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Abstract

The area of cognitive robotics is often subject to the criti-
cism that the proposals investigated in the literature are too far
removed from the kind of continuous uncertainty and noise
seen in actual real-world robotics. This paper proposes a new
language and an implemented system, called prego, based on
the situation calculus, that is able to reason effectively about
degrees of belief against noisy sensors and effectors in con-
tinuous domains. It embodies the representational richness of
conventional logic-based action languages, such as context-
sensitive successor state axioms, but is still shown to be effi-
cient using a number of empirical evaluations. We believe that
prego is a powerful framework for exploring real-time reac-
tivity and an interesting bridge between logic and probability
for cognitive robotics applications.

Introduction
Cognitive robotics, as envisioned in (Levesque and Reiter
1998), is a high-level control paradigm that attempts to ap-
ply knowledge representation (KR) technologies to the rea-
soning problems faced by an autonomous agent/robot in
an incompletely known dynamic world. This is a challeng-
ing problem; at its core, it requires a clear understanding
of the relationships among the beliefs, perception, and ac-
tions of the agent. To that end, sophisticated knowledge-
based proposals for reasoning about action and change
have been investigated in the literature, as demonstrated in
(De Giacomo, Levesque, and Sardina 2001; Reiter 2001a;
Son and Baral 2001; Herzig, Lang, and Marquis 2003),
among many others. One major criticism leveled at this
line of work, however, is that the theory seems far re-
moved from the kind of continuous uncertainty and noise
seen in robotic applications when real sensors and effectors
are deployed. The interpreters are often propositional or re-
sort to the closed-world assumption, and at best, only al-
low limited forms of incomplete information (Reiter 2001a;
2001b). Rather surprisingly, very little attention has been de-
voted to the integration of action languages with probabil-
ity densities or degrees of belief. As far as we know, there
has yet to emerge a simple specification language that, (a)
has the desirable features of popular action formalisms such
as context-dependent successor state axioms (Reiter 2001a),
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(b) allows for expressing discrete and continuous noise in
effectors and sensors, and most significantly, (c) is equipped
with an effective computational methodology for handling
projection (Reiter 2001a), the reasoning problem at the heart
of planning and agent programming. For real-time reactivity,
it is also desirable that the reasoning that is needed (under
suitable representational stipulations) be as practical as com-
mon filtering techniques (Thrun, Burgard, and Fox 2005).

This paper proposes a system called prego as a first step
in this direction. Informally, the language of prego is built
from the following components:
• symbols for the fluents over which one can define a (con-

tinuous or discrete) probability distribution;
• action symbols for effectors and sensors, possibly noisy;
• specifications for the preconditions of actions, successor

state of fluents, and the results of sensing operations.
In this paper, we study the formal foundations of prego, as
well as a computational methodology for projecting belief,
that is, for computing degrees of belief after any sequence
of actions and sensing operations.1 We show that the lan-
guage of prego can be interpreted as a situation-suppressed
dialect of the situation calculus (Reiter 2001a), and that the
embodied projection mechanism is a special form of goal re-
gression. From a logical point of view, prego’s handling of
continuity and uncertainty goes beyond the capabilities of
popular interpreters for KR action languages. From a prob-
ability point of view, prego allows successor state and sens-
ing axioms that can be arbitrarily complex (Reiter 2001a),
making it not only significantly more expressive than prob-
abilistic formalisms (Boyen and Koller 1998), but also cur-
rent probabilistic planning formalisms, e.g. (Sanner 2011).
To the best of our knowledge, a development of this kind has
not been considered in this generality before. prego is fully
implemented, and we also present empirical evaluations of
its behavior on non-trivial projection tasks.

We structure the paper as follows. We first introduce
prego and discuss some very simple belief change exam-
ples. We then introduce the background logical language of
the situation calculus and study prego’s techniques. Then,
evaluations, related work and conclusions are presented.

