
Elementary Loops Revisited

Jianmin Jia, Hai Wanb, Peng Xiaob, Ziwei Huob, and Zhanhao Xiaoc

aSchool of Computer Science and Technology, University of Science and Technology of China, Hefei, China
jianmin@ustc.edu.cn

bSchool of Software, Sun Yat-sen University, Guangzhou, China
wanhai@mail.sysu.edu.cn

cSchool of Information Science and Technology, Sun Yat-sen University, Guangzhou, China

Abstract

The notions of loops and loop formulas play an
important role in answer set computation. However,
there would be an exponential number of loops in the
worst case. Gebser and Schaub characterized a subclass
elementary loops and showed that they are sufficient for
selecting answer sets from models of a logic program.
This paper proposes an alternative definition of elemen-
tary loops and identify a subclass of elementary loops,
called proper loops. By applying a special form of their
loop formulas, proper loops are also sufficient for the
SAT-based answer set computation. A polynomial algo-
rithm to recognize a proper loop is given and shows that
for certain logic programs, identifying all proper loops
of a program is more efficient than that of elementary
loops. Furthermore, we prove that, by considering the
structure of the positive body-head dependency graph
of a program, a large number of loops could be ignored
for identifying proper loops. We provide another algo-
rithm for identifying all proper loops of a program. The
experiments show that, for certain programs whose de-
pendency graphs consisting of sets of components that
are densely connected inside and sparsely connected
outside, the new algorithm is more efficient.

Introduction
The notions of loops and loop formulas were first proposed
by Lin and Zhao (2004) for normal logic programs. They
showed that a set of atoms is an answer set of a program iff
it satisfies both the loop formulas and the program, which
guarantees the correctness and completeness of SAT-based
answer set solvers, like ASSAT (Lin and Zhao 2004),
cmodels (Giunchiglia, Lierler, and Maratea 2006), and
clasp (Gebser et al. 2007). Besides, the notions and the re-
sults have been extended to disjunctive logic programs (Lee
and Lifschitz 2003), general logic programs (Ferraris, Lee,
and Lifschitz 2006), propositional circumscription (Lee and
Lin 2006), and arbitrary first-order formulas with stable
model semantics (Lee and Meng 2008).

In general there may be an exponential number of
loops (Lifschitz and Razborov 2006). Gebser and
Schaub (2005) showed that not all loops are necessary

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for selecting the answer sets among the models of a pro-
gram. They introduced the subclass elementary loops and
refined the Lin-Zhao theorem by considering elementary
loops only. In this paper, we revisit the notion of elementary
loops and show that some elementary loops could also be
disregarded in answer set computation. Rather, we introduce
a subclass proper loops of elementary loops and further
refine the Lin-Zhao theorem by considering a special form
of loop formulas only. We show that a proper loop can be
recognized in polynomial time and for certain programs,
identifying all proper loops of a program is more efficient
than that of all elementary loops.

Furthermore, Chen, Ji, and Lin (2013) observed that a pre-
processing step applying loop formulas of loops with only
one external support rule could significantly improve the
computation performances for certain logic programs. This
paper shows that, for programs whose dependency graphs
consisting of sets of components with densely connected in-
side and sparsely connected outside, a small number of loop
formulas could be chosen using the notion of proper loops
and the conjunction of these loop formulas could imply
the loop formulas assembled from different components.
This result not only explains the observation in (Chen, Ji,
and Lin 2013), but also helps us to create an algorithm for
identifying all proper loops of a program. Experimental
results show that, for these programs, this algorithm is more
efficient than directly considering each loop of the program.

Preliminaries
Logic Programs
This paper considers only fully grounded finite normal logic
programs. A logic program is a finite set of rules of the form:

p0 ← p1, . . . , pk, not q1, . . . , not qm, (1)

where pi, 0 ≤ i ≤ k, and qj , 1 ≤ j ≤ m, are atoms.
Given a logic program P , let Atoms(P) be the set of

atoms in it. For a rule r of the form (1), let head(r) be its
head p0, body(r) the set {p1, . . . , pk,¬q1, . . . ,¬qm} of lit-
erals obtained from the body of the rule with “not” replaced
by “¬”, body+(r) the set of atoms in its body, {p1, . . . , pk},
and body−(r) the set of atoms under not in its body,
{q1, . . . , qm}. With a slight abuse of the notion, we use
body(r) also for the conjunction of the literals in it. Let R

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1063

be a set of rules, we denote head(R) = {head(r) | r ∈ R}
and body(R) = {body(r) | r ∈ R}.

