
A Knowledge Compilation Map for Ordered Real-Valued Decision Diagrams

Hélène Fargier1 and Pierre Marquis2 and Alexandre Niveau3 and Nicolas Schmidt1,2
1 IRIT-CNRS, Univ. Paul Sabatier, Toulouse, France

2 CRIL-CNRS, Univ. Artois, Lens, France
3 GREYC-CNRS, Univ. Caen, France

Abstract

Valued decision diagrams (VDDs) are data structures that
represent functions mapping variable-value assignments to
non-negative real numbers. They prove useful to compile
cost functions, utility functions, or probability distributions.
While the complexity of some queries (notably optimiza-
tion) and transformations (notably conditioning) on VDD
languages has been known for some time, there remain many
significant queries and transformations, such as the various
kinds of cuts, marginalizations, and combinations, the com-
plexity of which has not been identified so far. This paper
contributes to filling this gap and completing previous results
about the time and space efficiency of VDD languages, thus
leading to a knowledge compilation map for real-valued func-
tions. Our results show that many tasks that are hard on val-
ued CSPs are actually tractable on VDDs.

1 Introduction
Valued decision diagrams (VDDs) are data structures that
represent multivariate functions f having a set V of valua-
tions (often a subset of +) as codomain; such functions
are typically cost functions, utility functions, or probabil-
ity distributions, and as such, are considered in a number of
AI applications. Among the various tasks of interest when
dealing with such functions are optimization queries: find an
assignment of the variables leading to an optimal valuation;
find a value of a given variable that can be extended to an
optimal assignment; etc. Optimization queries are particu-
larly valuable when combined with the conditioning trans-
formation, which derives a representation of a restriction of
f obtained by assigning some of its variables. For instance,
the following task can be handled by combining optimiza-
tion with conditioning: in configuration problems, when f

represents a cost function mapping each assignment (say, a
car) to its price, output the cheapest car with seven seats; or,
when f represents a probability distribution linking diseases
to symptoms, return the most probable explanation (the most
probable disease given a set of symptoms).

Many other data structures have been defined for repre-
senting such multivariate functions f , valued CSPs (Schiex,
Fargier, and Verfaillie 1995), GAI nets (Bacchus and Grove

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1995), and Bayes nets (Pearl 1989) being among the best-
known. However, they are not adapted to the aforemen-
tioned requests when guaranteed response times are required
(as is the case in Web-based applications): optimization is
indeed NP-hard on CSPs, GAI nets, and Bayes nets.

Contrastingly, optimization is a tractable query on VDDs;
and conditioning is tractable as well. This explains why sev-
eral families of VDDs have been defined and studied in the
past twenty years. These include the language ADD of al-
gebraic decision diagrams (Bahar et al. 1993), the language
AADD of affine algebraic decision diagrams (Tafertshofer and
Pedram 1997; Sanner and McAllester 2005), and the lan-
guage SLDD of semiring-labeled decision diagrams (Wilson
2005). Actually, SLDD is itself a family of languages SLDD⌦,
parameterized by a binary operator ⌦, yielding in partic-
ular SLDD

+

, or equivalently EVBDD (Lai and Sastry 1992;
Lai, Pedram, and Vrudhula 1996; Amilhastre, Fargier, and
Marquis 2002), when ⌦ is +, and SLDD⇥ when ⌦ is ⇥.

There nevertheless exist many queries and transforma-
tions of interest that do not amount to a combination of con-
ditioning and optimization. Consider for instance the fol-
lowing request: “tell me whether among the ‘cheap’ cars
(say, with a price lower than 10,000 euros) of this given
type, there is one that has seven seats”. It requires one to
focus on the set of ‘cheap’ cars, which is neither optimiza-
tion nor conditioning. Similarly, some transformations, such
as projection on variables of interest, or its dual, variable
elimination (e.g., forgetting or marginalization), also being
of tremendous value (e.g., to solve the “posterior marginal”
problem (PM) in Bayes nets), are not reducible to optimiza-
tion and conditioning. This is also the case of combination
transformations (a.k.a. ‘apply’ operations), which given the
representations of two functions f and g, compute a repre-
sentation of f � g, � being an associative and commutative
operator on V (e.g., addition or product when V = +).
Such transformations are very important, if only for incre-
mentally generating representations in a bottom-up way.

The knowledge compilation (KC) map (Darwiche and
Marquis 2002) identifies the complexity of requests (i.e.,
queries and transformations) over many propositional lan-
guages, as well as their relative succinctness. However, it
has been drawn for the specific case of Boolean functions;
although it has been extended in several directions, as of yet
no such map exists for the VDD languages. It has been

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1049

shown that AADD is strictly more succinct than ADD (San-
ner and McAllester 2005), and the succinctness picture has
later been completed (Fargier, Marquis, and Schmidt 2013):
AADD is strictly more succinct than both SLDD

+

and SLDD⇥,
and both SLDD

+

and SLDD⇥ are in turn strictly more suc-
cinct than ADD. To complete the map, one now needs to
provide the set of requests that each language satisfies; in
order words, for each request, and for each language among
ADD, SLDD

+

, SLDD⇥, and AADD, to either find a polynomial-
time algorithm computing the request, or prove that no such
algorithm exists unless P = NP.

