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Abstract
Generalized CP-nets (GCP-nets) allow a succinct rep-
resentation of preferences over multi-attribute domains.
As a consequence of their succinct representation,
many GCP-net related tasks are computationally hard.
Even finding the more preferable of two outcomes is
PSPACE-complete. In this work, we employ the frame-
work of parameterized complexity to achieve two goals:
First, we want to gain a deeper understanding of the
complexity of GCP-nets. Second, we search for efficient
fixed-parameter tractable algorithms.

Introduction
Preferences over a multi-attribute domain arise in many
fields in AI. In a multi-attribute domain, the explicit repre-
sentation of a preference ordering is exponential in the num-
ber of attributes. Hence, several formalisms to succinctly
represent preference orderings have been proposed. CP-nets
and in particular generalized CP-nets (GCP-nets, for short)
(Boutilier et al. 1999; 2004a; 2004b; Domshlak et al. 2003;
Goldsmith et al. 2008) are among the most popular ones.

The succinctness of GCP-nets comes with a price. Gold-
smith et al. (2008) have shown that most of the fundamen-
tal tasks concerning GCP-nets are computationally hard,
namely PSPACE-complete. One of these computationally
hard but fundamental tasks is the Dominance problem:
Given a GCP-net and two combinations of attribute values
(referred to as “outcomes”), we want to check if one of
the outcomes is preferred over the other. Another example
for a hard problem is the Consistency problem, which asks
whether there is an outcome that is preferred to itself. The
corresponding reductions by Goldsmith et al. (2008) are ul-
timately shown via the close connection between GCP-nets
and STRIPS planning, for which the PSPACE-completeness
in the unrestricted case was shown by Bylander (1994).

Recently, several attempts have been made to identify
special cases of planning which have lower complexity or
are even tractable. To this end, the tools of parameterized
complexity have been applied. In a parameterized complex-
ity analysis, the runtime of an algorithm is studied w.r.t. a
parameter k ∈ N in addition to the input size n. The ba-
sic idea is to find a parameter that describes the structure
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of the instance such that the combinatorial explosion can
be confined to this parameter. The most favourable class
is FPT (fixed-parameter tractable) which contains problems
that can be decided by an algorithm running in f(k) · nO(1)

time, where f is a computable function. Clearly, an FPT re-
sult yields a polynomial time algorithm if the parameter is
bounded by a constant. Bäckström et al. (2012) proved fixed-
parameter tractability of SAS+ planning (a generalization
of STRIPS planning) when considering the plan length as
parameter provided that every variable can be set to a par-
ticular value by at most one action. Recently, Kronegger,
Pfandler, and Pichler (2013) have considered combinations
of the plan length with many further parameters and have,
for instance, identified FPT of STRIPS planning w.r.t. the
combined parameter “plan length” and “maximum number
of occurrences of each variable”.

Due to the close relation of GCP-nets and planning, these
results let hope for similar results for GCP-net problems.
This paper explores the possibilities of a parameterized com-
plexity analysis of GCP-nets. Our aim is to establish FPT re-
sults and thus obtain efficient algorithms for handling GCP-
nets. A parameterized complexity analysis may of course
also reveal that some parameter (or combination of param-
eters) does not have a significant impact on the complexity.
A problem is called paraNP-hard if restricting a parameter
to a constant still leaves the problem (at least) NP-hard. In
parameterized complexity, the area between the most favor-
able case of FPT and the negative case of paraNP-hardness
has a rich structure in that it contains an infinite hierarchy
of complexity classes W[1], W[2], etc. It is commonly as-
sumed that FPT 6= W[1]. Hence showing hardness for W[1]
(or higher classes) presumably rules out the existence of an
FPT-algorithm. Indeed, for W[t]-complete problems, only al-
gorithms with runtimeO(nf(k)) are known, i.e., the parame-
ter k occurs in the exponent of the input size n. This is worse
than the upper bound f(k) · nO(1) for FPT, but it still leads
to a PTIME-solvable fragment of the problem in case the pa-
rameter value is bounded from above by some constant.