Given a rule r of the form (1) and a set S of atoms, we say
S satisfies body(r), if body+(r) ⊆ S and body−(r)∩S = ∅.
Furthermore, S satisfies a logic program P , if for each rule
r in P , S satisfies body(r) implies head(r) ∈ S.

Now we define answer sets of a program (Gelfond and
Lifschitz 1988). Given a logic program P , and a set S of
atoms, the Gelfond-Lifschitz transformation of P on S,
written PS , is obtained from P by deleting:

1. each rule having not q in its body with q ∈ S, and
2. all negative literals in the bodies of the remaining rules.
For any S, PS is a set of rules without any negative literals,
so that PS has a unique minimal model, denoted by ΓP (S).
Now a set S of atoms is an answer set of P iff S = ΓP (S).

Loops and Loop Formulas
It is known that if S is an answer set of P , then S also
satisfies P , but the converse may not be true in general.
To address this problem, Lin and Zhao (2004) proposed
adding so-called loop formulas and showed that a set of
atoms which satisfies both the program and loop formulas
coincides with the answer sets of the program.

To define loop formulas, we have to define loops, defined
in terms of positive dependency graphs. Given a logic pro-
gram P , the positive dependency graph of P , written GP ,
is the directed graph whose vertices are atoms in P , and
there is an arc from p to q if there is a rule r ∈ P such that
p = head(r) and q ∈ body+(r). A set L of atoms is said to
be a loop of P if for any p and q in L, there is a path from p to
q in GP such that all the vertices in the path are in L, i.e. the
L-induced subgraph of GP is strongly connected. Note that,
every singleton whose atom occurs in P is also a loop of P .

Example 1 (Loops) Consider the logic program P1:

p← . p← r. q ← r. r ← p. r ← q.

Figure 1 shows the positive dependency graph of P1. P1 has
six loops: {p}, {r}, {q}, {p, r}, {r, q}, and {p, r, q}.

rp q

Figure 1: The positive dependency graph of Program P1

Lin and Zhao defined a formula which says that an atom in
a loop cannot be proved by the atoms in the loop only. Thus
atoms in the loop can be proved only by using some atoms
and rules that are “outside” of the loop. Formally, a rule r is
called an external support of a loop L if head(r) ∈ L and
L ∩ body+(r) = ∅. Thus let R−(L) be the set of external
support rules of L. Then the disjunctive loop formula of L
under P , written DLF (L,P), is the following implication:∨

p∈L
p ⊃

∨
r∈R−(L)

body(r). (2)

An alternative definition of a loop formula proposed in (Lee
and Lifschitz 2003) replaces

∨
in the antecedent of (2)

with
∧

, called the conjunctive loop formula and written
CLF (L,P): ∧

p∈L
p ⊃

∨
r∈R−(L)

body(r). (3)

Furthermore, we can replace the antecedent of (2) or (3)
with a propositional formula that entails

∨
p∈L p and is en-

tailed by
∧

p∈L p. For instances, for any loop L, let FL be a
formula formed from atoms in L using conjunctions and dis-
junctions. Thus let LF (L,P) denote a formula of the form:

FL ⊃
∨

r∈R−(L)

body(r).

Theorem 1 (Theorem 1 in (Lee and Lifschitz 2003)) Let
P be a logic program and S a set of atoms. If S satisfies P ,
then following conditions are equivalent:

1. S is an answer set of P ;
2. S satisfies DLF (L,P) for all loops L of P ;
3. S satisfies CLF (L,P) for all loops L of P ;
4. S satisfies LF (L,P) for all loops L of P .

Lee (2005) proposed that, notions of external support
rules and loop formulas can also be defined for sets of atoms.

Elementary Loops
Gebser and Schaub (2005) showed that the Lin-Zhao
theorem remains correct even if loop formulas are restricted
to a special class of loops called elementary loops.

Let X be a set of atoms and Y a subset of X , we say that
Y is outbound in X for a logic program P if there is a rule
r in P such that head(r) ∈ Y , body+(r) ∩ (X \ Y) 6= ∅,
and body+(r) ∩ Y = ∅. Let P be a logic program and L a
loop of P , we say that L is an elementary loop of P if all
nonempty proper subsets of L are outbound in L for P .
Example 1 (Continued) Program P1 has six elementary
loops: {p}, {r}, {q}, {p, r}, {r, q}, and {p, r, q}.
Theorem 2 (Theorem 1(d) in (Gebser and Schaub 2005)) Each
of following conditions is equivalent to each of conditions in
Theorem 1:
5. S satisfies CLF (L,P) for all elementary loops L of P ;
6. S satisfies DLF (L,P) for all elementary loops L of P ;
7. S satisfies LF (L,P) for all elementary loops L of P .