This is the main goal of this paper, which is organized as
follows. The next section presents the family of VDD lan-
guages, and the following one formally defines the queries
and transformations used. Then complexity results are pre-
sented,1 that establish whether each VDD language satisfies
each query or transformation. This paves the way for a KC
map for functions that are not essentially Boolean.

2 Valued Decision Diagrams
Preliminaries. Given a finite set X = {x

1

, . . . , x

n

} of
variables, each x

i

ranging over a finite domain D

x

i

, and any
set X ✓ X , #—

x = { hx
i

, d

i

i | x
i

2 X, d

i

2 D

x

i

} denotes
an assignment of the variables from X; D

X

is the set of all
such assignments (the Cartesian product of the domains of
the variables in X). The concatenation of two assignments
#—
x and #—

y of two disjoint subsets X and Y is an assignment
of X [Y denoted #—

x · #—
y .

We consider functions f of variables from a subset
Scope(f) ✓ X to some set V (this paper often assumes
V = +). The domain of f is denoted as D

f

= D

Scope(f)

.
For any Z ✓ Scope(f), f #—

z

denotes the restriction (or se-

mantic conditioning) of f by #—
z , that is, the function on

Scope(f)\Z such that for any #—
x 2 D

Scope(f)\Z , f #—
z

(#—
x) =

f(#—
z · #—

x).
Given a binary operator � over V and two functions

f and g sharing the same scope, f � g is the func-
tion defined by f � g (#—

x) = f(#—
x) � g(#—

x). The �-
projection of f on Z ✓ Scope(f) is defined by f

�,Z(#—
x) =J

#—
y 2D

Scope(f)\Z
f

#—
y

(#—
x).

Slightly abusing notations, if X and Y are two disjoint
sets of variables, Scope(f) = X , and #—

x · #—
y is an assignment

of X[Y , then we assume that f(#—
x · #—y) = f(#—

x); in practice,
we often consider complete assignments, i.e., #—

x 2 DX .
Given ⌫ a reflexive and transitive relation on V (i.e., a

preorder), of which we denote ⇠ the symmetric part and
� the asymmetric part, we can define for any � 2 V the
following sets, referred to as “cuts”:

• CUTmax(f) = { #—
x

⇤ | 8 #—
x ,¬(f(#—

x) � f(#—
x

⇤)) };

• CUTmin(f) = { #—
x

⇤ | 8 #—
x ,¬(f(#—

x) � f(#—
x

⇤)) };

• CUT⌫�(f) = { #—
x | f(#—

x) ⌫ � }, and using similar defi-
nitions, CUT��(f) and CUT⇠�(f).

1For space reasons, proofs are omitted; a full version of the
paper, completed with proofs, can be found at hurl: https://niveau.
users.greyc.fr/pub/AAAI14 FMNS.pdfi.

For instance, when optimizing is minimizing, CUTmin

is the set of optimal assignments (e.g., the cheapest cars);
CUT�� is the set of assignments satisfying the cut condi-
tion (e.g., the ‘cheap’ cars – those with a price � �).

A representation language over X w.r.t. a set V is a set of
data structures equipped with an interpretation function that
associates with each of them a mapping f : DX ! V . This
mapping is called the semantics of the data structure, and the
data structure is a representation of the mapping.
Definition 2.1 (representation language; inspired from
Gogic et al. (1995)). Given a valuation set V , a rep-

resentation language L over X w.r.t. V , is a 4-tuple
hCL,VarL, f

L
, sLi, where:

• CL is a set of data structures ↵ (also referred to as L rep-
resentations or “formulæ”),

• VarL : CL ! 2X is a scope function associating with each
L representation the subset of X it depends on,

• f

L is an interpretation function associating with each L
representation ↵ a mapping f

L
↵

from the set of all assign-
ments over VarL(↵) to V ,

• sL is a size function from CL to that provides the size
of any L representation.

Two formulæ (possibly from different languages) are equiv-
alent iff they have the same scope and semantics.

Valued decision diagrams. In the following, we consider
representation languages based on data structures called val-

ued decision diagrams: such diagrams target the representa-
tion of V-valued functions by allowing their arcs and nodes
to be labeled with values in some set E (generally, E = V ,
but as we will see, it is not always the case).
Definition 2.2 (valued decision diagram). A valued deci-

sion diagram (VDD) over X w.r.t. E is a finite rooted DAG
↵, of which every internal node N is labeled with a variable
x 2 X and has a set Out(N) of |D

x

| outgoing arcs, each arc
a 2 Out(N) being labeled with a distinct value v(a) 2 D

x

.
Arcs and leaves can be labeled with elements of E : '(a)
(resp. '(L)) denotes the label of arc a (resp. of leaf L).
The size of a decision diagram ↵, denoted |↵|, is the size of
the graph (its number of nodes and arcs) plus the sizes of all
labels in it. VDD is the set of all valued decision diagrams.