In the parameterized complexity analysis of planning, the
plan length has played a major role. Translated from the
world of planning to the setting of GCP-nets, the plan length
corresponds to the number of improving flips (i.e., invoca-
tions of conditional preference rules) required to establish
a preference ordering between two outcomes. In both set-
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tings the corresponding decision problem would ask whether
a short plan / a short sequence of improving flips exists.
The impact of this parameter is however different: In case of
planning, a no-answer to this question would give the rele-
vant information that no short plan exists. For some real-life
problems, only short plans are feasible. For GCP-nets, it is
not clear at all how to make use of the information that no
short sequence of improving flips exists. The two outcomes
might still be comparable via a longer sequence of flips.

Due to these observations, we consider the maximum dis-
tance between any two outcomes. If no sequence of improv-
ing flips of that length can be found, then the two outcomes
are incomparable. Thus, this diameter of a GCP-net seems
to be a useful and natural structural parameter. We investi-
gate two fundamental computational problems: the first one
is concerned with computing the diameter and the second
one is concerned with using a bound on the diameter to guide
the check for dominance between two outcomes.
Structure of the paper and main results. After recalling
the necessary preliminaries, we analyse the complexity of
computing the diameter of a given GCP-net. For the general
case, we establish PSPACE-completeness of this problem.
In the course of this complexity analysis, we identify the un-
bounded size of the diameter as the main source of complex-
ity. We thus carry out experiments to get an idea how likely
an arbitrarily (i.e., exponentially) big diameter is. It turns out
that for randomly generated GCP-nets, the diameter is typi-
cally in the order of magnitude of the number of variables of
a GCP-net. We thus define a variant of the Diameter prob-
lem, where we ask if the diameter of a given GCP-net is be-
low some value k which itself is polynomially bounded w.r.t.
to the number of variables. We show that in this case the
complexity drops to Π2P -completeness. Finally, we analyse
the Diameter problem from a parameterized point of view
by considering the diameter as parameter. It turns out that
the problem is in the class XP (and hence admits an efficient
computation for small diameters). However, by showing also
co-W[1]-hardness, we rule out fixed-parameter tractability.

We then study the parameterized complexity of the Domi-
nance problem of GCP-nets for various combinations of pa-
rameters including the diameter k. Further parameters are
the number of variables |V |, number of rules |R|, maxi-
mum size of the conditions c, and the maximum number of
occurrences of effects e. We obtain three kinds of results:
For some parameter combinations (such as k and c), the
Dominance problem is in FPT. For other parametrizations
(such as k alone), we establish W[1]-completeness. Finally,
we also identify parameter combinations (such as e and c),
for which the Dominance problem is paraNP-hard. On the
one hand, this parameterized complexity analysis gives us a
better understanding of the actual source of complexity of
the Dominance problem. On the other hand, it also under-
lines the importance of considering combinations of param-
eters, since there are often cases where single parameters
do not help much but only their combination yields fixed-
parameter tractability. This applies, for example, to the pa-
rameters k and c, where k alone yields fixed-parameter in-
tractability and c alone even yields paraNP-hardness. Only
the combination of these two yields an FPT result.

Preliminaries
In this paper we focus on the exponential runtime of algo-
rithms and thus use the O∗(·) notation for runtime bounds.
This notation is defined in the same way as O(·) but ignores
polynomial factors. Furthermore, for n,m ∈ N with n ≤ m
we use [n,m] to denote the set {n, n+1, . . . ,m} and define
[n] := [1, n]. We write var (ϕ) to denote the set of variables
occurring in a propositional formula ϕ. A literal l is a vari-
able or its negation. The dual literal l of l is the variable x if
l is ¬x and is ¬x if l is x.

GCP-nets. A generalized conditional preference network
(or GCP-net) is a pair C = (V,R), where V is a set of vari-
ables and R is a set of conditional preference rules. We re-
strict ourselves to propositional variables. Thus, an outcome
is a mapping o : V → {0, 1}. A conditional preference rule
(or rule) is an expression of the form p : l > l, where p is a
conjunction of literals over V and l is a literal of a variable
x /∈ var (p). We call “p” the condition and “l > l” the effect.