Gebser and Schaub (2005) proved that the problem of de-
ciding whether a given set of atoms is an elementary loop
of a logic program is tractable. Let pair (V,E) denote a di-
rected graph where V is the set of vertices and E is the set
of edges, i.e., pairs of vertices. Let P be a logic program and
X a set of atoms, and we define:

EC0
P (X) = ∅,

ECi+1
P (X) = { (a, b) | there is a rule r in P such that

a = head(r), a ∈ X , b ∈ body+(r) ∩X ,

and all atoms in body+(r) ∩X belongs to
the same strongly connected component

(SCC) in (X,ECi
P (X)) },

ECP (X) =
⋃
i≥0

ECi
P (X).

1064

We call (X,ECP (X)) the elementary subgraph of X for
P .

Theorem 3 (Theorem 3 in (Gebser and Schaub 2005))
Let P be a logic program and X a nonempty set of atoms.
X is an elementary loop of P iff the elementary subgraph
of X for P is strongly connected.

The above process also provides an algorithm with O(n2)
running time for deciding whether a loop is an elementary
loop, where n is number of atoms in the logic program.

An Alternative Definition of Elementary Loops
In this section, we propose an alternative definition of ele-
mentary loops. Based on this definition, we provide a new
algorithm for deciding whether a loop is an elementary loop.
The new algorithm has the same time complexity as Gebser
and Schaub (2005), however it follows a top-down strategy
while Gebser and Schaub’s is a bottom-up approach.

First, we provide a property of conjunctive loop formulas.

Proposition 1 Let P be a logic program and L1, L2

loops of P . If L1 ⊆ L2 and R−(L1) ⊆ R−(L2), then
CLF (L1, P) ⊃ CLF (L2, P).

A loop L of a logic program P is called unsubdued if
there does not exist another loop L′ of P such that L′ ⊂ L
and R−(L′) ⊆ R−(L).

Corollary 4 The following condition is equivalent to each
of conditions in Theorem 1:

5’. S satisfies CLF (L,P) for all unsubdued loops L of P .

Intuitively, a set Y of atoms is outbound in another set X ,
iff there exists a rule r in P such that r ∈ R−(Y) and r /∈
R−(X). Let L be a loop of a program P , all its nonempty
proper subsets L′ are outbound in L for P iff R−(L′) 6⊆
R−(L). Then we have the following proposition.

Proposition 2 P is a logic program and L is a loop of P . L
is an elementary loop of P iff L is an unsubdued loop ofP .

From this definition, we provide Algorithm 1 based on
positive dependency graphs for deciding whether a loop L is
an elementary loop of a logic program P .

Algorithm 1 ElementaryLoop(L, P)
1: for each atom a ∈ L:
2: G∗ := the L \ {a} induced subgraph of GP ;
3: SCC∗ := the set of SCCs of G∗;
4: for each C ∈ SCC∗:
5: if R−(C) ⊆ R−(L) then return C else
6: GC := the C \ head(R−(C) \ R−(L)) induced sub-

graph of G∗;
7: SCCC := the set of SCCs of GC ;
8: append new elements from SCCC to SCC∗;
9: return L

Intuitively, ElementaryLoop(L,P) considers sub-loops
of L one by one in a top-down process. L′ is a sub-loop of
L iff L′ is a SCC of a subgraph of the L induced subgraph
of GP . For each C of such SCCs, there are two cases: either
R−(C) ⊆ R−(L) or not. If R−(C) ⊆ R−(L), we already

find a loop C preventing L to be an elementary loop. If the
latter, then for any r ∈ R−(C) \ R−(L), head(r) must not
be in the sub-loop L′ not outbound in L, otherwise r must
be in R−(L′), a contradiction with R−(L′) ⊆ R−(L). So
we can remove head(R−(C) \ R−(L)) from the subgraph
and continue the procedure.

Note that, the algorithm removes at least one atom in the
subgraph at one time. Then, in the worst case, the process
runs n2 times where n is the number atoms in L. As the set
of SCCs of a subgraph can be computed in linear time, the
time complexity of the algorithm is O(n2).

