Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

The Complexity of Reasoning with FODD and GFODD

Benjamin J. Hescott and Roni Khardon
Department of Computer Science, Tufts University
Medford, MA, USA
{hescott|roni} @cs.tufts.edu

Abstract

Recent work introduced Generalized First Order De-
cision Diagrams (GFODD) as a knowledge represen-
tation that is useful in mechanizing decision theoretic
planning in relational domains. GFODDs generalize
function-free first order logic and include numerical val-
ues and numerical generalizations of existential and uni-
versal quantification. Previous work presented heuris-
tic inference algorithms for GFODDs. In this paper,
we study the complexity of the evaluation problem, the
satisfiability problem, and the equivalence problem for
GFODDs under the assumption that the size of the in-
tended model is given with the problem, a restriction
that guarantees decidability. Our results provide a com-
plete characterization. The same characterization ap-
plies to the corresponding restriction of problems in first
order logic, giving an interesting new avenue for effi-
cient inference when the number of objects is bounded.
Our results show that for ¥; formulas, and for corre-
sponding GFODDs, evaluation and satisfiability are 37
complete, and equivalence is T}, complete. For IT
formulas evaluation is IT} complete, satisfiability is one
level higher and is 37 41 complete, and equivalence is
11}, complete.

Introduction

The complexity of inference in first order logic has been
investigated intensively. It is well known that the problem
is undecidable, and that this holds even with strong re-
strictions on the types and number of predicates allowed
in the logical language. For example, the problem is unde-
cidable for quantifier prefix ¥23* with a signature having
single binary predicate and equality (Griadel 2003). Unfor-
tunately, the problem is also undecidable if we restrict at-
tention to satisfiability under finite structures (Fagin 1993;
Libkin 2004). Thus, in either case, more refined notions of
complexity are not appropriate. On the other hand, algorith-
mic progress in Al has made it possible to reason efficiently
in some cases. In this paper we study such problems under
the additional restriction that an upper bound on the intended
model size is given explicitly. This restriction is natural for
the intended applications in Al and it renders the problems
decidable allowing for a more detailed complexity analysis.

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1056

This paper is motivated by recent work on decision dia-
grams, known as FODDs and GFODDs (Wang, Joshi, and
Khardon 2008; Joshi, Kersting, and Khardon 2011), and
the computational questions associated with them. Propo-
sitional decision diagrams (Bryant 1986; Bahar et al. 1993)
is a successful knowledge representation that captures func-
tions over propositional variables and allows for efficient
manipulation and composition of functions. Decision di-
agrams have been used in various applications in pro-
gram verification and Al (Bryant 1986; Bahar et al. 1993;
Hoey et al. 1999). Motivated by this success, several authors
have attempted generalizations to handle relational structure
and first order quantification (Groote and Tveretina 2003;
Wang, Joshi, and Khardon 2008; Sanner and Boutilier 2009;
Joshi, Kersting, and Khardon 2011). The main motivating
application has been decision theoretic planning in rela-
tional domains (Boutilier, Reiter, and Price 2001; Kerst-
ing, Otterlo, and De Raedt 2004; Holldobler, Karabaev, and
Skvortsova 2006; Holldobler and Skvortsova 2004) where
implementations of FODDs and GFODDs have been shown
to be useful in supporting symbolic solutions (Joshi, Kerst-
ing, and Khardon 2010; Joshi and Khardon 2011).

GFODDs can be seen to generalize the function-free por-
tion of first order logic (i.e., signatures with constants but
without higher arity functions) to allow for numerical values
generalizing truth values, and for numerical quantifiers gen-
eralizing existential and universal quantification in logic. Ef-
ficient heuristic inference algorithms for such diagrams have
been developed focusing on the finite model case, and us-
ing the notion of “reasoning from examples” (Khardon and
Roth 1996; 1997; Khardon, Mannila, and Roth 1999). The
paper formalizes the evaluation, satisfiability, and equiva-
lence problems for such diagrams and analyses their com-
plexity. To avoid the undecidability and get a more refined
classification of complexity, we study a restricted form of
the problem where the finite size of the intended model is
given as part of the input to the problem. As we argue below
this is natural and relevant in the applications of GFODDs
for solving decision theoretic control problems. The same
restrictions can be used for the corresponding (evaluation,
satisfiability and equivalence) problems in first order logic,
but to our knowledge this has not been studied before. We
provide a complete characterization of the complexity show-
ing an interesting structure. Our results are developed for

the GFODD representation and require detailed arguments
about the graphical representation of formulas in that lan-
guage. The same lines of argument (with simpler proof de-
tails) yield similar results for first order logic. To translate
our results to the language of logic, consider the quantifier
prefix of a first order logic formula using the standard nota-
tion using Y, IIj to denote alternation depth of quantifiers
in the formula. With this translation, our results show that:

(1) Evaluation over finite structures spans the polynomial
hierarchy, that is, evaluation of ¥ formulas is Eﬁ complete,
and evaluation of II;, formulas is II} complete.

(2) Satisfiability, with a given bound on model size, is
more complex: satisfiability of ¥, formulas is 3¥ complete,
and satisfiability of IT; formulas is 32} , ; complete.

(3) Equivalence, under the set of models bounded by a
given size, depends only on quantifier depth: both the equiv-
alence of X; formulas and equivalence of II; formulas are
IT},, , complete.

The membership proofs in these results allow for con-
stants in the signature but the hardness results, except for
satisfiability for IT; formulas, hold without constants. For
signatures without constants, satisfiability of 1I; formulas is
in NP; when constants are allowed, it is Zg complete as in
the general template.

These results are useful in that they clearly character-
ize the complexity of the problems solved heuristically by
implementations of GFODD systems (Joshi, Kersting, and
Khardon 2010; Joshi and Khardon 2011) and can be used to
partly motivate or justify the use of these heuristics. For first
order logic, the results give an interesting new avenue for
efficient inference when the number of objects is bounded.
These issues and further questions for future work are dis-
cussed in the concluding section of the paper.

Due to space constraints a significant amount of detail has
been left out of proofs and constructions. These are available
in the full version of this paper.

Complexity Theory Preliminaries

We assume basic familiarity with complexity theory includ-
ing the classes P, NP, and co-NP (Homer and Selman 2001;
Sipser 2012; Papadimitriou 1994). The polynomial hierar-
chy is defined from these inductively starting with ¥} =NP,
17 =co-NP. An algorithm is in the class AP if it uses com-
putation in A with a polynomial number of calls to an oracle

in B. Then we have ¥} | = NP>¥, and ., = co-NP”k,
A problem is in X% iff its complement is in II} and thus

either of these can serve as the oracle in the definition.

Generalized FODD

We assume familiarity with basic concepts and notation in
predicate logic (e.g., (Lloyd 1987; Russell and Norvig 1995;
Chang and Keisler 1990)). Decision diagrams are similar
to expressions in first order logic. They are defined rela-
tive to a relational signature, with a finite set of predicates
P1,P2,---,Pn €ach with an associated arity (number of ar-
guments), a countable set of variables x1, zo, . . ., and a set of
constants ¢y, Ca, . . . , ;. We do not allow function symbols
other than constants (that is, a function with arity > 1). In

1057

addition, we assume that the arity of predicates is bounded
by some numerical constant. A term is a variable or a con-
stant and an atom is either an equality between two terms or
a predicate with an appropriate list of terms as arguments.
Intuitively, a term is an object in the world of interest and an
atom is a property which is either true or false.

First order decision diagrams (FODD) and their gen-
eralization (GFODD) were defined by (Wang, Joshi, and
Khardon 2008; Joshi, Kersting, and Khardon 2011) inspired
by previous work in (Groote and Tveretina 2003). A first or-
der decision diagram is a rooted acyclic graph with directed
edges. Each node in the graph is labeled. A non-leaf node
is labeled with an atom from the signature and it has ex-
actly two outgoing edges. The directed edges correspond to
the truth values of the node’s atom. In the figures depicting
GFODD in this paper, the left-going child denotes the true
branch and the right child denotes the false branch. In addi-
tion, edge direction in the figures is always from top to bot-
tom. A leaf is labeled with a non-negative numerical value.
We sometimes restrict diagrams to have only binary leaves
with values O or 1. In this case we can consider the values to
be the logical values false and true. In addition, a GFODD
has a list of aggregation operators that are defined below.