The conditional preference rule p : l > l determines that
whenever p holds, l is preferred to l ceteris paribus, i. e.,
an outcome o1 that satisfies p and l is preferred to the out-
come o2 which only differs from o1 in that it satisfies l. In
this situation we say there is an improving flip from o1 to o2
sanctioned by p : l > l. Let o and o′ be outcomes. We say
that o′ dominates o (written o′ � o) if there is a sequence of
outcomes (o, o1, o2, . . . , ok, o

′) such that there exists an im-
proving flip from o to o1, from o1 to o2, etc. The preference
graph of a GCP-net C is a directed graph D = (N,A) whose
vertices are the outcomes of C. There is an arc (o1, o2) ∈ A
whenever there is an improving flip from o1 to o2.

Parameterized Complexity. Parameterized algorithmics
(cf. (Downey and Fellows 1999; Flum and Grohe 2006;
Niedermeier 2006)) is a promising approach to obtain ef-
ficient algorithms for intractable problems. An algorithm is
fixed-parameter tractable (fpt) if it runs in f(k) ·nO(1) time,
where k ∈ N and f is a computable function. If a combina-
tion of parameters k1, . . . , kl is considered, we identify this
parameter with a single parameter k = k1 +k2 + · · ·+kl. A
parameterized reduction (or fpt-reduction) is a many-to-one
reduction from one parameterized problem (with parameter
k) to another parameterized problem (with parameter k′),
such that this reduction can be computed by an fpt-algorithm
w.r.t. parameter k. In addition, the parameters have to satisfy
the condition k′ ≤ g(k), where g is a computable function
depending only on the parameter k of the source instance.

We now turn to classes capturing fixed-parameter in-
tractability. The first class is W[1], which can be defined
as the class containing all problems that are fpt-reducible
to the CLIQUE problem when parameterized by the size
of the clique. It is commonly believed that FPT 6= W[1]
and hence W[1]-hardness rules out the existence of an fpt-
algorithm. The class paraNP (Flum and Grohe 2003) is de-
fined as the class of problems that are solvable by a nondeter-
ministic Turing-machine in fpt-time. A parameterized prob-
lem is paraNP-hard if it remains NP-hard when the param-
eter is fixed to some constant. Finally, the class XP contains
all parameterized problems solvable in time O(nf(k)) for
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some computable function f . The following relations hold:
FPT ⊆ W[1] ⊆ XP and FPT ⊆ W[1] ⊆ paraNP.

Diameter
In this section, we study the complexity of determining the
diameter of a GCP-net. Formally, the diameter and the cor-
responding decision problem are defined as follows. Let
D = (N,A) be the preference graph, let x, y ∈ N be
vertices, and let dist(x, y) define the distance from x to
y (and 0 if no path exists). The diameter is then defined
as maxx,y∈N (dist(x, y)). In the GCP-DIAMETER problem,
we want to check if the diameter of a given GCP-net is below
some given bound:

GCP-DIAMETER
Instance: A GCP-net C and k ∈ N.
Question: Does the preference graph of C have diameter≤ k?

Many fundamental decision problems in the context of GCP-
nets are PSPACE-complete (Goldsmith et al. 2008). Also
more generally, many graph problems that are polynomial
time solvable are PSPACE-complete if the graph is suc-
cinctly represented but has an exponential size (Balcázar,
Lozano, and Torán 1992). Below, we show that this is also
the case for the Diameter problem in GCP-nets.
Theorem 1. The GCP-DIAMETER problem is PSPACE-
complete.
Proof (sketch). The PSPACE-membership proof is based on
ideas of Goldsmith et al. (2008): Given a GCP-net C, we test
for every pair (o1, o2) that there is a path from o1 to o2 of
length ≤ k. This is done in NPSPACE (by guessing a path)
and hence in PSPACE (by PSPACE = NPSPACE).