Proposition 3 Let P be a logic program and L a loop of P .
The function ElementaryLoop(L,P) returns either L or a
set C of atoms such that C is a loop of P , C ⊂ L, and
R−(C) ⊆ R−(L) in O(n2), where n is the number of atoms
in L. ElementaryLoop(L,P) returns L iff L is an elementary
loop of P .

Proper Loops
This section shows that not all elementary loops are needed
for answer set computation. We identify a subclass proper
loops, and show that, by applying a special form of their
loop formulas, they are sufficient for selecting answer sets
from models of a logic program.

Let P be a logic program and L a loop of P , we use
RLF (L,P) to denote the implication:∧

p∈head(R−(L))

p ⊃
∨

r∈R−(L)

body(r),

if R−(L) 6= ∅, otherwise∧
p∈L

p ⊃ ⊥.

Clearly, RLF (L,P) is a special case of LF (L,P). By
RLF (L,P), we can generalize the idea of elementary loops.

Proposition 4 Let P be a logic program and L1, L2 loops
of P . If R−(L1) 6= ∅ and R−(L1) ⊆ R−(L2), then
RLF (L1, P) ⊃ RLF (L2, P).

A loop L of a logic program P is called proper if there
does not exist another loop L′ of P such that

• L′ ⊂ L and R−(L′) ⊆ R−(L), or

• R−(L′) 6= ∅ and R−(L′) ⊂ R−(L).

Theorem 5 Each of following conditions is equivalent to
each of conditions in Theorem 1:

8. S satisfies RLF (L,P) for all proper loops L of P ;
9. S satisfies DLF (L,P) for all proper loops L of P .

When loop formulas are in the form of RLF , more redun-
dant loops can be removed from elementary loops.

Proposition 5 Let P be a logic program and L a loop of P .
If L is a proper loop of P , then L is an elementary loop of P ,
but not vice versa.

1065

Example 1 (Continued) Program P1 has three proper
loops: {q}, {r, q} and {p, r, q}. {p, r} and {p} are
not proper loops as R−({p, r}) = {p← ., r ← q.},
R−({p}) = {p← ., p← r.} and R−({p, r, q}) =
{p← .}, {r} is not a proper loops as R−({r}) =
{r ← p., r ← q.} and R−({q, r}) = {r ← p.}.

An elementary loop L is also a proper loop if there
does not exist another loop L′ such that R−(L′) 6= ∅ and
R−(L′) ⊂ R−(L). Note that, L′ is not restricted to be a
subset of L. Indeed we can restrict the range of possible L′s.

Let P be a logic program and S a set of atoms, we say a
loop L is a proper loop of P under S if L ⊆ S and there
does not exist another loop L′ ⊆ S such that

• L′ ⊂ L and R−(L′) ⊆ R−(L), or

• R−(L′) 6= ∅ and R−(L′) ⊂ R−(L).

Now, we provide Algorithm 2 to decide whether a loop L
is a proper loop of a program P under a set S.

Algorithm 2 ProperLoop(L, P , S)

1: GS
P := the S induced subgraph of GP ;

2: SCC := the set of SCCs of GS
P ;

3: for each C ∈ SCC:
4: if C ⊂ L and R−(C) ⊆ R−(L) then return C
5: else if R−(C) 6= ∅ and R−(C) ⊂ R−(L) then return C
6: else if R−(C) = ∅ or R−(C) = R−(L) then
7: for each atom a ∈ C:
8: G∗ := the C \ {a} induced subgraph of GS

P ;
9: SCC∗ := the set of SCCs of G∗;

10: append new elements from SCC∗ to SCC;
11: else
12: GC := the C\head(R−(C)\R−(L)) induced subgraph

of GS
P ;

13: SCCC := the set of SCCs of GC ;
14: append new elements from SCCC to SCC;
15: return L

Proposition 6 Let P be a logic program, S a set of atoms,
and L a loop of P . ProperLoop(L,P, S) returns L or a set
C of atoms such that C ⊆ S is a loop of P and

• C ⊂ L and R−(C) ⊆ R−(L), or
• R−(C) 6= ∅ and R−(C) ⊂ R−(L),

in O(n2), where n is the number of atoms in S.
ProperLoop(L,P, S) returns L iff L is a proper loop of P
under S. Specially, ProperLoop(L,P,Atoms(P)) returns
L iff L is a proper loop of P .

A native method for computing all proper loops of a pro-
gram is to use the function ProperLoop to filter out proper
loops from every loops of the program. The method for
proper loops can be improved by the following proposition.

