality with Inconsistency

In this section, we will use theorems 4.4 and 4.5 to show
that the inconsistency of H along any optimal solution path
(not including the inconsistency of H on the first edge) can
be used to bound the quality of any solution found. This is
formalized by the following theorem:

Theorem 4.6. Where Popt = n0, n1, ..., nk is an optimal
solution path to a given problem, any solution found by NR-
BFS will have a cost C such that:

C ≤ C∗ +
k−1∑
j=1

INCH(nj , nj+1)

Proof. If k is 0 or 1, NR-BFS will necessarily find the op-
timal solution and thus will satisfy the statement. If k > 1,
assume that a goal node ng is first found with the t + 1-st
expansion for some t ≥ 0. By Lemma 4.1 there will be a
node from Popt which is in OPEN after t expansions. Let
ni be the shallowest such node. By Observation 4.2, we can
now perform the following derivation:

C ≤ C∗ + gδt (ni) +H(ni)− h∗(ni) (10)

≤ C∗ +
i−1∑
j=1

INCH(nj , nj+1) +
k−1∑
j=i

INCH(nj , nj+1)

(11)

≤ C∗ +
k−1∑
j=1

INCH(nj , nj+1) (12)

Line 11 is achieved by applying the two earlier theorems as
follows. First, since ni is the shallowest node from Popt in
OPEN, ni−1 is in CLOSED and so gδt (ni−1) is bound by
the inconsistency of H from n1 to ni−1 by Theorem 4.5.
As a result, gδt (ni) is bound by the inconsistency from n1
to ni by the argument used to derive inequality 4. Secondly,
H(ni)− h∗(ni) is replaced by the inconsistency from ni to
nk as given by Theorem 4.4. The final line is then achieved
by combining the two summations.

This theorem shows a formal relationship between the in-
consistency of the heuristic and solution quality. We now
consider this bound in the special case that H is admissible.

Admissible heuristics. If heuristic H is admissible, then
INCH(ni, ni+1) ≤ h∗(ni) − κ(ni, ni+1) since H(ni) ≤
h∗(ni) and H(ni+1) ≥ 0. Where Popt = n0, ..., nk is an

889

optimal solution path, this statement allows for the following
derivation on the sum of the inconsistency of H along Popt:

k−1∑
j=1

INCH(nj , nj+1) ≤

k−1∑
j=1

h∗(ni)

− C∗ (13)

≤ (k − 2) · C∗ (14)

In line 13, the −C∗ term arises from the sum of the edge
costs along Popt. The final line follows since h∗(ni) ≤ C∗

for all nodes on Popt. If for any (m,n) ∈ E, κ(m,n) ≥ c
for some constant c > 0, then k ≤ C∗/c since there are at
most C∗/c edges along Popt. Therefore, by expression 14
and Theorem 4.6, the worst-case solution cost when using
NR-BFS with an admissible heuristic such that all edges cost
at least c > 0 is (C∗/c− 1) · C∗.

Since h(ni) < C∗ for all i > 0, it is not possible to
construct graphs on which an NR-BFS using an admissible
heuristic will find solutions that cost exactly (C∗/c−1)·C∗.
However, it is still possible to construct graphs in which the
solutions found by NR-BFS will have a cost that is quadratic
in C∗. We describe such graphs in the next section.

4.4 Tightness of the Worst-Case Bound
In this section, we describe a process for constructing graphs
that demonstrate the tightness of the bound in Theorem 4.6.
We will then show that this worst-case behaviour is not al-
ways happening in practice.