In the following, we assume that the decision diagrams
are ordered, i.e., a total, strict ordering B over X is cho-
sen, and for each path from the root to a leaf in a VDD ↵,
the associated sequence of internal node labels is required
to be compatible w.r.t. this variable ordering (such diagrams
are thus read-once). A path from the root to a leaf of ↵

represents a (possibly partial) assignment of X . Note that
the structure is deterministic: an assignment #—

x of X corre-
sponds to at most one path p

↵

(#—
x) in ↵.

A VDD ↵ is reduced iff it does not contain any (dis-
tinct) isomorphic nodes.2 A cache mechanism can be used

2Nodes N and M are isomorphic if they are labeled with the
same variable x, and there exists a bijection B from Out(N) onto
Out(M) such that 8a 2 Out(N), a and B(a) have the same end
node, share the same value of D

x

, and '(a) = '(B(a)).

1050

to merge isomorphic nodes on the fly; this is why we assume
in the following that the diagrams are reduced.

VDD languages. ADD, SLDD, and AADD are VDD lan-
guages, i.e., subsets of VDD. Each of them restricts the type
of diagrams used (e.g., ADD allows E-labels on leaves only),
and defines how the diagram is to be interpreted. ADD, SLDD,
and AADD thus differ syntactically (in the way diagrams are
labeled) and semantically (in the way they are interpreted).
Definition 2.3 (ADD). ADD is the 4-tuple hCADD, VarADD,
f

ADD
, sADDi where CADD is the set of ordered VDDs ↵ over

X such that leaves are labeled with elements of E = V (in
general, E = V = +), the arcs are not labeled, and f

ADD is
defined inductively as follows, for every assignment #—

x :
• if ↵ is a leaf node L, then f

ADD
↵

(#—
x) = '(L),

• otherwise, denoting N the root of ↵, x 2 X its label,
d 2 D

x

such that hx, di 2 #—
x , a = hN,Mi the arc such

that v(a) = d, and � the ADD formula rooted at node M

in ↵, then f

ADD
↵

(#—
x) = f

ADD
�

(#—
x).

In the AADD framework of Sanner and McAllester (2005),
the co-domain of the represented functions is V = +, but
only one (unlabeled) leaf is allowed and the arcs are labeled
with pairs of values from + (i.e., E = + ⇥ + 6= V).
Definition 2.4 (AADD). AADD is the 4-tuple hCAADD,VarAADD,
f

AADD, sAADDi where CAADD is the set of ordered VDDs ↵ over
X with a unique leaf L, and the arcs of which are labeled
with pairs hq, fi in + ⇥ +. For normalization purposes,
the root of ↵ is also equipped with a pair hq

0

, f

0

i from +⇥
+ (the “offset”). The semantics of the resulting VDD is

given by, for every assignment #—
x , fAADD

↵

(#—
x) = q

0

+ (f
0

⇥
g

AADD
↵

(#—
x)), where g

AADD
↵

is defined inductively as follows:
• if ↵ is the leaf node L, then g

AADD
↵

(#—
x) = 0,

• otherwise, denoting N the root of ↵, x 2 X its label,
d 2 D

x

such that hx, di 2 #—
x , a = hN,Mi the arc such

that v(a) = d, '(a) = hq
a

, f

a

i, and � the formula rooted
at node M in ↵, then g

AADD
↵

(#—
x) = q

a

+ (f
a

⇥ g

AADD
�

(#—
x)).

The AADD framework is equipped with a normaliza-
tion condition that makes (reduced) ordered AADD formulæ
canonical. Canonicity is important because it ensures a
unique representation for each subformula, which is a key
for efficiently recognizing and caching them.

In the SLDD⌦ framework (Wilson 2005),3 arcs (but not
leaves) are labeled with elements in E = V , and hE ,⌦, 1⌦i
is assumed to be a commutative monoid: f

SLDD⌦
↵

(#—
x) is the

aggregation by ⌦ of the labels of the arcs along p

↵

(#—
x).

Definition 2.5 (SLDD⌦). Given a commutative monoid hE ,
⌦, 1⌦i, SLDD⌦ is the 4-tuple hCSLDD⌦ , VarSLDD⌦ , f

SLDD⌦
,

sSLDD⌦i where CSLDD⌦ is the set of ordered VDDs ↵ over X
with a unique leaf L, such that '(L) = 1⌦, and the arcs of
which are labeled with elements of E = V , and f

SLDD⌦ is
defined inductively as follows: for every assignment #—

x ,
3Note that our definition of SLDD differs from the original one in

two ways: (i) we consider only ordered diagrams; and (ii) we use
a commutative monoid instead of a commutative semiring, since
the second operation of the semiring does not take part in the data
structure (Fargier, Marquis, and Schmidt 2013).