Proposition 7 Let P be a logic program and L a proper
loop of P such that R−(L) 6= ∅. If L′ is a loop of P such
that L′ ⊂ L and head(R−(L)) ⊆ L′, then L′ is not proper.

Then, we provide Algorithm 3 for computing all proper
loops of a program P under a set S. We denote ploop(P, S)
the set of proper loops L of P under S below.

Algorithm 3 ProperLoops(P , S)

1: Loops := ∅;
2: GS

P := the S induced subgraph of GP ;
3: SCC := the set of SCCs of GS

P ;
4: for each C ∈ SCC:
5: C∗ := ProperLoop(C,P, S);
6: if C∗ = C then
7: append C to Loops;
8: for each a ∈ head(R−(C))
9: GC := the C \ {a} induced subgraph of GS

P ;
10: SCCC := the set of SCCs of GC ;
11: append new elements from SCCC to SCC;
12: else
13: for each a ∈ C:
14: GC := the C \ {a} induced subgraph of GS

P ;
15: SCCC := the set of SCCs of GC ;
16: append new elements from SCCC to SCC;
17: return Loops

Intuitively, the function ProperLoops(P , S) considers
every sub-loops of S except loops that are excluded by
Proposition 7 in a top-down process.

Proposition 8 Let P be a logic program and S a set of
atoms. The function ProperLoops(P, S) returns the set of
proper loops of P under S (i.e. ploop(P, S)).

Lifschitz and Razborov (2006) proved that exponentially
many loop formulas may be necessary for filtering out
the program’s answer sets, so there would be an expo-
nential number of proper loops in the worst case. How-
ever, for some programs, the number of proper loops is
much smaller than that of elementary loops and the func-
tion ProperLoops(P,Atoms(P)) returns all proper loops
faster than the native procedure that computes all elemen-
tary loops.

For Hamiltonian Circuit (HC) problem1 (Niemelä 1999),
we consider graphs that represent networks consisting of
sets of components which are densely connected inside but
have only a few connections among them.

These networks are ubiquitous, such as countries con-
sisting of big cities that are connected by only a few
highways, cities consisting of populated neighborhoods that
are connected by a few “main roads”, and circuits that are
often composed of components that are highly connected
inside but have only a few connections between them.

To simplify things a bit, we model these networks by
graphs consisting of some complete subgraphs that are con-
nected by a few arcs between them. Specifically, we consider
graphs of the form M -N -K: a graph with M copies of the
complete graph with N nodes, C1, . . ., CM , and with K arcs
from Ci to Ci+1, for each 1 ≤ i ≤ M (CM+1 is defined to
be C1).

1HC problem could carry over to logic programs whose positive
dependency graphs have similar structures. Our approach focuses
on loops and loop formulas, so the experiment results are the same
for all ASP programs whose positive dependency graphs have a
similar structure. Furthermore, the structures considered in the ex-
periment occur frequently in practice.

1066

Table 1: Computing Elementary Loops and Proper Loops

Problem Elementary Loops Proper Loops
number time number time

2-5-1 69 0.13 23 0.04
2-5-2 135 0.12 64 0.06
2-6-1 211 1.95 53 0.18
2-6-2 473 5.22 192 0.75
2-6-3 598 4.45 346 1.29
2-7-1 685 24.88 115 0.91
2-7-2 1734 74.83 616 4.77
2-7-3 2883 46.56 1519 5.92
2-8-1 2399 274.69 241 4.55
2-8-2 6537 162.34 2124 15.74
2-8-3 — >10min 5628 37.68
3-5-1 95 0.03 35 0.03
3-5-2 161 0.15 76 0.08
3-6-1 268 0.29 80 0.16
3-6-2 532 1.70 219 0.54
3-7-1 — >10min 173 20.70
3-7-2 — >10min 7555 162.00
3-7-3 — >10min 44815 593.16
3-8-1 — >10min 362 224.26
3-8-2 — >10min — >10min
4-5-1 93 0.08 50 0.05
4-5-2 135 0.25 106 0.13
4-6-1 — >10min 106 43.30
4-6-2 — >10min 8364 412.12
4-7-1 — >10min — >10min

Table 1 contains the numbers and running times of ele-
mentary loops and proper loops for these HC programs.2 For
each M -N -K entry in the table, we randomly created 20
different such graphs, and the numbers and times reported in
the table refers the average numbers and times for the result-
ing 20 programs. The numbers and times under “Elementary
Loops” (resp. “Proper Loops”) refers to the numbers of all
elementary loops (resp. proper loops) and the run times (in
seconds) of the native method for elementary loops (resp.
the function ProperLoops). As can be seen, both numbers
and running times are less when looking for proper loops.