Worst-case graphs. Given any path P such that the nodes
are assigned any possible heuristic values (admissible or in-
admissible), we can construct a graph in which P is the opti-
mal solution path and the cost of the solution found by NR-
BFS will be arbitrarily close to the sum of the cost of P
and the inconsistency along P (not including the inconsis-
tency of the heuristic on the first edge). For example, Figure
2 shows such a graph that has been built around the path
P = n0, ..., n6 given previously in Figure 1. To this path,
we have added two types of edges, both shown in red. The
solid red edges create suboptimal routes around inconsistent
portions of P . The dashed red edge from n0 to n6 is only
needed when using parent pointer updating, as an NR-BFS
using this technique will outperform the bound if this edge is
not included. The costs of the new edges include a constant
ε ≥ 0 whose purpose is to ensure that the worst-case solution
is found regardless of how ties are broken between nodes
with equal values for g +H . If ties are broken in favour of
the node with higher g-cost (or equivalently with lower H-
cost), then ε can be set to 0. For other tie breaking policies,
ε can be set as a positive value arbitrarily close to 0. In the
resulting graph, NR-BFS will find the solution whose cost is
arbitrarily close to the bound in Theorem 4.6. For example,
the solution found in Figure 2 will cost 25− 2ε, while C∗ is
19 and the inconsistency of P from n1 to nk is 6.

To construct such graphs around any given path P =
n0, ..., nk it is necessary to identify the inconsistent portions
of P , not including edge (n0, n1) since any inconsistency in
this edge cannot decrease the quality of solutions found. For-
mally, we consider every maximally long subpath ni, ..., nj
of P where 1 ≤ i < j ≤ k such that for all i′ where

2
(2)

1
(2)

9
(0)

2
(0)

4
(3)

1
(1)

n3n2n1n0 n6n4 n5

11 − ε5 − ε

111418 9 9 2 0

(0)

(2 + ε) (0)

25 − 2ε

Figure 2: Example worst-case graph.

i ≤ i′ < j, INCH(ni′ , ni′+1) > 0. By being of maximal
length, we mean that either i = 1 or INCH(ni−1, ni) = 0,
and either j = k or INCH(nj , nj+1) = 0. For each such
subpath, we add an edge from ni−1 to nj that has a cost of

g∗(ni−1, nj)− ε+
j−1∑
i′=i

INCH(n′i, ni′+1)

For example, nodes n4, n5, n6 in Figure 2 form a maximally
long inconsistent subpath since H is inconsistent on edges
(n4, n5) and (n5, n6), but not on edge (n3, n4). The incon-
sistency along this subpath is 4. Therefore, an edge is added
from n3 (which is the parent of n4) to n6 with a cost of
g∗(n3, n6)−ε+4. Since g∗(n3, n6) = 7, the cost of this edge
is 11− ε. The other maximally long inconsistent subpath of
n1, n2 is handled similarly, though notice that this subpath
does not include n0 since the inconsistency of (n0, n1) can-
not impact the quality of solutions found.

When using parent pointer updating, an additional edge is
needed from n0 to nk whose cost is equal to the sum of C∗
and the inconsistency of H along Popt from n1 to nk, less
d · ε where d is the number of maximally length inconsistent
subsequences of Popt. For example, d = 2 in Figure 2.

The example in Figure 2 also demonstrates why the value
of H(ni)−H(ni+1)−κ(ni, ni+1) for edges on which H is
consistent do not factor into the bound. To see this, consider
the edge from n2 to n3. If the cost of this edge was 10 instead
of 9 and the cost of dotted red edge was increased by 1, then
NR-BFS would find a solution of cost 26−2ε. This solution
is a cost of 6−2ε larger than C∗, just like the solution found
by NR-BFS when κ(n2, n3) = 9. This would also be true
for any κ(n2, n3) ≥ 2 provided that the dotted red edge
was adjusted accordingly. Intuitively, this shows that NR-
BFS cannot “make up” on g-cost error that has been accrued
along optimal paths using an edge from ni to ni+1 for which
H(ni)−H(ni+1)− κ(ni, ni+1) is a negative number.

Worst-case graphs with admissible heuristics. This con-
struction can also be used to generate graphs that have an ad-
missible heuristic on which NR-BFS will find solutions that
are quadratic in C∗. To do so, start with any path n0, ..., nk
that is to be the optimal solution in the completed graph. For
each node ni, set H(ni) as the cost from ni to nk along P
if i < k and i is odd, and set H(ni) as 0 otherwise. To this
path add the edges as defined by the construction above. For
example, given path P = n0, ..., n6 such that the edges on
P have a cost of 1, the result of this process is the graph
with an optimal solution cost of 6 shown in Figure 3. In this
graph, NR-BFS will find the path of cost 12− 2ε.