• if ↵ is the leaf node L, then f

SLDD⌦
↵

(#—
x) = 1⌦,

• otherwise, denoting N the root of ↵, x 2 X its label,
d 2 D

x

such that hx, di 2 #—
x , a = hN,Mi the arc such

that v(a) = d, and � the SLDD⌦ formula rooted at node
M in ↵, fSLDD⌦

↵

(#—
x) = '(a)⌦ f

SLDD⌦
�

(#—
x).

We add to the root of ↵ a value '

0

2 E (the “offset”). The
augmented interpretation function of ↵ is f

↵,'

0

= '

0

⌦ f

↵

.

Two (ordered) monoids are particularly interesting,
namely h +

,+, 0i (we call the corresponding language
SLDD

+

) and h +

,⇥, 1i (we call the corresponding language
SLDD⇥). Both SLDD

+

and SLDD⇥ formulæ have a normaliza-
tion condition that provides these languages with the canon-
icity property; moreover, any SLDD

+

or SLDD⇥ formula can
be transformed in linear time into an equivalent AADD for-
mula. This also holds for the ADD language, targeting any of
the SLDD

+

, SLDD⇥, or AADD languages. Last, note that when
variables are Boolean and V = {0, 1}, any ADD, SLDD

+

,
SLDD⇥, or AADD formula can be transformed in linear time
into an equivalent OBDD, and (obviously) reciprocally.

3 Queries and Transformations
We now define many queries and transformations of interest
in the general framework of representation languages w.r.t.
V , that is, they are meaningful even when V 6= +.

Definition 3.1 (queries). Let L denote a representation lan-
guage over X w.r.t. a set V totally ordered by some ⌫.

• L satisfies optimization OPT
max

(resp. OPT
min

)
iff there exists a polynomial-time algorithm that
maps every L formula ↵ to max #—

x2D

f

f

L
↵

(#—
x) (resp.

min #—
x2D

f

f

L
↵

(#—
x)).

• L satisfies equivalence EQ iff there exists a polynomial-
time algorithm that maps every pair of L formulæ ↵ and
� to 1 if fL

↵

= f

L
�

, and to 0 otherwise.
• L satisfies sentential entailment SE iff there exists a

polynomial-time algorithm that maps every pair of L for-
mulæ ↵ and � to 1 if 8 #—

x , f

L
↵

(#—
x) ⌫ f

L
�

(#—
x), and to 0 oth-

erwise.
• L satisfies partial upper (resp. lower, resp. level) consis-

tency CO⌫�

(resp CO��

, resp. CO⇠�

) iff there exists a
polynomial-time algorithm that maps every � 2 V and ev-
ery L formula ↵ to 1 if 9 #—

x , f

L
↵

(#—
x) ⌫ � (resp. fL

↵

(#—
x) � �,

resp. fL
↵

(#—
x) ⇠ �) and to 0 otherwise.

• L satisfies partial upper (resp. lower, resp. level) valid-
ity VA⌫�

(resp VA��

, resp. VA⇠�

) iff there exists a
polynomial-time algorithm that maps every � 2 V and ev-
ery L formula ↵ to 1 if 8 #—

x , f

L
↵

(#—
x) ⌫ � (resp. fL

↵

(#—
x) � �,

resp. fL
↵

(#—
x) ⇠ �) and to 0 otherwise.

• L satisfies max-model enumeration ME
max

iff there ex-
ists a polynomial p and an algorithm that outputs, for ev-
ery L formula ↵, all the elements of CUTmax(fL

↵

) in time
p(|↵|, |CUTmax(fL

↵

)|),
• L satisfies max-model counting CT

max

iff there exists a
polynomial-time algorithm that outputs, for every L for-
mula ↵, the number of elements in CUTmax(fL

↵

).

1051

• L satisfies max-model extraction MX
max

iff there exists
a polynomial-time algorithm that maps every L formula ↵
to an element #—

x of CUTmax(fL
↵

).

We define ME
min

, ME⌫�

, ME��

, ME⇠�

(resp.
MX

min

, MX⌫�

, MX��

, MX⇠�

; resp. CT
min

, CT⌫�

,
CT��

, CT⇠�

) in the same way as ME
max

(resp. MX
max

;
resp. CT

max

), using the sets CUTmin(fL
↵

), CUT⌫�(fL
↵

),
CUT��(fL

↵

), CUT⇠�(fL
↵

) instead of CUTmax(fL
↵

).

The MX and ME families of queries are crucial in
Bayesian reasoning and in interactive configuration. They
capture for instance the computation of a (the) most proba-
ble explanation(s) (MX

max

), or cheapest configuration(s)
(MX

min

); counting is also useful for such applications,
e.g., for characterizing the number of cars that are ‘cheap’
(CT��

), or the number of diseases that are likely enough
to be considered (CT⌫�

). Other queries like consistency
and validity, as well as EQ and SE, are useful for many
reasoning problems (e.g., when pieces of information are
encoded into weighted knowledge bases); they extend the
corresponding queries defined for (Boolean) NNF formulæ.

Definition 3.2 (transformations). Let L denote a repre-
sentation language over X w.r.t. V , and � an associative and
commutative binary operator over V .