Similar to the propositional case (Bryant 1986; Bahar et
al. 1993), GFODD syntax is restricted to comply with a pre-
defined total order on atoms. In the propositional case the
ordering constraint yields a normal form (a unique minimal
representation for each function) which is in turn the main
source of efficient reasoning. For FODDs and GFODDs, a
normal form has not been established, but the use of or-
dering makes for more efficient simplification of diagrams.
In particular, following (Wang, Joshi, and Khardon 2008),
we assume a fixed ordering on predicate names, e.g., p1 <
p2 < ... < pp, and a fixed ordering on variable names,
e.g.,x1 < 2 < ...and constants ¢; < c3 < ...Cp and
require that ¢; < z; for all 7 and j. The order is extended

to atoms by considering them as lists. That is, p;(...) <
pi(...)if ¢ < jand p;(ag,,... 28,) < pi(;vkll, cey X))
if (Tgy,...,%k,) < (Tg),...,Tx,). Node labels in the

GFODD must obey this order so that if node a is above node
b in the diagram then the labels satisfy a < b. We assume
that all diagrams are legally ordered in this way.

The ordering assumption is helpful in that it simplifies the
computations. We note, however, that for this paper the as-
sumption makes for more complex analysis because we must
show that hardness results hold even for this restricted case.

The semantics of GFODDs assigns a value MAP (1) for
any diagram B and interpretation I, where I is a “possible
world” specifying a domain of objects and the truth values of
predicates over these objects. The “multiple-paths” seman-
tics defines this value by considering all possible valuations.
A variable valuation (is a mapping from the set of variables
in B to domain elements in the interpretation I. This map-
ping sets each node label to a concrete ground atom in the
interpretation and therefore to its truth value and in this way
defines a single path from root to leaf. The value of this leaf
is the value of the GFODD B under the interpretation, I,
with variable valuation ¢ and is denoted MAPg(, ¢).

Since different (will generate different values

MAPg(1,() we need to aggregate these to yield a
single value for I. FODDs are defined by using max
aggregation, that is, MAP g (I) = max; MAPg(I, ().

GFODDS allow for other forms of aggregation of the val-
ues over MAPg(I, ¢). In particular, let the variables in B
be given in some arbitrary order wj,,...,w; . Then B is
associated with another list of length m specifying aggre-
gation over each w;; in that order. The definition by (Joshi,
Kersting, and Khardon 2011) allows for various aggregation
operators (for example, min, max, sum, average) but here we
use a more restricted set allowing each variable to be associ-
ated with either max or min aggregation. The semantics is
defined as follows. First we calculate MAPg (1, ¢) for all ¢.
Then we loop with j taking values from m to 1 aggregating
values over w;; using its aggregation operator.

When leaves are in {0,1} max and min aggregation
correspond to existential and universal quantifiers in logic
with the formula given in quantified normal form, that is,
with all quantifiers at the front. For example, the expression
[max,, min,, if p(wy,ws) then 1 else 0], that can be cap-
tured with a diagram with one internal node, is the same as
the logical formula Jwy, Vws, p(wy, ws).

We say that a GFODD is max-k-alternating GFODD if its
set of aggregation operators has k blocks of aggregation op-
erators, where the first includes max aggregation, the second
includes min aggregation, and so on. We similarly define
min-k-alternating GFODD where the first block has min ag-
gregation operators. A GFODD has aggregation depth k if it
is in one of these two classes.

The following result, mirroring the case in logic, will al-
low us to simplify some of the arguments by borrowing re-
sults from their “complements”. Let B be a GFODD asso-
ciated with the ordered list of variables w;, ,...,w;, , and
aggregation list Ay, ..., A,, where each A; is min or max.
Let B’ = complement(B) (with respect to maximum value
M) be the diagram corresponding to B where we change
leaf values and aggregation operators as follows: Let the
max leaf value in B be of value < M. Any leaf value v
is replaced with M — v. Each aggregation operator A; is re-
placed with A} where where if A; is min then A} is max and
vice versa. The following result can be shown by induction
over aggregation steps:

Theorem 1 Let B be a GFODD with min and max ag-
gregation and maximum leaf value < M, and let B’ =
complement(B). For any interpretation I, MAPg(I)
M — MAPp: (I).