In the more general case, consider using this process on
the path n0, ..., nk such that the edge costs between these

890

n2

(0)
1 1

(4) (0)
1

(2)
1

(0)
1

n5n3n1n0 n4 n6

1
(0)

6 − ε

6 5 0 3 0 1 0

4 − ε
(ε) (0)

(0)
12 − 2ε

Figure 3: Example worst-case graph when H is admissible

nodes are all 1. The process described above will result in
a graph on which NR-BFS will find a solution with a cost
that is arbitrarily close to C∗ · (C∗ + 2)/4 if k is even, and
arbitrarily close to (C∗ + 1)2/4 if k is odd, where C∗ = k.

Comparing the bound with practice. In the graphs just
constructed, g-cost error is accrued by using the added (ie.
red) edges to bypass inconsistent subpaths on the optimal so-
lution. If the cost of these edges is not as high as given in the
construction, the edges are not exactly where defined, or if
these edges do not appear at all, NR-BFS will find higher
quality solutions. This is why NR-BFS can often outper-
form the bound in practice. For example, consider the case in
which a weight 10 WA∗ is used on the pathfinding problems
described in Section 2. If WA∗ is set so as to not re-expand
nodes, it finds solutions that are an average of 18% more
costly than optimal, which is worse than the 12% solution
suboptimality seen when nodes are re-expanded. However,
this is substantially better than the upper bound of 475%
suboptimality that is guaranteed by Theorem 4.6, where this
value has been found by calculating the inconsistency of the
heuristic over the solution paths found by A∗.

The bound is more accurate in Martelli’s subgraphs in
which the solutions found by NR-BFS are provably no more
than 1.5 times larger than optimal. In these subgraphs, the
upper bound given by Theorem 4.6 is C + |V | − 2 where C
is the cost of the solution actually found. Since both C∗ and
C areO(2|V |), this deviation from the bound is insignificant.

Note that the matter of finding tighter domain-specific
bounds is left as future work.

4.5 Alternative Heuristic Weighting in NR-BFS
In this section, we will use Theorem 4.6 to find solution
quality guarantees for NR-BFS instances that weight a con-
sistent heuristic in a different way than is done by WA∗.

For any function B(x) : R≥0 → R≥0 such that ∀x ≥
0, y ≥ 0, B(x + y) ≥ B(x) + y, any solution found by a
BFS using a heuristicH(n) = B(h(n)) for some admissible
h will be no more than B(C∗) (Valenzano et al. 2013). This
statement generalizes the well-known result that WA∗ will
find solutions no more costly than w · C∗ if the heuristic
being weighted is admissible. This is because WA∗ is a BFS
that usesH(n) = B(h(n)) whereB(x) = w ·x. Note that in
the context of this section, B is called a bounding function.

If the heuristic being weighted in WA∗ is consistent, NR-
BFS is also guaranteed to find solutions that cost at most
w · C∗ (Likhachev, Gordon, and Thrun 2003). By using
Theorem 4.6, we can consider other bounding functions for
which NR-BFS using H = B(h) where h is consistent will
also be guaranteed to return solutions with a cost of no more

than B(C∗). To do so, we require the following definition:

Definition 1. A heuristic H is said to be B-consistent for
bounding function B if for any nodes p and c for which c is
a successor of p, H(p)−H(c) ≤ B(h∗(p))−B(h∗(c)).

If H is B-consistent along Popt = n0, ..., nk and ∀x ≥
0, y ≥ 0, B(x + y) ≥ B(x) + y, then INCH(p, c) ≤
B(h∗(ni))−B(h∗(ni+1))− κ(ni, ni+1) for all 0 ≤ i < k.
The inconsistency along Popt will therefore be no more
than the sum of these upper bounds, which is B(h∗(n0)) −
B(h∗(nk))−C∗ by the same argument used to prove Theo-
rem 4.4. Therefore, any solutions found by NR-BFS using a
B-consistent heuristic will cost no more than B(h∗(n0)) −
B(h∗(nk)) by Theorem 4.6, which is at most B(C∗) since
h∗(n0) = C∗ and B(h∗(nk)) ≥ 0.