1For simplicity, only projection is considered for the language.
High-level control structures (Levesque et al. 1997), such as recur-
sion and loops, is left for the future.
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PREGO
The prego language is a simple representation language with
a LISP-like syntax.2 A domain in prego is modeled as a ba-
sic action theory (or BAT) made up of the following five
expressions (which we will illustrate immediately below):3

1. (define-fluents fluent fluent . . .)
A list of all the fluents to be used in the BAT. These can be
thought of as probabilistic variables, whose values may or
may not be known.

2. (define-ini-p-expr expr)
Here, expr is an expression mentioning the fluents from
(1) that should evaluate to a number between 0.0 and 1.0.
It indicates the probability density given to any initial state
in terms of the values of the fluents in that state.

3. (define-ss-exprs fluent act expr act expr . . .)
This determines the successor-state expressions for the
given fluent fluent. The act parameters are of the form
(name var var . . .) where the vars are the arguments of
the action and are used in the corresponding expr. The
idea is that if the action takes place, the new value of the
fluent is the value of expr. If an action does not appear on
the list, the fluent is unchanged by the action.

4. (define-l-exprs act expr act expr . . .)
The format of act and expr are as in (3). For each act, the
expr is a numerical expression like in (2) and determines
the likelihood of that action. If an action does not appear
on the list, it is assumed to have a likelihood of 1.0.

5. (define-alts act altfn act altfn . . .)
The format of the act is as in (3) and (4). The altfn is a
function of one argument that produces noisy versions of
act for that argument. If an action does not appear on the
list, then it is exact, that is, without a noisy version.

To illustrate these, let us consider the simple scenario
depicted in Figure 1, where a robot is moving in a 1-
dimensional world towards a wall. Its distance to the wall
is given by a fluent h. Suppose:
• The robot initially does not know how far it is from the

wall, but that the distance satisfies 2 ≤ h ≤ 12. In other
words, the robot believes that the initial value of h is
drawn from a (continuous) uniform distribution on [2,12].

• The robot has a distance sensor aimed at the wall. The
sensor is noisy in that the value z read on the sensor dif-
fers from the actual value of h, but in a reasonable way.
We assume that the likelihood of getting z is given by a
normal distribution whose mean is the true value h.

• The robot has an effector for moving exactly z units to-
wards or away from the wall, but this motion stops when
the wall is reached.

A BAT for this domain is shown in Figure 2. We have a sin-
gle fluent h and two actions: a sensing action sonar, and a
physical action fwd. Note that we can use racket arithmetic

2The system is realized in the racket dialect of the scheme fam-
ily (racket-lang.org). Note that the technical development does
not hinge on any feature unique to this programming language.

3For space reasons, we omit action preconditions in this paper.

h

Figure 1: Robot moving towards a wall.

(define-fluents h)

(define-ini-p-expr ‘(UNIFORM h 2 12))

(define-ss-exprs h
(fwd z) ‘(max 0 (- h ,z)))

(define-l-exprs
(sonar z) ‘(GAUSSIAN ,z h 4.0))

Figure 2: prego’s input for the simple robot domain.

(e.g. max and -) and any other function that can be defined in
racket (e.g. the predefined UNIFORM and GAUSSIAN). Note
also that the expr terms are quoted expressions where fluents
appear as free variables. (We use backquote and comma to
embed the action argument z in the expression.)

Once the fluents are defined (here only h), the designer
provides the initial joint distribution over the fluents using
any mathematical function (here, a uniform distribution over
one variable).4 The successor state axiom says that the value
of h after a fwd action is obtained by subtracting z from
the previous value or 0, whichever is higher. The likelihood
expression says that the sonar readings are expected to be
centered on the value of h with a standard deviation of 4.0.
Since the physical action fwd is assumed to be noise-free,
define-alts is not used in this BAT.

Let us now turn to a noisy version of fwd. The idea here is
that the agent might attempt a move by 3 units but end up ac-
tually moving 3.094 units. Unlike sensors, where the reading
is nondeterministic, observable, but does not affect fluents,
the outcome of noisy actions is nondeterministic, unobserv-
able and changes fluent properties.