For diagrams with binary leaves this yields MAPg (1)
1 — MAPg/(I), i.e., negation. Since diagrams A, B satisfy
A = B iff complement(A) = complement(B) this shows
that the complexity of equivalence of max-k-alternating
GFODD:s is the same as that of min-k-alternating GFODDs.

Computational Problems

As mentioned in the introduction, to avoid undecidability we
restrict the computational problems so that the size of inter-
pretations is given as part of the input. There are two moti-
vations for using such a restriction. The first is that in some
applications we might know in advance that the number of

1058

relevant objects is bounded by some large constant. For ex-
ample, the main application of GFODDs to date has been for
solving decision theoretic planning problems; in this con-
text the number of objects in an instance (e.g., the number
of trucks or packages in a logistics transportation problem)
might be bounded by some known quantity. The second is
that our results show that even under such strong conditions
the computational problems are hard, providing some justi-
fication for the heuristic approaches used in GFODD imple-
mentations (Joshi, Kersting, and Khardon 2010; Joshi and
Khardon 2011; Joshi et al. 2013).

We can now define the computational problems of inter-
est. The simplest problem requires us to evaluate a diagram
on a given interpretation.

Definition 2 (GFODD Model Evaluation) Given diagram
B, interpretation I with finite domain, and value V> 0:
return Yes iff MAPg(I) > V. Note that when the leaves
are restricted to {0,1} and V = 1 this can be seen as a
returning Yes iff MAP (1) is true.

To calculate MAPg () we can appeal to a GFODD Eval-
uation oracle multiple times, once for each leaf value as V,
and return the highest achievable result. The second problem
most naturally applies for diagrams with binary leaves.

Definition 3 (GFODD Satisfiability) Given diagram B
with leaves in {0,1} and integer N in unary: return Yes iff
there is some I, with at most N objects, such that MAP g (I)
is true.

Finally, diagrams allow for redundancies in the repre-
sentation. It is therefore crucial for applications of FODDs
and GFODDs that diagrams can be compressed into a form
which is equivalent semantically but is smaller syntacti-
cally. One way to view such transformations, which has been
productive in practice (Wang, Joshi, and Khardon 2008;
Joshi, Kersting, and Khardon 2011), is to check whether an
edge can be “removed” in the sense that instead of direct-
ing it to a sub-diagram we can direct it to a zero leaf and in
this way potentially eliminate the sub-diagram rooted at the
child. To perform this check we can produce the alternative
diagram and test whether they are semantically equivalent.
This is abstracted here as a comparison between arbitrary
diagrams. Our hardness results, though, apply even to the
special case of testing removal of a single edge.

Definition 4 (GFODD Equivalence) Given diagrams B
and Bo and integer N in unary: return Yes iff for all I with
at most N objects, MAPp, (I) = MAPp, ().

The assumption that N is in unary is convenient but
not essential as our constructions will involve interpreta-
tions where the number of objects is linear in the size of
B (bounded by the number of variables in B).

Complexity Results

Theorem 5 GFODD Evaluation for max-k-alternating
GFODDs is X% -complete. GFODD Evaluation for min-k-
alternating GFODDs is 11}, -complete.

Proof Sketch. We prove membership by induction on k.
Consider the input (B, I,V) for a max-k-alternating dia-
gram B. We guess a tuple of objects ¢ to bind the first block

Figure 1: Example of variable consistency blocks for re-
duction from QBF to GFODD Evaluation for formula
V13QVI33$4(1’1 V —zo V I4) A (":Zil Vxo V $3) A (l’l V
3V —xy).

of max variables, substitute it into B to yield B’ (remov-
ing the first block of variables), appeal to a IT} _; oracle to

solve GFODD Evaluation on (B’, I, V'), and return the same

answer. This yields a correct algorithm in NP>%-1. The ar-
gument for the other aggregation prefix is symmetric.

To show hardness we give a reduction from QBF. Given
a quantified 3CNF boolean formula we transform this into
a GFODD B and interpretation I* with two objects, and
where truth value for the only predicate is Pr(a) = true, and
Pr(b) = false. The construction guarantees that B evaluates
to a value of 1 in I* if and only if the quantified boolean for-
mula is satisfied, therefore implying the theorem.