• L satisfies conditioning CD iff there exists a polynomial-
time algorithm that maps every L formula ↵, every X ✓
X , and every #—

x 2 D

X

to an L representation of fL
↵,

#—
x

.
• L satisfies bounded �-combination �BC iff there exists a

polynomial-time algorithm that maps every pair of L for-
mulæ ↵ and � to an L representation of fL

↵

� f

L
�

.
• L satisfies �-combination �C iff there exists a

polynomial-time algorithm that maps every set of L for-
mulæ {↵

1

, . . . ,↵

n

} to an L representation of
J

n

i=1

f

L
↵

i

.
• L satisfies variable (resp. single variable) �-elimination
�Elim (resp. S�Elim) iff there exists a polynomial-
time algorithm that maps every L formula ↵ and every
subset X ✓ X of variables (resp every singleton X ✓ X)
to an L representation of

J
x2X

J
#—
x2D

x

f

L
↵,

#—
x

.
• L satisfies single bounded-variable �-elimination
SB�Elim iff there exists a polynomial p and an algo-
rithm that maps every L formula ↵ and every x 2 X to an
L representation of

J
#—
x2D

x

f

L
↵,

#—
x

in time p(|↵||Dx

|
).

• L satisfies single variable �-marginalization (�Marg) iff
there exists a polynomial-time algorithm that maps every
L formula ↵ and every x 2 X to an L representation ofJ

y2X\{x}
J

#—
y 2D

y

f

L
↵,

#—
y

.

• L satisfies �-cut up CUT⌫�

, w.r.t. a preorder ⌫ on V , iff
there exists a polynomial-time algorithm that maps every
L formula ↵ and every �, a, b 2 V such that a � b, to an
L representation of the function g defined by g(#—

x) = a if
#—
x 2 CUT⌫�(f

↵

), and g(#—
x) = b otherwise.

We define CUT��

, CUT⇠�

, CUT
max

, and CUT
min

in
the same way, from the sets CUT��(f

↵

), CUT⇠�(f
↵

),
CUTmax(f

↵

), and CUTmin(f
↵

), respectively.

The classical forgetting of variables corresponds to their
max-elimination. Single variable marginalization is equiva-
lent to the elimination of all variables but one. For instance,
sum-marginalization is important in Bayes nets for achiev-
ing the posterior marginal request (see Darwiche (2009));
and in configuration problems, the min-marginalization on
a variable in a VDD formula representing some price function
amounts to computing the minimal price associated with
each possible value of this variable (an option, in the car ex-
ample; see Astesana, Cosserat, and Fargier (2010)). Another
example is value iteration in stochastic planning, which can
be performed via a sequence of sum-eliminations and ⇥-
combinations on ADD formulæ (Hoey et al. 1999).

Finally, the family of cuts captures the restriction of the
function to the optimal assignments (e.g., the cheapest cars,
the most probable explanations) or to those that are good
enough (cars cheaper than � euros, diseases with a probabil-
ity greater than �). For generality, we defined this request
as a transformation within the language, but choosing a = 1
and b = 0 when V = +, cutting a VDD results in an
MDD; the MDD language (Srinivasan et al. 1990) is a direct
extension of OBDD to non-Boolean variables, and it satisfies
roughly the same queries and transformations as OBDD, e.g.,
CO, CD, SE, etc. (Amilhastre et al. 2012).

4 A KC Map for Ordered +-VDDs
We can now draw the map of existing ordered VDD lan-
guages representing functions from X to +, namely ADD,
SLDD⇥, SLDD

+

, and AADD. That is, we focus in the follow-
ing on V = +, with ⌫ being the usual � order on +, and
� 2 {max,min,+,⇥}. We refrain from explicitly investi-
gating SLDD

max

and SLDD
min

, since it has been shown that
these languages are equivalent, up to a polynomial transfor-
mation, to ADD (Fargier, Marquis, and Schmidt 2013).

Each of the four languages satisfies CD: conditioning a
formula ↵ by an assignment #—

x can be achieved in linear
time using an algorithm similar to the OBDD one. Also, since
the representation of any function as a reduced ADD (resp.
reduced and normalized AADD, SLDD⇥, SLDD

+

) is unique,
and the reduction and normalization procedures of each lan-
guage are polynomial-time, EQ is satisfied by each of the
four languages. Finally, SE is satisfied by ADD, SLDD

+

, and
SLDD⇥, using a combination of cuts, inversion of labels, and
translation to MDD. Whether AADD satisfies SE remains open.
Proposition 4.1.
• ADD, SLDD

+

, SLDD⇥, and AADD satisfy EQ and CD.

• ADD, SLDD
+

, and SLDD⇥ satisfy SE.

Let us now draw the KC map for the requests identified
in the previous section. We distinguish three classes of re-
quests: those related to optimization, that are tractable on
the VDD languages; those related to cutting with respect to
some threshold �, that may become harder; and the combi-
nation and projection transformations.