Separators for Positive Body-Head
Dependency Graphs

By considering the positive body-head dependency graph
(Linke and Sarsakov 2005) of a program, Proposition 7 can
be extended and a larger number of loops could be proved
to be not proper. Then we provide an alternative approach
for computing all proper loops. For many programs, the new
approach is more efficient than ProperLoops.

Given a logic program P , the positive body-head depen-
dency graph of P , written G∗P , is the directed graph whose
vertices are elements in the set Atoms(P) ∪ body(P), and
there are two kinds of arcs in G∗P , (a,B) and (B, a) where

• (a,B) if there is a rule r ∈ P such that a = head(r) and

2Our experiments were done on an AMD A10-5800K (3.8GHz)
CPU and 3.3GB RAM. Times are in CPU seconds as reported by
Linux “/usr/bin/time” command. For more information, please visit
http://ss.sysu.edu.cn/%7ewh/properloop.html

B = body(r),

• (B, a) if there is a rule r ∈ P such that B = body(r) and
a ∈ body+(r).

Let C be a set of atoms in P , the C induced subgraph of G∗P
is defined as the directed graph whose vertices are elements
in the set C∪{body(r) | head(r) ∈ C and body+(r)∩C 6=
∅}, and there are two kinds of arcs in the graph:

• (a,B) if there is a rule r ∈ P such that a = head(r),
B = body(r), a ∈ C, and body+(r) ∩ C 6= ∅,
• (B, a) if there is a rule r ∈ P such that B = body(r),

a ∈ body+(r), a ∈ C, and head(r) ∈ C.

Clearly, L is a loop of P iff the L induced subgraph of G∗P
is strongly connected. Figure 2 presents an example of the
positive body-head dependency graph of a program.

p1

body(rp1
)

p2

body(rp2
)

· · ·

· · ·

pn

body(rpn
)

· · ·
· · ·

qm

body(rqm)

q1

body(rq1)

q2

body(rq2)

body(r2)

body(r1)

Figure 2: A positive body-head dependency graph

Intuitively, if we can “remove” the vertex body(r1) or
body(r2) in Figure 2, then the number of loops would
be greatly reduced. For instance, let the left subgraph be
a strongly connected subgraph with n number of atoms
and the right subgraph a strongly connected subgraph with
m number of atoms, then the number of loops would be
2m+n−4+2n+2m−2. After “removing” the vertex body(r1)
or body(r2), the number of loops is reduced to 2n + 2m− 2.

Firstly, we extend the notion of proper loops. Let P be a
logic program, S a set of atoms, and R a set of rules, we say
a set C of atoms is a proper set of P under S for R, if C ⊆ S,
for each r ∈ R, body+(r) ∩C 6= ∅, and there does not exist
another set C ′ ⊆ S, for each r ∈ R, body+(r) ∩ C 6= ∅ s.t.

• C ′ ⊂ C and R−(C ′) ⊆ R−(C), or

• R−(C ′) 6= ∅ and R−(C ′) ⊂ R−(C).

Next, we use pset(P, S,R) to denote the set of proper sets
of P under S for R. Note that, we can obtain an algorithm
for ProperSets(P, S,R) from ProperLoops(P, S) by:

1. instead of considering each SCCs in a subgraph but con-
sidering each possible subsets;

2. only appending a proper set C if for each r ∈ R,
body+(r) ∩ C 6= ∅.
Let S1 and S2 be sets of atoms of P such that S1 ∩S2=∅,

we define edge(S1, S2) = {r | r ∈ P, head(r) ∈ S1,
and body+(r) ∩ S2 6= ∅}.

Proposition 9 Let P be a logic program and S1, S2 sets of
atoms of P such that S1 ∩ S2 = ∅. If L ⊆ S1 ∪ S2 is a loop
of P , R−(L) 6= ∅ such that

1067

• L ∩ S1 6= ∅ and L ∩ S1 is not a proper set of P under S1

for edge(L ∩ S2, L ∩ S1), or
• L ∩ S2 6= ∅ and L ∩ S2 is not a proper set of P under S2

for edge(L ∩ S1, L ∩ S2),
then there exists a set C ⊆ S1 ∪ S2 such that
• C ∩ S1 6= ∅ implies C ∩ S1 is a proper set of P under S1

for edge(L ∩ S2, L ∩ S1),
• C ∩ S2 6= ∅ implies C ∩ S2 is a proper set of P under S2

for edge(L ∩ S1, L ∩ S2), and
• RLF (C,P) ⊃ RLF (L,P).