For the PSPACE-hardness, we first observe that certain
basic “procedures” can be simulated by GCP-nets. In par-
ticular, we can simulate a counter up to some number L =
2n − 1 with n propositional variables c1, . . . , cn together
with an appropriate collection of auxiliary variables. The
PSPACE-hardness proof proceeds by a reduction from an
arbitrary problem P in PSPACE to the GCP-DIAMETER
problem. Let P be decided by a Turing machine TM in
polynomial space and let w be an arbitrary instance ofP . We
construct an instance of the GCP-DIAMETER problem by a
GCP-net C with three groups of conditional preference rules.
The first group implements a counter for some “sufficiently
large” L. The second group simulates the computation of
Turing machine TM on input w. The third group again im-
plements a counter to L. A transition from outcomes pro-
duced by a flip according to the first group of rules to out-
comes produced by the second group is only possible if the
variables in C represent the initial configuration of TM on
input w. The transition from the second group of rules to the
third one is only possible if the variables in C represent an
accepting configuration of TM . As upper bound k on the
diameter we choose 2 ·K, where K denotes the number of
flips needed to count from 0 to L. For sufficiently large L,
this upper bound can only be exceeded if the rules in the first
and in the third group indeed do the counting. This in turn is
only possible if the simulation of the Turing machine by the
second group of rules reaches the accept state.
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Figure 1: The average diameter, the maximum diameter and
the average distance of randomly generated GCP-nets.

The high complexity of the GCP-DIAMETER problem is
due to the fact that the bound k of an instance of GCP-
DIAMETER can be exponentially big w.r.t. the number of
variables. But how likely is it that a GCP-net has an ex-
ponential diameter? We have studied this question exper-
imentally by randomly generating conditional preference
rules. Each rule was obtained by first generating an integer
m ∈ [|V |] uniformly at random and then choosing a pref-
erence rule of size m uniformly at random. We have inves-
tigated the relationship between the number of conditional
preferences rules and the diameter. For each number of rules
we have generated 100 GCP-nets randomly and calculated
the diameter and the average distance between any two ver-
tices in the preference graph. The diameter computation was
done by a straightforward algorithm that we will present at
the end of this section.

Figure 1 shows the average values of the diameter, the
maximum diameter and the average distance in GCP-nets
with 12 variables. The overall picture is the same for differ-
ent numbers of variables. From the empirical study we ob-
serve that the diameter is typically in the order of the num-
ber of variables. Let n denote the number of variables of
a GCP-net C and let poly(·) be some polynomial. We de-
fine a restriction of the GCP-DIAMETER problem, called
GCP-DIAMETER[poly ], where k is bounded by a polyno-
mial poly(n). The following theorem shows that the prob-
lem is still intractable but the complexity has reduced.
Theorem 2. Let poly(·) be an arbitrary polynomial. The
GCP-DIAMETER[poly ] problem is Π2P -complete.
Proof (sketch). We proceed by showing Σ2P -completeness
of the co-problem of GCP-DIAMETER[poly ], asking
whether the diameter is larger than k. Hardness is shown
by a reduction from the canonical Σ2P -complete problem
∃-QSAT2. We have to omit the construction due to space
constraints. The membership can be seen by the following
guess-and-check algorithm: Guess a pair of outcomes o1 and
o2 and check that no path of length≤ k from o1 to o2 exists.
The check is in coNP since k is polynomially bounded.
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Finally, in our complexity analysis of the GCP-
DIAMETER problem we also consider the parameterized
version of this problem. Again, we get an intractability result
– to be precise, fixed-parameter intractability.
Theorem 3. The GCP-DIAMETER problem parameterized
by the size k of the diameter is co-W[1]-hard and in XP.
Proof (sketch). We reduce from CLIQUE parameterized by
the size of the clique s. Let G = (N,E) be the given graph
in which we want to find a clique of size s. The GCP-
net contains two variables per vertex: V = N ∪ {v+ |
v ∈ N}. The preference rules of the GCP-net also corre-
spond to vertices. The rules of the GCP-net are given by
v∧
∧

w 6=v∈N∧¬E(v,w) ¬w : v+ > ¬v+, for v ∈ N . Observe
that all rules imply that a variable set to 1 is preferable to a
variable set to 0. Hence in a path in the corresponding pref-
erence graph every rule can be applied at most once. Conse-
quently, we are looking for s rules that are compatible, i.e.,
they can be applied one after another. Note that the invoca-
tion order of these rules does not affect their compatibility
since the variables occurring in the conditions are distinct
from those occurring in the effects. The GCP-DIAMETER
problem is equivalent to asking whether there does not exist
a clique of size s+1. The following claim proves the correct-
ness of the reduction: The graph G has a size s clique if and
only if there are s distinct, compatible rules in the GCP-net.