Requests related to optimization tasks. The results we
obtained are summarized in Table 1. As already mentioned,
OPT

max

and OPT
min

have been shown to be tractable for

1052

Table 1: Results about basic queries, optimization, and �-
cutting;

p
means “satisfies”, • means “does not satisfy”,

and � means “does not satisfy unless P = NP”. Results for
additive valued constraint satisfaction problems (VCSP

+

) are
given here as a baseline.

Query ADD SLDD
+

SLDD⇥ AADD VCSP
+

CD
p p p p p

EQ
p p p p

?
SE

p p p
? �

OPT
max

/ OPT
min

p p p p
�

CT
max

/ CT
min

p p p p
�

ME
max

/ ME
min

p p p p
�

MX
max

/ MX
min

p p p p
�

CUT
max

/ CUT
min

p p p p
?

VA⇠�

p p p p
?

VA⌫�

/ VA��

p p p p
�

CO⇠�

p
� � � �

CO⌫�

/ CO��

p p p p
�

ME⇠�

p
� � � �

ME⌫�

/ ME��

p p p p
�

MX⇠�

p
� � � �

MX⌫�

/ MX��

p p p p
�

CUT⇠�

p
� � � ?

CUT⌫�

/ CUT��

p
• • • ?

CT⇠�

p
� � � �

CT⌫�

/ CT��

p
� � � �

normalized AADD formulæ (Sanner and McAllester 2005),
for SLDD formulæ (Wilson 2005), and their satisfaction is
obvious for ADD. All tractability results of Table 1 can be
related to the fact that (i) VDDs are circuit-free graphs,
and (ii) the aggregation of the ' values is monotonic in the
classes considered. In such diagrams, minimal (resp. max-
imal) paths can be obtained in polynomial time, thanks to
a shortest (resp. longest) path algorithm; this is the basis
for a polynomial-time procedure that builds an MDD formula
representing the optimal assignments, and hence implies the
satisfaction of CUT

max

and CUT
min

.

Proposition 4.2. ADD, SLDD
+

, SLDD⇥, and AADD sat-

isfy OPT
max

, OPT
min

, CUT
max

, CUT
min

, ME
max

,

ME
min

, MX
max

, MX
min

, CT
max

, and CT
min

.

Requests related to �-cuts. Requests related to pure opti-
mization are easy to solve. However, optimization alone is
not sufficient for many applications; for instance, a customer
looking for a car is not always interested in finding out one of
the cheapest cars: a ‘cheap’ car (i.e., with a cost lower than a
given threshold) may be more interesting than the cheapest
ones if it fulfills other desiderata of the customer. Hence the
importance of requests related to �-cuts.

Fortunately, comparing the maximal (resp. minimal)
value of f

L
↵

(which can be computed in polynomial time)
to some � 2 V is enough to decide whether there exists an
#—
x such that fL

↵

(#—
x) ⌫ � (resp. � �). Similarly, deciding the

�-validity of a formula ↵ only requires the comparison of �
to the maximal (resp. minimal) value of fL

↵

.

Proposition 4.3. ADD, SLDD
+

, SLDD⇥, and AADD satisfy

CO⌫�

, VA⌫�

, CO��

, VA��

, and VA⇠�

.

Although checking that there is an assignment that leads
to a valuation greater than or equal to � is polynomial, de-
ciding whether there exists an assignment leading exactly to
� is not tractable for SLDD

+

, SLDD⇥, and AADD. The proof
is based on a polynomial reduction from the SUBSET SUM
decision problem (Garey and Johnson 1979).
Proposition 4.4. SLDD

+

, SLDD⇥, and AADD do not satisfy

CO⇠�

unless P = NP.

It is quite clear that the satisfaction of MX⇠�

or CT⇠�

is a sufficient condition to that of CO⇠�

; and this holds in
all generality, not only for our four +-valued languages.
Similarly, it can be shown that ME⇠�

is a sufficient condi-
tion for CO⇠�

, and that CUT⇠�

implies MX⇠�

as long
as one of the MX queries is satisfied.
Proposition 4.5. Let L be a representation language over X
w.r.t. V , where V is totally ordered by a relation ⌫.

• If L satisfies both CUT⇠�

and one of the MX queries,

then it satisfies MX⇠�

.

• If L satisfies MX⇠�

, CT⇠�

, or ME⇠�

, then it satisfies

CO⇠�

.

Corollary 4.6. SLDD
+

, SLDD⇥, and AADD do not satisfy

MX⇠�

, CUT⇠�

, CT⇠�

, or ME⇠�

unless P = NP.

Thus, except for VA⇠�

, queries about a precise cut of the
function represented by an arc-labeled (in the wide sense)
VDD are intractable. The situation is more nuanced when
lower and upper cuts are considered instead.
Proposition 4.7. Let L 2 {SLDD

+

, SLDD⇥, AADD}.

• L satisfies ME⌫�

, ME��

, MX⌫�

, and MX��

.

• L does not satisfy CT⌫�

or CT��

unless P = NP.

• L does not satisfy CUT⌫�

or CUT��

.