To construct B we create a GFODD variable v(; ;) cor-
responding to the jth literal of the ¢th clause in the QBF. In
addition, for each QBF variable x; we create a “shadow vari-
able” w;. We group w; and the set of v(;, ;, that refer to x;
or —z; in the QBF into the set w;. The set w; has aggrega-
tion corresponding to the quantification of x; (max for 3 and
min for V). Using these variables, we build FODD fragments
we call variable consistency blocks. This gadget ensures that
if two literals in the QBF refer to the same variable then the
corresponding variables in the GFODD will have the same
value. If this holds then a valuation goes through the block
and continues to the next block. Otherwise, it exits to a de-
fault value, where for max blocks the default value is 0, and
for min blocks the default value is 1.

Consider the expression Vy 3zoVrs3zy (21 V2o V) A
(mx1 V xg V xg) A (z1 V 23 V —xy4). Figure 1 shows the
variable consistency blocks for this example. Since, V(1,1)5
v(2,1), and vz 1) refer to x; we need to ensure that when
they are evaluated they are evaluated consistently and this
is done by the first block. Because x; is a V variable the
default leaf value is 1. The consistency blocks are chained
in the order of the quantification of the QBF. This chaining
order guarantees that any unintended valuation (that does not
assign a block w; consistently) exits on the first block from

1059

Figure 2: The clause blocks.

the left which is violated, and is assigned the default value
for this block.

Once every consistency has been checked we continue to
the clause blocks (see Figure 2) that mimic the structure of
the QBF clauses. This yields the diagram B where we set
the aggregation function to be Q{'w1, Q4wa, ..., Q2 w,,
where Q#' and w; are as above. The detailed proof uses the
block ordering, and induction over aggregation order from
m to 1, to show that unintended valuations do not affect
MAPp (1) and that this implies the claim above. O

In the proof above, one might be tempted to use just the
clause blocks and explicitly unify the GFODD variables that
correspond to the same literal thus avoiding the need for
variable consistency blocks. Such a strategy works for the
corresponding proof for first order logic. This is not possible
for GFODDs, however, because unifying the variables will
violate ordering constraints. If we keep the variables unified
and try to reorder nodes in the diagram the result might grow
exponentially in size. The variable consistency blocks allow
us to get around this problem.

Theorem 6 GFODD Satisfiability for max-k-alternating
GFODDs is X% -complete.

Proof Sketch. For membership we guess I (due to the bound
on arity, this requires polynomial space in the number of ob-
jects) and the binding of the first max block, substitute it into
the input diagram, and appeal to an oracle for GFODD Eval-
uation for the resulting depth £ — 1 diagram. The hardness
argument is similar to the proof for GFODD evaluation but
instead of specifying I* in the reduction we add a gadget to
B that forces any satisfying interpretation to be isomorphic
to I*. Since I* exists, we get that B is satisfiable iff the QBF
is true. |

Theorem 7 GFODD Egquivalence for diagrams with aggre-
gation depth k is II} | -complete.

Proof Sketch. As noted above from the properties of
complement(B), it suffices to show that the theorem

holds for max-k-alternating GFODDs. For membership we
show that non-equivalence is in X% 41+ Given two max-k-
alternating GFODDs B; and Bs as input, we guess an in-
terpretation I of the appropriate size, and then use mul-
tiple calls to an oracle for GFODD Evaluation to calcu-
late MAPg, (I) and MAPg, (). Using these values we re-
turn Yes or No accordingly. Clearly if a witness for non-
equivalence exists then this process can discover it and say
Yes (per non-equivalence), and otherwise it will always say
No. Therefore non-equivalence is in N Pt

Hardness requires a significant extension of the proof
technique from above. In particular, we start with a
II; QBF, and “peel off” the first block of quantifiers,
yielding diagrams in max-(k—1)-alternating GFODD for
an equivalence test. To simplify the notation it is con-
venient to group adjacent variables having the same
quantifiers into groups so that the QBF has the form
Vx1, QoXs . .. QrXy f(X1,X2, ..., Xy) where x; refers to a
set of variables. We define a notion of “legal interpretation”
which must embed the binary interpretation /* from the pre-
vious proof and in addition includes a truth setting for all the
variables in the first V block of the QBF.