The XP membership of GCP-DIAMETER is witnessed by
the following algorithm: Loop over all |R|k+1 sequences of
rules of length k + 1. For each of these sequences find a
compatible starting outcome o. This outcome is defined as
follows. For each x ∈ V find the first rule it occurs in. If
it occurs in the condition, set it in o according to this con-
dition. If it occurs in the effect, set it so that this effect can
be executed, i.e., to the not preferred domain element. If the
variable does not occur in any of the k + 1 rules, we ignore
it in the following consideration.

Now, that we have our (partial) outcome o, we can check
whether the chosen rules yield a valid improving sequence.
For this to hold, the rules have to be successively applied.
In case this is possible, we obtain a sequence of outcomes.
It remains to verify that this improving sequence does not
contain a cycle. The GCP-net has diameter ≤ k, if and only
if for every choice of rules the rules do not yield a cycle-free
sequence of length k + 1,

We conclude this section with a short description of two
straightforward algorithms to compute the diameter.
Theorem 4. GCP-DIAMETER can be computed in
O∗(8|V |) time and O(4|V |) space as well as in O∗(9|R|)
time and O(4|R|) space.

Proof. The O∗(8|V |) algorithm first generates the prefer-
ence graph (2|V | vertices, less than 4|V | edges) and com-
putes the diameter of this graph, which requires cubic time
in the number of vertices.

For the second algorithm, first note that |R| rules can af-
fect only |R| variables. Thus, if |R| ≥ |V | we can use the
previous algorithm. Otherwise, let Ve be the set of those
variables that are contained in effects of rules and Vc be its
complement. Now, for each R′ ⊆ R we check whether the

k diameter of the preference graph
c maximum size of condition
|R| number of rules
|V | number of variables
e maximum effect occurrences

Table 1: List of considered parameters.

precondition of those rules agree on the variables in Vc; oth-
erwise they may not occur in the same improving sequence.
Now, we construct a preference graph that consists of states
restricted to variables in Ve as well as rules restricted to Ve.
We apply the first algorithm to this graph. In total, we obtain
a runtime of

∑|R|
i=1

(|R|
i

)
· O∗(8i) = O∗(9|R|).

On the Tractability of Dominance
Given a GCP-net and two outcomes it is a natural question
to ask which outcome is “better”, i.e., dominates the other.

GCP-DOMINANCE
Instance: A GCP-net C having diameter at most k, two out-

comes o1, o2, and the integer k.
Question: Does o2 � o1 hold in C?

In this section we will explore the frontiers of parame-
terized tractability of the GCP-DOMINANCE problem w.r.t.
the parameters listed in Table 1. This will shed some light
on how different factors measured in terms of the parame-
ters influence the complexity of GCP-DOMINANCE.

The GCP-DOMINANCE problem can be seen as a plan-
ning problem. It corresponds to propositional planning with
effects of size 1 and a single, fully specified goal. Conse-
quently, all results concerning GCP-DOMINANCE also ap-
ply to this planning problem.

We now describe briefly the parameters considered. In
the previous section we have discussed how hard it is to
compute the diameter of the preference graph. This can be
seen as the computation phase of the parameter value. In
this section we will turn to the evaluation phase and re-
quire that the GCP-net has diameter k and that k is given
in the input. The parameters |R| and |V | capture the cardi-
nality of the rules and variables, respectively. The param-
eter c measures the maximum size of the condition of a
rule. Finally, the parameter e counts the maximum num-
ber a variable occurs in the effects of rules. More formally,
e := maxv∈V

∣∣{(p : l > l) ∈ R | l = v ∨ l = v}
∣∣.

Before we start our parameterized analysis, we turn to
the classical problem GCP-DOMINANCE[poly ], a variant of
GCP-DOMINANCE where the diameter is bounded by some
polynomial poly(·). As we have seen in the previous sec-
tion this is a realistic assumption. However, as the following
theorem shows, this restriction does not yield tractability.

Theorem 5. GCP-DOMINANCE[poly ] is NP-complete.