For proving the first item, the basic idea is that from any
node of a normalized AADD formula, there is a path to the
leaf that has value 1, and a path to the leaf that has value 0.
A path from the root to this node gives it an offset, gathered
from its arcs, say hp, qi. Hence we can enumerate all paths,
without exploring nodes for which p + q < � for ME⌫�

(resp. p > � for ME��

).
The proof of the next item comes from that fact that if

CT⌫�

held, then we could count the assignments #—
x such

that f
↵

(#—
x) � �, and also those for which f

↵

(#—
x) > �;

that is, we could satisfy CT⇠�

, which has been shown in-
tractable (and similarly for CT��

).
The intractability of CUT⌫�

or CUT��

is uncondi-
tional, and the proofs are trickier. For the specific case of
CUT⌫�

on SLDD
+

, the proof uses the fact that the function
f(#—

y · #—
z) =

P
n

i=1

y

i

· 2n�i +
P

n

i=1

z

i

· 2n�i can be repre-
sented as an SLDD

+

formula of 2n+1 nodes only, using the
variable ordering y

1

C · · ·Cy

n

Cz

1

C · · ·Cz

n

, whereas there
is no polynomial-size OBDDC representation of the function
returning 1 when f(#—

y · #—
z) � 2n and 0 otherwise. The other

proofs are similar, using well-chosen functions instead of f .
These results about AADD and SLDD contrast with the case

of ADD, which satisfies each CUT transformation (�-cuts

1053

are obtained thanks to a simple leaf-merging procedure), and
thus satisfies each of the MX, ME, CT, and CO queries.

Combination, variable elimination, marginalization.
None of the VDD languages considered in this paper sat-
isfies the unbounded combination or unbounded variable
elimination transformations; this result is not very surpris-
ing, observing that (i) unbounded disjunctive combination
(_C) and forgetting (FO) are not satisfied by OBDD; (ii) any
OBDD formula can be viewed as an ADD formula, and thus be
translated in polynomial time into an SLDD

+

(resp. SLDD⇥,
AADD) formula; and (iii) the disjunction of several OBDD for-
mulæ amounts to cutting their +-combination at the minimal
level (CUT

min

is satisfied): by construction, the counter-
models of the disjunction are the #—

x such that '(#—
x) = 0,

so the resulting formula can be viewed as an OBDD for-
mula the negation of which is equivalent to the disjunc-
tion of the original formulæ). The other proofs are based
on similar arguments. Note that contrary to the OBDD case,
even �-eliminating a single variable is hard (roughly speak-
ing, the �-combination of two formulæ can be built by �-
eliminating an additional variable).
Proposition 4.8. For any L 2 {ADD, SLDD

+

, SLDD⇥, AADD}
and any � 2 {max,min,+,⇥}, L does not satisfy �C,

�Elim, or S�Elim.

More difficult is the question of bounded combination.
An extension of “apply” algorithm of Bryant (1986), which
is polynomial-time on OBDD structures for the AND and OR
operators, has been proposed (Sanner and McAllester 2005)
to compute the combination (e.g., by +, ⇥, max, min) of
two AADD formulæ; it can be easily adapted to the other VDD
languages considered in this paper. However, the complexity
of this “apply” algorithm had not been formally identified.
One of the main results of this paper is that bounded com-
binations are not tractable for AADD, which implies that the
extended “apply” is not a polynomial-time algorithm.
Proposition 4.9.
• SLDD

+

, SLDD⇥, and AADD do not satisfy maxBC,

minBC, SBmaxElim, or SBminElim.

• SLDD⇥ and AADD do not satisfy +BC or SB+Elim.

• SLDD
+

and AADD do not satisfy ⇥BC or SB⇥Elim.

The difficulty of maxBC or minBC comes from that of
CUT⌫�

and CUT��

. We show the difficulty of ⇥BC by
considering the two following functions on Boolean vari-
ables: f(#—

x) =
P

n�1

i=0

x

i

· 2i (representation of an in-
teger by a bitvector) and g(#—

x) = 2n+1 � f(#—
x); each

can be represented as an SLDD
+

formula (with ordering
x

0

C x

1

C · · ·C x

n�1

) with n+ 1 nodes and 2n arcs. Then
we can show that the SLDD

+

representation of f ⇥ g (using
the same variable ordering) contains an exponential number
of terminal arcs, even if all nodes at the last level have been
normalized; this proves that each ordered SLDD

+

represen-
tation of f ⇥ g is of exponential size. The other proofs are
similar, using well-chosen functions f and g.

There are actually only two cases in which bounded com-
binations are tractable: when the language considered is

Table 2: Results about transformations (legend in Table 1).

Transformation ADD SLDD
+

SLDD⇥ AADD

maxBC / minBC
p

• • •
+BC

p p
• •

⇥BC
p

•
p

•
maxC / minC • • • •

+C / ⇥C • • • •

maxElim / minElim • • • •
+Elim / ⇥Elim • • • •

SmaxElim / SminElim • • • •
S+Elim / S⇥Elim • • • •

SBmaxElim / SBminElim
p

• • •
SB+Elim

p p
• •

SB⇥Elim
p

•
p

•

maxMarg / minMarg
p p p p

+Marg
p p p p

⇥Marg
p

?
p

?