Due to the space limitation, we omit the proof here. From
Proposition 9, we get the following theorem.
Theorem 6 Let P be a logic program, S1 and S2 sets of
atoms in P with S1 ∩ S2 = ∅. If L is a loop of P such that
L ⊆ S1 ∪ S2, then∧

L1∈ploop(P,S1)

RLF (L1, P) ∧
∧

L2∈ploop(P,S2)

RLF (L2, P)

∧
∧

R1 6=∅, R1⊆edge(S2,S1)
R2 6=∅, R2⊆edge(S1,S2)

C1∈pset(S1,P,R1)
C2∈pset(S2,P,R2)

RLF (C1 ∪ C2, P) ⊃ RLF (L,P)

Let P be a logic program, L a loop of P , we call a set R of
rules a separator of P for L, if there exists two sets S1 and
S2 of atoms such that S1 ∩ S2 = ∅, S1 ∪ S2 = L and R =
edge(S1, S2) ∪ edge(S2, S1). A separator R of P for L is
minimal, if there does not exist another separator R′ of P for
L such that |R′| < |R|. In fact, a minimal separator of P for
L can be computed by the function MinimalSeparator(P,L)
in Algorithm 4 in a polynomial time.

Algorithm 4 MinimalSeparator(P,L)

1: GS
P := the S induced subgraph of G∗P ;

2: G1 := the resulting graph of GS
P by eliminating vertexes in

Atoms(P);
3: G2 := the resulting graph by changing a directed graph G1 to

an undirected graph;
4: G3 := the resulting graph of G2 by evaluating each edge with a

infinity number and replacing each vertex by two new vertexes
with an edge valued with 1 between both vertexes;

5: Cut := a minimum cut of G3 computed by the Stoer-Wagner
algorithm;

6: R := the set of corresponding rules for Cut;
7: return R

Now we provide an alternative approach by the func-
tion ProperLoops∗(P,L) in Algorithm 5 for identifying all
proper loops of a program.
Proposition 10 Let P be a logic program and L a loop
of P . The function ProperLoops∗(P,L) returns the set of
proper loops of P under L.

Given a loop L of P , when the size of the
minimal separator is small, it is quite possible that
the function ProperLoops∗(P,L) is more efficient than
ProperLoops(P,L). For instance, let |L| = n, L is par-
ticipated into S1 and S2, |S1| = m, |edge(S2, S1)| =

Algorithm 5 ProperLoops∗(P,L)

1: Loops := ∅;
2: compute a minimal separator for L which participates L into

S1 and S2;
3: append proper loops in ProperLoops(P, S1) and

ProperLoops(P, S2) to Loops;
4: Pset1 := ∅ and Pset2 := ∅;
5: for each nonempty subset R1 ∈ edge(S2, S1):
6: append new loops in ProperSets(P, S1, R1) to Pset1;
7: for each nonempty subset R2 ∈ edge(S1, S2):
8: append new loops in ProperSets(P, S2, R2) to Pset2;
9: for each pair (C1, C2) in Pset1 × Pset2:

10: append the set C1 ∪ C2 to Loops;
11: return Loops

k1, for each nonempty subset R1 ⊆ edge(S2, S1),
|ProperSets(P, S1, R1)| = C1, |edge(S1, S2)| = k2,
and for each nonempty subset R2 ⊆ edge(S1, S2),
|ProperSets(P, S2, R2)| = C2, then the number of loops
that need to be considered in ProperLoops(P,L) is 2n

and the number of loops that need to be considered in
ProperLoops∗(P,L) is 2m+2n−m+k1k2C1C2. In the worst
case, C1 = 2m and C2 = 2n−m, then ProperLoops∗(P,L)
would be less efficient. However, when k1, k2, C1, and C2

are small, the number would be much smaller than 2n.
Table 2 contains the numbers of checked loops and

running times of ProperLoops(P,Atoms(P)) and
ProperLoops∗(P,Atoms(P)) for corresponding HC
programs. As can be seen, both numbers and running times
are less for the function ProperLoops∗(P,Atoms(P)). Note
that, for some programs, the number of considered loops for
ProperLoops∗(P,Atoms(P)) is even less than the number
of proper loops, as a large number of these proper loops are
constructed from two proper sets identified before.