To model this, we imagine a new action symbol nfwd
with two arguments: the first captures the intended motion
amount, and the second captures the actual motion amount.
Then, the ss-exprs block for the fluent h would include:

(nfwd x y) ‘(max 0 (- h ,y))

That is, the true value of h changes according to the second
argument, not the first. Since the robot does not know the
actual outcome, all it knows is that (nfwd 3 z) occurred
for some value of z, which is captured using define-alts:
(define-alts

(nfwd x y) (lambda (z) ‘(nfwd ,x ,z)))

Finally, to indicate that this noisy move has (say) Gaussian
noise, we would include the following in the l-exprs block:

(nfwd x y) ‘(GAUSSIAN ,y ,x 1.0)

In other words, the actual amount moved is normally dis-
tributed around the intended value with a variance of 1.

4For simplicity, full joint distributions are assumed; when addi-
tional structure is available in the form of conditional independen-
cies, then belief networks, among others, can be used (Pearl 1988).
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Using PREGO
prego can be used to reason about what is believed after any
sequence of physical or sensing actions. We use

(eval-bel expr actions)

where expr is any Boolean expression (with the fluents as
free variables) and actions is a list of the actions that oc-
curred. For example, after moving 4 units towards the wall,
the robot believes it is as likely as not to be within 3 units:
> (eval-bel (< h 3) ((fwd 4)))
0.5

Note that prego is handling a mixed distribution here. After
the action, the possibility that h = 0 must be accorded a
weight of .2 (i.e. from all points where h ∈ [2, 4] initially),
while points where h ∈ (0, 8] retain a density of .1.

Likewise, suppose we are interested in the agent’s beliefs
after sensing the value 5 on its sonar. Clearly, its beliefs
should sharpen around 5, and if the robot obtained a sec-
ond reading of 5.12, its belief would sharpen further. If we
were to plot prego’s computed beliefs for the fluent h after
the sequence ((sonar 5) (sonar 5.12)), we would ob-
tain Figure 3. In the following sections, we justify these re-
sults and also discuss examples involving the noisy effector.

0 2 4 6 8 10 12 14
 

 

 

 

 

 

 

Figure 3: Beliefs about h initially (solid red), after sensing 5 (ma-
genta markers) and after a second sensor reading (blue squares).

Before ending this section, note that, as mentioned, the
language allows arbitrary context-dependent successor-state
and likelihood specifications (Reiter 2001a). For example,
imagine a binary fluent wet which says whether the floor is
wet or not. Assume that, initially, it is very likely to be wet:
(define-ini-p-expr

’(* (UNIFORM h 2 12)
(DISCRETE wet #t .8 #f .2)))

Then to model a noisy move whose reliability depends on
whether or not the floor is wet, we might have:
(define-l-exprs

(nfwd x y) ‘(GAUSSIAN ,y ,x (if wet 4.0 1.0)))

which says that the actual motion is determined by a Gaus-
sian distribution with variance 4 when the floor is wet but
with a variance 1 when the floor is dry. What makes the lan-
guage rich is that there can be physical actions (e.g. mop-
ping up and spilling coffee) that affect this context, as well
as sensing actions (e.g. observing a reflection on the floor)
that sharpen the agent’s belief about the context.

Logical Foundations
The prego language can be interpreted as a dialect of the sit-
uation calculus, extended to reason about degrees of belief.
We will not go over that language here, except to note:
• it is many-sorted, with sorts for physical actions, sensing

actions, situations, and objects (for everything else);
• a set of initial situations correspond to the ways the world

might be initially — a constant S0 denotes the actual one;
• there is a distinguished binary symbol do such that

do(a1 · · · an, s) denotes the situation resulting from per-
forming actions a1 through an at situation s.