ADD, and when the combination operator is also the one that
aggregates arc values in the language considered (i.e., ad-
dition for SLDD

+

, and product for SLDD⇥). In these cases,
it is also polynomial to eliminate a single variable with a
bounded domain, by definition of variable elimination.
Proposition 4.10.
• SLDD

+

satisfies +BC and SB+Elim.

• SLDD⇥ satisfies ⇥BC and SB⇥Elim.

• ADD satisfies �BC and SB�Elim, for any operation

� 2 {⇥,+,min,max}.

Finally, we have proved that ⇥-marginalization is
tractable for ADD and SLDD⇥, and that max-marginalization,
min-marginalization and +-marginalization are tractable for
all languages considered. Whether AADD and SLDD

+

satisfy
⇥-marginalization remains an open question.

5 Conclusion
In this paper, we presented a complexity analysis of VDD lan-
guages, based on a set of queries and transformations of in-
terest. Requests related to optimization appear as tractable
for all VDD languages, as well as additive marginalization
and some of the queries related to cutting. Cutting queries
prove computationally difficult when a level � is has to be
reached exactly, and this is also the case for the transforma-
tions we considered. One of the main results of the paper
is that bounded combinations are not tractable on VDD lan-
guages, which implies that no “apply” algorithm can run in
polynomial time on AADD formulæ in the general case (this
is the case even for simple “Boolean-style” operations such
as min and max). When bounded additive (resp. multiplica-
tive) combination is required to be achieved efficiently, the
time/space tradeoff offered by SLDD

+

(resp. SLDD⇥) is valu-
able. Finally, it turns out that the complexity of the vari-
ous queries related to optimization is better for the VDD lan-
guages than for other languages dedicated to the representa-
tion of non-Boolean functions, such as VCSP

+

(and similar
results are expected for GAI nets or Bayes nets, for which
optimization is also hard).

1054

Acknowledgements
This work was partially supported by the project BR4CP
ANR-11-BS02-008 of the French National Agency for Re-
search.

References
Amilhastre, J.; Fargier, H.; Niveau, A.; and Pralet, C. 2012.
Compiling CSPs: A complexity map of (non-deterministic)
multivalued decision diagrams. In Proceedings of ICTAI’12,
1–8.
Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Consis-
tency restoration and explanations in dynamic CSPs: Ap-
plication to configuration. Artificial Intelligence 135(1–
2):199–234.
Astesana, J.-M.; Cosserat, L.; and Fargier, H. 2010.
Constraint-based vehicle configuration: A case study. In
Proceedings of ICTAI’10, 68–75.
Bacchus, F., and Grove, A. J. 1995. Graphical models for
preference and utility. In Proceedings of UAI’95, 3–10.
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1993. Algebraic
decision diagrams and their applications. In Proceedings of

ICCAD’93, 188–191.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers

35:677–691.
Darwiche, A., and Marquis, P. 2002. A knowledge compila-
tion map. Journal of Artificial Intelligence Research (JAIR)

17:229–264.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian

Networks. Cambridge University Press.
Fargier, H.; Marquis, P.; and Schmidt, N. 2013. Semiring
labelled decision diagrams, revisited: Canonicity and spatial
efficiency issues. In Proceedings of IJCAI’13, 884–890.
Garey, M. R., and Johnson, D. S. 1979. Computers and

Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Gogic, G.; Kautz, H.; Papadimitriou, C.; and Selman, B.
1995. The comparative linguistics of knowledge representa-
tion. In Proceedings of IJCAI’95, 862–869.
Hoey, J.; St-Aubin, R.; Hu, A. J.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of UAI’99, 279–288.
Lai, Y.-T., and Sastry, S. 1992. Edge-valued binary deci-
sion diagrams for multi-level hierarchical verification. In
Proceedings of DAC’92, 608–613.
Lai, Y.-T.; Pedram, M.; and Vrudhula, S. B. K. 1996.
Formal verification using edge-valued binary decision dia-
grams. IEEE Transactions on Computers 45(2):247–255.
Pearl, J. 1989. Probabilistic reasoning in intelligent systems

– networks of plausible inference. Morgan Kaufmann series
in representation and reasoning. Morgan Kaufmann.
Sanner, S., and McAllester, D. A. 2005. Affine algebraic
decision diagrams (AADDs) and their application to struc-

tured probabilistic inference. In Proceedings of IJCAI’05,
1384–1390.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued
constraint satisfaction problems: Hard and easy problems.
In Proceedings of IJCAI’95 (1), 631–639.
Srinivasan, A.; Kam, T.; Malik, S.; and Brayton, R. K. 1990.
Algorithms for discrete function manipulation. In Proceed-

ings of ICCAD’90, 92–95.
Tafertshofer, P., and Pedram, M. 1997. Factored edge-
valued binary decision diagrams. Formal Methods in System

Design 10(2/3).
Wilson, N. 2005. Decision diagrams for the computation of
semiring valuations. In Proceedings of IJCAI’05, 331–336.

1055