Proof. Membership in NP is immediate. For hardness, con-
sider the NP-complete 3-SAT problem, the satisfiability
problem over formulas in conjunctive normal form where
each clause is of size three. Let var (ϕ) = {x1, . . . , xn} and
ϕ = {C1, . . . , Cm}, where Ci = li1 ∨ li2 ∨ li3 such that the
lij are literals over var (ϕ). W.l.o.g. assume that m ≥ 3.
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We construct a GCP-net C = (V,R) in the following way.
The variables are defined (by slight abuse of the notation) as
V := var (ϕ) ∪ C ∪H ∪ {f, g}, where C := {c1, . . . , cm}
represents the clauses, and H := {g2, . . . , gm−1} contains
additional auxiliary variables. The set R contains the follow-
ing conditional preference rules:

(R1) ¬f : xi > ¬xi for i ∈ [n]

(R2) > : f > ¬f
(R3) f ∧ lij : ci > ¬ci for i ∈ [m], j ∈ [3]

(R4) c1 ∧ c2 : g2 > ¬g2
gi−1 ∧ ci : gi > ¬gi for 2 < i ≤ m− 1

gm−1 ∧ cm : g > ¬g
(R5) g : ¬v > v for v ∈ V \ {f, g}

In the outcome o1 we set each variable to 0, while in the
outcome o2 we set f and g to 1 and all other variables to
0. Since every rule can be applied at most once, we see that
the diameter of the constructed instance is bounded by |R|,
which, in turn, is bounded by |V |.

The correctness can be seen by a closer look at the rules.
Since all variables are 0 in o1 we can use the rules of type
(R1) to set variables in var (ϕ) to 1, i. e., to choose an assign-
ment. Eventually, the rule> : f > ¬f is used to set variable
f to 1 and hereby fix the assignment. Then, the rules of type
(R3) are used to set the ci to 1, which is possible whenever
clause Ci is satisfied by the chosen assignment. As soon as
all variables in C are set to 1, the rules of type (R4) can be
applied to set g to 1. The rules of type (R4) simulate the sin-
gle rule c1 ∧ · · · ∧ cm : g > ¬g, which cannot be directly
used due to its unbounded condition size. Finally, the rules
of type (R5) are used to set all variables with the exception
of f and g back to 0, which ultimately yields o2.

We now study diameter k as a parameter.
Theorem 6. The GCP-DOMINANCE problem parameter-
ized by k is W[1]-complete.

Proof. We show this result by reduction from CLIQUE, pa-
rameterized by the size of the clique s. Let (N,E) be a given
graph with N = {v1, . . . , vn}. Furthermore, let l be the
number of edges in this clique, i.e., l := s(s−1)

2 . We construct
a GCP-net C = (V,R) in the following way. The variables
are V := V ′ ∪ E′ ∪H ∪ T with V ′ := {x1, . . . , xn} repre-
senting the vertices, E′ := {eij | 1 ≤ i < j ≤ n} represent-
ing the edges, and H := {h1, . . . , hs, g, g1, . . . , gl} ∪ {gijm |
1 ≤ i < j ≤ n,m ∈ [l]} containing auxiliary variables.
The set T contains additional auxiliary variables which will
be described later. We will use special rules of the form
p :! l1 > l1, l2 > l2. Such a rule expresses that an out-
come o2 for which p ∧ l1 ∧ l2 holds is preferred to an out-
come o1 that is identical to o2 except that l1 ∧ l2 holds.
Analogously to the reduction of arbitrary STRIPS planning
to single-effect STRIPS planning given by Goldsmith et al.
(2008), such groups of flips can be easily transformed into
proper conditional preference rules, as we will describe be-
low. The conditional preference rules R are as follows:

(R1) ¬g :! xi > ¬xi, hj > ¬hj for i ∈ [n], j ∈ [s]

(R2) ¬g ∧ eij ∧ xi ∧ xj ∧
∧

m6=m′∈[l]

¬gijm′ ∧
∧

i′<j′∈[n]\{i,j}

¬gi
′j′

m :

: gijm > ¬gijm for i, j ∈ [n],m ∈ [l]

(R3) ¬g ∧ gijm : gm > ¬gm for i, j ∈ [n],m ∈ [l]

(R4) g1 ∧ · · · ∧ gl : g > ¬g
(R5) g :! ¬x > x,¬hj > hj for x ∈ V ′, j ∈ [s]

(R6) g :! ¬gijm > gijm,¬gm > gm for i, j ∈ [n],m ∈ [l]

The instance of the dominance problem is given by C, the
outcomes o1, o2 and an integer k. In the outcome o1 we set
eij ∈ E′ with {vi, vj} ∈ E to 1 and all other variables to 0.
The outcome o2 is identical to o1 except that g is set to 1.