The reduction constructs diagrams By, B3, and B
B; N By (that can be computed without increasing quan-
tifier depth; see Theorem 4 of (Joshi, Kersting, and Khardon
2011)) such that: (C1) for all I, MAPg, (I) = 1 if and
only if I is legal, and (C2) if [is legal and it embeds the
substitution x; = « then MAPg,(I) = 1 if and only if
Qoxa ... Qrxpf((x1 =), Xa,...,%X;) = 1. We then out-
put the diagrams (B1, B) for GFODD equivalence.

Note that, assuming that the A operation is correct,
for non-legal interpretations we have MAPg, (I)
MAPg(I) = 0 and therefore if the diagrams are not equiv-
alent it must be because of legal interpretations. Now, if the
QBEF is satisfied then, by definition, for all x; = « we have
that Qoxa ... Qrpxrf((x1 = «),%2,...,X;) = 1. There-
fore, by C2, for all legal I, MAPp,(I) = 1 and by C1 and
the construction also MAPg(I) = 1. Thus B and B; are
equivalent. The other direction (when the QBF is not satis-
fied) is argued in a similar manner.

To describe By, Bo we start with a simplified construc-
tion and then fix some of the details. The set of predicates
includes Pr() which is as before and for every QBF vari-
able x; in the first V block we use a predicates P, (). No-
tice that each x; is a member of x; (the first V group) where
the typeface distinguishes the individual variables in the first
block, from blocks of variables. In the simplified construc-
tion, a legal interpretation has exactly two objects, say a and
b, where Pr(a) # Pr(b) (as in I*) and in addition for each
P..() we have P,,(a) = P,,(b). That is, as above, the as-
signment of an object to v in Pp(v) simulates an assignment
to Boolean values, but the truth value of P,, (v) is the same
regardless of which object is assigned to v. In our example
QBF, Va1 JxoVasdry (1 Vxa Vag) Az Vaa Ves) Az V
x3 V —xy4), the first block includes only the variable z; and
the following interpretation is legal: I = {[a,b], Pr(a) =
true, Pr(b) = false, P,,(a) = P,,(b) = false}. The dia-
gram B; has three portions. The first verifies that I has two
objects, the second verifies that Pr() behaves as stated, and

1060

Figure 3: B; diagram for Equivalence reduction.

the third portion verifies that each P,,() behaves as stated,
where we use a sequence of blocks, one for each P,, (). The
combined diagram B; for our example is shown in Figure 3
and the aggregation function is maxy, ,, min;, -, .

The diagram Bs is similar to B from the Evaluation proof
and includes variable consistency blocks followed by the
clause blocks. The only difference is that we need to han-
dle the first V block differently. As it turns out, all we need
to do is replace the min aggregation for the wy block with
max aggregation and accordingly replace the default value
on that block to 0. In addition, the clause blocks in this case
have the same structure as in the previous construction but
use P, (V(;, i,)) when z; is a V variable from the first block
and use Pr(V(;, ;,)) otherwise. The detailed proof shows
that C1 and C2 hold and that this implies the theorem.

Note that the new clause blocks are not sorted in any con-
sistent order because the predicates P, () and Pr() appear
in an arbitrary ordering in B; determined by the appearance
of literals in the QBF. To fix this we simulate the unary pred-
icates Pr and P,, with one binary predicate ¢(-,-) where
the “second argument” in ¢() serves to identify the corre-
sponding predicate and hence its truth value. For example,
Pr(v12) will be replaced with g(vq,2,T). In addition we
force ¢() to be symmetric so that for any X and Y the truth
value of ¢(X,Y") is the same as the truth value of ¢(Y, X). In
this way we have freedom to use either ¢(X,Y") or ¢(Y, X)
as the node label which provides sufficient flexibility to han-
dle the order issues. The reformulation of the clause blocks
in our example is shown in Figure 4. To implement this idea
the full proof uses gadgets to identify the object 7" and the
objects x; from the first block, to make sure that they are
unique and to make sure that bindings are consistent.

This proof holds for &’-alternating GFODDs where k' >
2. We therefore require a separate proof for equivalence of
FODDs where k' = 1. The full paper provides a reduction
from the problem of deciding arrowing from the Ramsey
theory of graphs (Schaefer 2001). (|

Theorem 8 GFODD Satisfiability for min-k-alternating
GFODDs (where k > 2) is E£+1-00mplete.