Fluents capture changing properties about the world. Here
we assume that f1, . . . , fk are all the fluents in the language,5
and that these take no arguments other than a single situa-
tion term. Note that this is not a propositional theory in that
we allow the values of these fluents to range over any set,
including the reals R.

We following two notational conventions. First, we often
suppress the situation argument in a logical expression φ or
use a distinguished variable now, and we let φ[s] denote the
formula with that variable replaced by s. Second, we use
conditional if-then-else expressions in formulas throughout,
possibly mentioning quantifiers. We take some liberties with
the scope of variables in that f = If ∃x. φ Then t1 Else t2 is
to mean ∃x [φ ∧ f = t1] ∨ [( f = t2) ∧ ¬∃x. φ].

Basic Action Theory
As hinted in prego’s presentation, a domain theoryD is for-
mulated as a BAT (Reiter 2001a) which includes sentences
D0 describing what is true initially, successor state axioms
(SSA) of the form ∀a, s. f (do(a, s)) = SSA f (a)[s], and pre-
condition axioms. For example, the effect of the fwd action,
from the robot domain above, would be expressed as:6

h(do(a, s)) = ( If ∃z(a = fwd(z))
Then max(0, h − z) Else h )[s]

so as to incorporate Reiter’s solution to the frame problem.
For the task of projection, we are interested in the entail-

ments of D. Entailment is wrt standard Tarksi models, but
we assume that the obvious interpretations are assigned to
arithmetic symbols, =, and real constants, such as π and e.

Noise and Degrees of Belief
Our account of probabilistic uncertainty is based on (Belle
and Levesque 2013a; Bacchus, Halpern, and Levesque
1999), but augmented here to also deal with continuous
noisy effectors. These extensions to the situation calculus
still benefit from Reiter’s solution to the frame problem.
They also generalize the Scherl and Levesque (2003) pro-
posal, where actions and sensors are noise-free and beliefs
are strictly categorical, that is, non-numeric.

5Non-logical symbols, such as fluent and action symbols, in the
situation calculus are italicized, e.g. fluent h in prego is h in the
language of the situation calculus.

6Free variables are implicitly assumed to be quantified from the
outside. Note that SSAs are formulated here using conditional ex-
pressions, but they macro expand to Reiter’s formulation.
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Mirroring prego’s presentation, our account involves 3
distinguished symbols: l, alt and p. D would now contain
l-axioms of the form l(α(~x), s) = Lα(~x)[s], and alt-axioms
of the form alt(a, u) = a′. For example, nfwd is modeled by
including the appropriate SSA and the following inD:7

l(nfwd(x, y), s) = N(y; x, 1)[s]. (1)

alt(nfwd(x, y), z) = nfwd(x, z). (2)
Finally, the distinguished symbol p can be seen as a numeric
variant of the accessibility relation in epistemic logics. Intu-
itively, p(s′, s) is the density that the agent attributes to s′
when at s (Belle and Levesque 2013a). As part of D0, the
modeler would provide the probability distribution on the
agent’s initial worlds, using a sentence of the form

p(s, S0) = INIT( f1, . . . , fk)[s].

For example,

p(s, S0) = U(h; 2, 12)[s] (3)

embodies the initial uncertainty of our robot from Figure 1.
Given such axioms in D, the degree of belief in any

situation-suppressed φ in s is defined using the abbreviation:

Bel(φ, s) �
1
γ

∫
f1,..., fk

∫
u1,...,un

Density(φ, s∗)

where the normalization factor γ is the numerator but with
φ replaced by true, and if s = do(a1 · · · an, S0) then s∗ =
do(alt(a1, u1) · · · alt(an, un), S0).

The idea behind Density is simple. Starting from s, the
density of do(a1 · · · an, s) is the p-value of s times the like-
lihoods of each ai. By integrating over ~u, alt(ai, ui) is taken
into account, and so, all possible successors resulting from
noisy actions are also considered.8 For space reasons, we
omit the definition; see (Belle and Levesque 2013a). We
simply note that the belief change mechanism subsumes
Bayesian conditioning (Pearl 1988), as used in the robotics
literature (Thrun, Burgard, and Fox 2005).