This result will allow us to identify a set of bounding func-
tions for which solutions found by NR-BFS will cost at most
B(C∗) when using the heuristic H = B(h) where h is con-
sistent. Specifically, consider the set of functionsB such that
for all x ≥ 0, y ≥ 0, x ≥ 0, it is true that

x ≥ y ⇒ B(x+ z)−B(y + z) ≥ B(x)−B(y) (15)

It can be easily shown that if B satisfies this condition, then
B(h) is B-consistent if h is consistent. If B is twice differ-
entiable, this condition implies that ∀x ≥ 0, B′′(x) ≥ 0.

5 Related Work
Previous research into bounding solution quality when not
re-expanding nodes has focused on WA∗ when weighting a
consistent heuristic, in which case any solutions found will
cost at most w · C∗ (Likhachev, Gordon, and Thrun 2003).
Ebendt and Drechsler (2009) also proved that when using a
consistent heuristic with A∗ε , solutions will be no worse than
(1 + ε)D · C∗ where the optimal solution has D edges in it.

Previous investigations into the impact of inconsistency
on algorithm performance have focused on admissible
heuristics. This began with the work by Martelli (1977) men-
tioned above, and includes two other techniques which de-
crease the worst-case runtime of A∗ from being O(2|V |) to
being O(|V |2) while still maintaining optimality (Bagchi
and Mahanti 1983; Mero 1984). Felner et al. (2011) then
offered a way to improve Mero’s technique in undirected
graphs and showed that in order for A∗ to expand O(2|V |)
nodes, the edge weights must be exponential in |V |.

6 Conclusion
This paper presents a formal analysis of the impact that not
re-expanding nodes can have on the quality of solutions re-
turned by a best-first search. In particular, the inconsistency
of a heuristic along an optimal solution path is shown to
bound the suboptimality of the solutions found when not
performing re-expansions. This bound, which is tight, was
then used to demonstrate that not re-expanding nodes in
an A∗ search that uses an admissible heuristic will have a
quadratic effect on solution quality in the worst-case. The
bound was also used to find suboptimality guarantees for a
large class of best-first search algorithms that weight a con-
sistent heuristic in a different way than WA∗.

891

Acknowledgments
We would like to thank the reviewers for their feedback
on this paper, particularly for the reviewer who noticed
that there was a simpler proof to the quadratic bound in
the case that H is admissible. This research was supported
by GRAND and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

References
Bagchi, A., and Mahanti, A. 1983. Search Algorithms Under
Different Kinds of Heuristics-A Comparative Study. Jour-
nal of the ACM 30(1):1–21.

Ebendt, R., and Drechsler, R. 2009. Weighted A* search
- unifying view and application. Artificial Intelligence
173(14):1310–1342.
Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual Lookups in Pattern Databases. In Proceedings of the
Nineteenth International Joint Conference on Artificial In-
telligence, 103–108.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N. R.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence 175(9-10):1570–1603.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In
Advances in Neural Information Processing Systems 16
(NIPS-03).
Martelli, A. 1977. On the Complexity of Admissible Search
Algorithms. Artificial Intelligence 8(1):1–13.
Mero, L. 1984. A heuristic search algorithm with modifiable
estimate. Artificial Intelligence 23(1):13 – 27.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193–204.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Thayer, J. T., and Ruml, W. 2008. Faster than Weighted A*:
An Optimistic Approach to Bounded Suboptimal Search. In
Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling, 355–362.
Valenzano, R. A.; Arfaee, S. J.; Thayer, J. T.; Stern, R.; and
Sturtevant, N. R. 2013. Using Alternative Suboptimality
Bounds in Heuristic Search. In Proceedings of the Twenty-
Third International Conference on Automated Planning and
Scheduling, ICAPS 2013, Rome, Italy, June 10-14, 2013.
Zahavi, U.; Felner, A.; Schaeffer, J.; and Sturtevant, N. R.
2007. Inconsistent Heuristics. In Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, 1211–
1216.

892