Figure 4: Sorted clause blocks using binary predicate.

Proof Sketch. For membership we guess I and appeal to
a depth £ GFODD Evaluation oracle. The hardness result
adapts the construction of the equivalence proof. Here we
start with a >33, formula, and “peeling off”” one block of quan-
tifiers get a min-(k—1)-alternating GFODD. We output the
diagram corresponding to B for satisfiability. Properties C1
and C2 remain exactly as in the previous proof, but because
of the shift in quantifier ordering we get hardness for satisfi-
ability, i.e., in a single model, rather than the requirement to
be satisfied in all legal models in the previous proof. 0

All the hardness proofs given above in the paper use a sig-
nature without any constants, i.e., we use equality and unary
and binary predicates. For min-GFODDs (the case k = 1)
the use of constants affects the complexity of the problem.
In particular, for a signature without constants, if a min-
GFODD is satisfied by interpretation I, then it is satisfied
by the sub-interpretation of I with just one object (any ob-
jectin I will do). Moreover, given diagram B and a specific
I with one object, model evaluation is in P because there is
only one valuation to consider. Therefore, in this case satis-
fiability is in NP: we can guess the interpretation (i.e. truth
values of predicates) and evaluate MAPg(I) in polynomial
time. On the other hand, if we allow constants in the signa-
ture we can show that the problem follows the same scheme
as above:

Theorem 9 GFODD Satisfiability for min-GFODDs is 5 -
complete.

Proof Sketch. Membership is as in the general case. For
hardness, we use the construction in the reduction of the
previous proof which yields a GFODD with aggregation
min* max* (i.e., the portion starting with w3 does not exist)
where the max variables are 7', y1, Y2, 21, ..., xs. We then
turn these variables into constants and remove the max ag-

1061

gregation to yield a min GFODD. Although turning these
variables to constants is similar to pulling the max portion
to the head of the formula one can verify that the argu-
ments above regarding valuations and values hold yielding
the same hardness result. |

Conclusions

We explored the complexity of computations using FODD
and GFODD, providing a classification placing these within
the polynomial hierarchy, where, roughly speaking, equiv-
alence is one level higher in the hierarchy than evaluation
and satisfiability. These results are useful in that they clearly
characterize the complexity of the problems solved heuristi-
cally by implementations of GFODD systems (Joshi, Kerst-
ing, and Khardon 2010; Joshi and Khardon 2011) and can be
used to partly motivate or justify the use of these heuristics.
For example, the “model checking reductions” of (Joshi,
Kersting, and Khardon 2010) replace equivalence tests with
model evaluation on a “representative” set of models, and
(Joshi, Kersting, and Khardon 2010) choose this set heuristi-
cally leading to inference that is correct with respect to these
models but otherwise incomplete. Our results show that this
indeed leads to a reduction in complexity so that the com-
promise in correctness is traded for improved worst case run
time. As mentioned in the introduction, the proofs in the pa-
per can be used (with simplified details) to show the same
complexity results for the corresponding problems in first or-
der logic. To our knowledge the complexity questions with
an explicit bound on model size have not been previously
studied in this context. Yet they can be useful where such a
bound can be given in a practical setting. In such cases ex-
isting optimized QBF algorithms can be used for inference
in this restricted form of first order logic.

There are two important directions for further investiga-
tion. The first involves using a richer set of aggregation
operators. In particular the definition of GFODDs allows
for any function to aggregate values, and functions such as
sum, product, and average are both natural and useful for
modeling and solving Markov Decision Processes, which
have been the main application for GFODDs. The work of
(Joshi et al. 2013) extends the model checking reductions to
GFODDs with average aggregation. Clarifying the complex-
ity of these problems and identifying the best algorithms for
them is an important effort for the efficiency of such sys-
tems. Related to this, the second question is to identify effi-
cient model evaluation algorithms for GFODDs. The work
of (Joshi et al. 2013) provides a generic algorithm inspired
by the variable elimination algorithm from probabilistic in-
ference. Several application areas, including databases, Al,
and probabilistic inference have shown that more efficient
algorithms are possible when the input formula or graph
have certain structural properties such as “low tree width”
and the same is true for the variable elimination algorithm.
We therefore conjecture that similar notions can be devel-
oped to provide more efficient evaluation for GFODDs with
some structural properties. Coupled with model checking re-
ductions, this can lead to realizations of GFODD systems
that combine high expressive power going beyond first or-
der logic with efficient algorithms.