Computing Projection
The projection mechanism seen in eval-bel is built on a
special form of goal regression. In other words, we begin by
finding a situation-suppressed expression r such that

D |= Bel(φ, do(a1 · · · an, S0)) = r[S0].

Because only D0 is needed to calculate r[S0], this reduces
the calculation of belief after actions and sensing to a calcu-
lation in the initial situation in terms of INIT.

Such a regression operator is formulated in (Belle and
Levesque 2013b). They show how Bel-expressions about
the future reduce to Density-expressions about S0. However,
their proposal does not deal with noisy effectors. Moreover,

7We use N and U as abbreviations for mathematical formulas
defining a Gaussian and uniform density respectively.

8For discrete fluents and discrete noisy effectors, one would re-
place

∫
f

and
∫

u
by

∑
f and

∑
u respectively. Let us also remark that

both summations and integrals can be defined as terms in the logi-
cal language, as shown in (Belle and Levesque 2013a).

their Density-expressions expand into formulas that quan-
tify over initial situations. Consequently, considerable logi-
cal machinery is needed to further simplify these sentences
to a purely numerical formula.

What we propose here is a new treatment that not only
generalizes to both noisy acting and sensing, but one that
involves only mathematical (as opposed to logical) expres-
sions. Roughly, this is achieved by processing the logical
terms in the goal in a modular fashion wrt the situation-
suppressed RHS (also interpreted as logical terms) of the
axioms in D. The result is a Boolean expression (about S0),
where fluents are free variables, that can be evaluated us-
ing any software with numerical integration capabilities. In
other words, no logical consequence finding is necessary.
Definition 1: Given a BATD, a situation-suppressed expres-
sion e, and an action sequence σ, we define R[e, σ] as a
situation-suppressed formula e′ as follows:

1. If e is a fluent:
• if σ = ε (is empty), then e′ = e;
• if σ = σ′ · a then e′ = R(SSAe(a), σ′).

2. If e is a number, constant or variable, then e′ = e.
3. If e is Bel(φ, now) then

e′ =
1
γ

∫
~f

INIT × G[φ, σ]

where G is an operator for obtaining a (mathematical) ex-
pression from the belief argument φ, defined below.

4. Else e is (e1 ◦ e2 ◦ . . . ◦ en) and
e′ = (R[e1, σ] ◦ R[e2, σ] ◦ . . . ◦ R[en, σ])

where ◦ is any mathematical operator over expressions,
such as ¬, ∧, =, +, If, N , etc.

As in (Reiter 2001a), fluents are simplified one action at a
time using appropriately instantiated SSAs. The main nov-
elty here is how Bel is regressed using INIT, the RHS of
the p-axiom inD0, with the argument φ handled separately,
and how R works over arbitrary mathematical functions
in a modular manner; e.g. R[N(t1; t2, t3), σ] would give us
N(R[t1, σ];R[t2, σ],R[t3, σ]). Now, G:
Definition 2: LetD and σ be as above. Given any situation-
suppressed fluent formula φ, we define G[φ, σ] to be a
situation-suppressed expression e as follows:

1. If σ = ε, then e = If φ Then 1 Else 0.
2. Else, σ = σ′ · α(t); let α(t′) = alt(α(t), u) and

e =

∫
u
R[Lα(t′), σ′] × G[R[φ, α(t′)], σ′].

Essentially, G integrates over all possible outcomes for a
noisy action using alt. The likelihood of these outcomes is
determined using Lα, the RHS of the l-axioms.