For the correctness we consider each type of rules in R. In
a first step, the rules of type (R1) are used to select vertices
into the clique. For each vertex added one of the hj variables
is set to 1 as well. Since these rules are special rules, only s of
them can be executed. The rules of type (R2) allow us to set
for each m ∈ [l] exactly one variable gijm to 1. The intended
meaning is that the m-th edge (of all l many edges) in the
clique is covered by vi and vj . Subsequently, the rules of
type (R3) are used to set the variable gm to 1 whenever gijm is
set to 1 for some i, j ∈ [n]. In case all gi, with i ∈ [l], are set
to 1 the rule of type (R4) is used to set g to 1. This means that
all l edges of a clique of size s are covered by some vertices
and hence the variables in V ′ set to 1 indeed represent a
clique. It remains to “clean” the variables by setting them
back to 0 such that the outcome o2 is reached. This is done
by using the rules of type R5 and R6. The rules of type (R5)
allow us to set at most s of the variables in V ′ back to 0. This
is because these rules are special rules, which set also a hj

to 0. Similarly, the rules of type (R6) allow us to set for each
gm one of the corresponding gijm to 0.

We now show how to implement rules of the form p :!

l1 > l1, l2 > l2 in a regular GCP-net. Let t be a variable in
T that is introduced for this rule. For each of these special
rules we require four standard rules:

p ∧ l1 ∧ l2 : t > ¬t t : l2 > l2

t : l1 > l1 l1 ∧ l2 : ¬t > t

In addition, we add ¬t as a condition to every other rule in
R. Observe that if the first rule is executed, the variable t
(being set to 1) blocks the execution of all rules except the
remaining three. Furthermore, t can only be set back to 0 if
l1 and l2 are set to 1. Thus these three have to be executed
as well. We see that setting t to 1 implies that l1 and l2 are
set to 1 as well as t is set back to 0.

We now want to argue that the diameter k is inO(s2). Let
us consider an improving sequence and its corresponding
sequence of rules. Observe that the variable g can change
only from 0 to 1 and not back. We thus first consider the
rules where g is required to be 0. Rules of type (R1) can be
executed at most s times since every time one hj variable
has to be set to 1. Rules of type (R2) can be executed at
most l times as it is ensured in the condition of the rules
that at most l of the gijm variables can be set to 1. Since gm,
m ∈ [l], can only be set to 1 and not back to 0, rules of
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type (R3) can be executed at most l times. Rule (R4) can
be executed at most once. Next, consider the rules where g
is required to be 1. Rules of type (R5) require that an hj

variable is set to 0. Since only s of the hj variables exist,
only s of these rules can be executed. Similarly, only l rules
of type (R6) can be used in an improving sequence. In total
this yields at most 3l + 2s + 1 rules. Since every rule of the
form p :! l1 > l1, l2 > l2 corresponds to four classical rules,
at most O(s2) rules can be used in an improving sequence.

Due to the close relationship between planning and GCP-
nets, membership in W[1] can easily be shown by a reduction
to planning in SAS+ over Boolean domains with effect size
of one. When parameterized by the plan length this problem
was shown to be W[1]-complete by Bäckström et al. (2012).
The basic idea of the reduction is to view a rule p : l > l as
an action of the form p → l and the outcomes o1 and o2 as
initial state and goal, respectively.

Notice that the W[1]-completeness result for GCP-
DOMINANCE parameterized by k gives a polynomial algo-
rithm for any fixed k. Next, by considering the construc-
tion in the proof of Theorem 5, one can verify that c can be
bounded by 2 and e by 4. Therefore, paraNP-hardness for c
and e follows and hence a parameterization by the combina-
tion of c and e does not decrease the problem’s complexity.

Corollary 7. The GCP-DOMINANCE problem parameter-
ized by c and e is paraNP-hard.

After having shown (parameterized) intractability for the
parameter k and the parameter combination c and e, we fi-
nally show four FPT results. We start with the parameter
combination k and c. Although c leads to paraNP-hardness,
it turns out that it is necessary to obtain this first FPT-result.
We make use of the following lemma.