Acknowledgments

This work is partly supported by NSF grant IIS 0964457.
Some of this work was done when RK was on sabbatical
leave at Trinity College Dublin.

References

Bahar, R.; Frohm, E.; Gaona, C.; Hachtel, G.; Macii, E.;
Pardo, A.; and Somenzi, F. 1993. Algebraic decision di-
agrams and their applications. In IEEE /ACM ICCAD, 188—
191.

Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dy-
namic programming for first-order MDPs. In Proc. of IJCAI,
690-700.

Bryant, R. 1986. Graph-based algorithms for boolean func-
tion manipulation. [EEE Transactions on Computers C-
35(8):677-691.

Chang, C., and Keisler, J. 1990. Model Theory. Amsterdam,
Holland: Elsevier.

Fagin, R. 1993. Finite-model theory - a personal perspective.
Theoretical Computer Science 116(1&2):3-31.

Gridel, E. 2003. Decidable fragments of first-order and
fixed-point logic. From prefix-vocabulary classes to guarded
logics. In Proceedings of Kalmdr Workshop on Logic and
Computer Science, Szeged.

Groote, J., and Tveretina, O. 2003. Binary decision dia-
grams for first order predicate logic. Journal of Logic and
Algebraic Programming 57:1-22.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
Spudd: Stochastic planning using decision diagrams. In Pro-
ceedings of UAI, 279-288.

Holldobler, S., and Skvortsova, O. 2004. A logic-based
approach to dynamic programming. In AAAI-04 workshop
on learning and planning in Markov Processes — advances
and challenges.

Holldobler, S.; Karabaev, E.; and Skvortsova, O. 2006. Flu-
CaP: a heuristic search planner for first-order MDPs. JAIR
27:419-439.

Homer, S., and Selman, A. L. 2001. Computabilty and Com-
plexity Theory. New York: Springer-Verlag.

Joshi, S., and Khardon, R. 2011. Probabilistic relational
planning with first order decision diagrams. JAIR 231-266.
Joshi, S.; Khardon, R.; Raghavan, A.; Tadepalli, P.; and
Fern, A. 2013. Solving relational mdps with exogenous
events and additive rewards. In ECML.

Joshi, S.; Kersting, K.; and Khardon, R. 2010. Self-taught
decision theoretic planning with first order decision dia-
grams. In Proc. of ICAPS, 89-96.

Joshi, S.; Kersting, K.; and Khardon, R. 2011. Decision
theoretic planning with generalized first order decision dia-
grams. AlJ 175:2198-2222.

Kersting, K.; Otterlo, M. V.; and De Raedt, L. 2004. Bellman
goes relational. In Proc. of ICML.

Khardon, R., and Roth, D. 1996. Reasoning with models.
Artificial Intelligence 87:187-213.

1062

Khardon, R., and Roth, D. 1997. Learning to reason. Jour-
nal of the ACM 44(5):697-725.

Khardon, R.; Mannila, H.; and Roth, D. 1999. Reasoning
with examples: Propositional formulae and database depen-
dencies. Acta Informatica 267-286.

Libkin, L. 2004. Elements of Finite Model Theory. Springer.

Lloyd, J. 1987. Foundations of Logic Programming.
Springer Verlag. Second Edition.

Papadimitriou, C. H.
Addison-Wesley.

Russell, S., and Norvig, P. 1995. Artificial Intelligence: a
modern approach. Prentice Hall.

1994. Computational complexity.

Sanner, S., and Boutilier, C. 2009. Practical solution tech-
niques for first order MDPs. A1J 173:748-788.

Schaefer, M. 2001. Graph ramsey theory and the polynomial
hierarchy. J. Comput. Syst. Sci. 62(2):290-322.

Sipser, M. 2012. Introduction to the Theory of Computation.
Thomson South-Western, 3rd edition.

Wang, C.; Joshi, S.; and Khardon, R. 2008. First order de-
cision diagrams for relational MDPs. JAIR 31:431-472.