Table 2: Comparing ProperLoops and ProperLoops∗

Problem ProperLoops ProperLoops∗

number time number time
2-6-2 439 0.42 68 0.10
2-6-3 559 0.73 76 0.14
2-7-1 657 0.56 115 0.15
2-7-2 1665 2.73 146 0.44
2-7-3 2790 14.63 162 1.15
2-8-1 2343 2.71 241 0.51
2-8-2 6389 16.90 304 1.93
2-9-1 8479 12.50 495 1.59
2-9-2 24532 220.10 622 13.83
2-10-1 32625 61.70 1005 4.78

Conclusion and Future Work
As a further refinement of the Lin-Zhao theorem, we have
characterized a subclass proper loops of elementary loops.
RLF loop formulas of proper loops allow us to disregard re-
dundant loop formulas of loops and some elementary loops.
As a result, a polynomial time algorithm is proposed to rec-
ognizing a proper loop and an algorithm is proposed to iden-
tifying all proper loops of a program using the structure of

1068

the positive body-head dependency graph. Experimental re-
sults show that, for programs whose dependency graphs con-
sisting of sets of components with densely connected inside
and sparsely connected outside, the algorithms could safely
ignore a large number of loops and improve its performance.

We think the contributions open issues for future work:
• The notion of proper loops to normal logic programs

could be extend to disjunctive logic programs, general
logic programs, and propositional circumscription.

• We have shown that for certain programs identifying
all proper loops is more efficient than identifying all
elementary loops. Proper loops can be used in ASP
solvers such as ASSAT, cmodels, and clasp directly to
improve the efficiency.

• We have proven that, for programs whose dependency
graphs consisting of sets of components that are densely
connected inside and sparsely connected outside, after
adding a small number of loop formulas of corresponding
proper sets, loop formulas of loops assembled from dif-
ferent components could be ignored for answer set com-
putation, which could benefit answer set computation.

Acknowledgments
We are grateful to Fangzhen Lin for many helpful and in-
formative discussions. We would also like to thank Xiaop-
ing Chen and his research group for their useful discus-
sions. We are also grateful to Yongmei Liu for her useful
suggestions. Jianmin Ji’ research was partially supported by
the Fundamental Research Funds for the Central Universi-
ties under grant WK0110000035, the National Natural Sci-
ence Foundation of China under grant 61175057, as well as
the USTC Key Direction Project and the USTC 985 Project.
Hai Wan thanks Research Fund for the Doctoral Program of
Higher Education of China (No. 20110171120041), Natural
Science Foundation of Guangdong Province of China (No.
S2012010009836), and Guangzhou Science and Technology
Project (No. 2013J4100058) for the support of this research.

References
Chen, X.; Ji, J.; and Lin, F. 2013. Computing loops with
at most one external support rule. ACM Transactions on
Computational Logic (TOCL) 14(1):3–40.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2006. A generaliza-
tion of the Lin-Zhao theorem. Annals of Mathematics and
Artificial Intelligence 47(1-2):79–101.
Gebser, M., and Schaub, T. 2005. Loops: relevant or
redundant? In Proceedings of 8th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR-05), 53–65.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI-07), 386–392.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proceedings of the
5th International Conference on Logic Programming (ICLP-
88), 1070–1080.

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. Answer
set programming based on propositional satisfiability. Jour-
nal of Automated Reasoning 36(4):345–377.
Lee, J., and Lifschitz, V. 2003. Loop formulas for disjunc-
tive logic programs. In Proceedings of the 19th International
Conference on Logic Programming (ICLP-03), 451–465.
Lee, J., and Lin, F. 2006. Loop formulas for circumscription.
Artificial Intelligence 170(2):160–185.
Lee, J., and Meng, Y. 2008. On loop formulas with vari-
ables. In Proceedings of the 11th International Conference
on Knowledge Representation and Reasoning (KR-08), 444–
453.
Lee, J. 2005. A model-theoretic counterpart of loop formu-
las. In Proceedings of the 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI-05), volume 5, 503–
508.
Lifschitz, V., and Razborov, A. 2006. Why are there so many
loop formulas? ACM Transactions on Computational Logic
7(2):261–268.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets
of a logic program by SAT solvers. Artificial Intelligence
157(1-2):115–137.
Linke, T., and Sarsakov, V. 2005. Suitable graphs for an-
swer set programming. In Logic for Programming, Artificial
Intelligence, and Reasoning, 154–168.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3):241–273.

1069