Lemma 8. The out-degree of the preference graph is at most
k · c + k.

Theorem 9. The GCP-DOMINANCE problem parameter-
ized by k and c can be solved in time O∗

(
(k · c + k)k

)
.

Proof. A simple search tree algorithm suffices: Starting
from o1, the search tree branches over at most k · c + k pos-
sible improving flips at every node and checks whether it
reaches o2 in at most k steps.

Proposition 10. The GCP-DOMINANCE problem parame-
terized by |V | can be solved in time O∗(2|V |).

Proof. This FPT-result is easy to obtain because the number
of vertices in the preference graph is ≤ 2|V |. Since at most
|V | outcomes are reachable from every outcome, the number
of edges is at most 2|V | · |V |. For deciding dominance it
suffices to check reachability in the preference graph, which
can be done in linear time w.r.t. the size of the graph.

In planning, the parameter e can be seen as a less re-
strictive version of the maximum number of variable occur-
rences vo, i. e., e ≤ vo. The parameter vo was considered
by Kronegger, Pfandler, and Pichler (2013). The correspond-
ing proof for the planning setting (Kronegger, Pfandler, and
Pichler 2013, Theorem 5) can be easily strengthened to re-
quire only the parameters k and e instead of k and vo.

Corollary 11. The GCP-DOMINANCE problem parameter-
ized by k and e can be solved in time O∗(k! · ek).

Finally, we show that GCP-DOMINANCE is fixed-
parameter tractable when parameterized by |R|.
Theorem 12. The GCP-DOMINANCE problem parameter-
ized by |R| can be solved in time O∗(2|R|)
Proof. Let C = (V,R) be a GCP-net, o1, o2 be outcomes
and Vd be the variables where o1 and o2 differ. Furthermore,
at most |R| variables occur in the effect of rules in R. Let
Ve be the set of these variables. First we check if Vd ⊆ Ve,
otherwise we can immediately return “no”.

Since |R| rules can only modify |Ve| ≤ |R| variables, the
number of outcomes reachable from o1 is bounded by 2|R|.
Let D be the induced subgraph of the preference graph that
contains o1, o2 and all reachable outcomes from o1. Since
every outcome has an outdegree of at most |R|, D has at
most 2|R| ·|R| edges. Checking whether o2 is reachable from
o1 can be done in time linear in the size of the graph D and
thus in time O∗(2|R|).

Conclusion
In this paper we have initiated the parameterized complexity
analysis of GCP-nets. To this end, we have identified sev-
eral natural parameters of GCP-nets such as the diameter
k, the maximum size of the conditions c, the effect occur-
rences e, etc. We have analysed both the complexity of find-
ing the diameter and of deciding dominance when certain
parameter combinations (most of them including the diam-
eter) are taken into account. Our parameterized complexity
results range from fixed-parameter tractability via complete-
ness for W[1] to paraNP-hardness. Roughly speaking, this
means that the corresponding parameter combinations help
a lot, a bit, or not at all to limit the high complexity of the
dominance problem. Our results already show that the sim-
pler structure of GCP-nets compared to planning allows for
faster algorithms. For example Theorem 12 has a runtime of
O∗(2|R|) in comparison to the runtime ofO∗(2|R| · |R|!) for
the corresponding planning result (Kronegger, Pfandler, and
Pichler 2013, Proposition 6).

On the top of our agenda for future work is to continue
searching for efficient fixed-parameter algorithms for GCP-
net related problems such as the consistency problem. We
have already obtained preliminary results showing that some
of the results for dominance carry over but mostly require
new proof ideas. This is mainly due to fact that consistency
has to be checked for every state whereas for dominance one
has to consider only two given states. Hence this line of work
is beyond the scope of this paper.

Other important extensions of our work we envisage is
the application of our parameters and methods to other re-
lated formalisms such as TCP-nets (Brafman, Domshlak,
and Shimony 2006) as well as the inclusion of additional
parameters in our study. Furthermore, the search for fixed-
parameter algorithms in the area of voting applied to CP-
nets (Xia, Conitzer, and Lang 2008) remains an interesting
task for future work.
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