For our main theorem, R is shown to have this property:
Theorem 3: Let D and σ be as above, and let e be any
situation-suppressed expression. Then

D |= e[do(σ, S0)] = (R[e, σ])[S0].
When e is a belief formula, this allows us to reduce the belief
calculation to the initial situation, as desired:
Corollary 4: LetD, φ and σ be as above. Then

D |= Bel(φ, do(σ, S0)) = (R[Bel(φ, now), σ])[S0].
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From Specification to PREGO
R is a reduction operator that takes as input any Boolean ex-
pression (where fluents are free variables) and outputs a new
one, leading to a surprisingly straightforward implementa-
tion that exactly follows Definitions 1 and 2. We demon-
strate this using a BAT. Let D include the situation calculus
counterparts for our robot domain, i.e. (1), (2), (3) and:

l(sonar(z), s) = N(z; h, 4)[s] (4)

h(do(a, s)) = ( If ∃x, y (a = nfwd(x, y))
Then max(0, h − y) Else h )[s] (5)

Assume now that the robot senses 5 initially on the sonar,
and then it attempts a noisy move of 2 units away from the
wall (by providing a negative argument to nfwd). In reality,
assume a move of 2.1 units occurs. (As we shall see, the
second argument of nfwd determines the change to the h flu-
ent, but does not affect beliefs about h, and so it can be any
arbitrary number.) Suppose we are further interested in the
robot’s beliefs about φ = (h ≤ 7). R works as follows:

R[Bel(φ, now), do(sonar(5) · nfwd(−2,−2.1), S0)]

=
1
γ

∫
h
U(h; 2, 12) × G[φ, sonar(5) · nfwd(−2,−2.1)]

=
1
γ

∫
h
U(h; 2, 12) ×

∫
u

(
R[Lnfwd(−2, u), sonar(5)] ×
G[R[φ, nfwd(−2, u)], sonar(5)]

)
=

1
γ

∫
h
U(h; 2, 12) ×

∫
u
N(u;−2, 1) × G[ψ, sonar(5)]

=
1
γ

∫
h
U(h; 2, 12) ×

∫
u
N(u;−2, 1) × N(5; h, 4) × G[ψ, ε]

where ψ = (R[φ, nfwd(−2, u)]) = (max(0, h − u) ≤ 7), and
G[ψ, ε] = If ψ Then 1 Else 0.

In the prego system, the supporting regression can be ex-
amined using a second function, regr-bel, as follows:
> (regr-bel (<= h 7) ((sonar 5) (nfwd -2 -2.1)))
’(/
(INTEGRATE (h u)
(* (UNIFORM h 2 12) (GAUSSIAN u -2 1.0)
(GAUSSIAN 5 h 4.0)
(if (<= (max 0 (- h u)) 7) 1.0 0.0)))

(INTEGRATE (h w)
(* (UNIFORM h 2 12) (GAUSSIAN w -2 1.0)
(GAUSSIAN 5 h 4.0))))

The answer is a quotient of two integrals (or summations in
the discrete case), where the denominator is the normaliza-
tion factor. The integrand of the numerator is a product of
four terms: the first coming from INIT, the next two com-
ing from the noisy acting and sensing, and the final due to
the regression of the argument of Bel. What eval-bel then
does is to evaluate these integrals numerically using Monte
Carlo sampling (Murphy 2012):9

> (eval-bel (<= h 7) ((sonar 5) (nfwd -2 -2.1)))
0.47595449413426844

9For standard distributions such asN andU, points can be gen-
erated for f1, . . . , fk (i.e. the fluents) and u1, . . . , un (i.e. the new in-
tegration variables introduced for noisy actions) using INIT and the
l-axioms respectively. These points are then tested for the regres-
sion of the argument to Bel (e.g. G[ψ, ε] above).

Evaluations
We consider the empirical behavior of prego in this section,
where we measure the CPU time in milliseconds (ms) on
non-trivial projection tasks, which is then contrasted with
classical regression in a manner explained shortly. For the
experimental setup, we imagine a planner to have generated
a number of plans of increasing length. For our purpose,
these plans are randomly generated action sequences, pos-
sibly involving combinations of noisy and noise-free actions
and sensors, and thus, are representative of the plan search
space. All experiments were run wrt the simple robot do-
main,10 on Mac OS X 10.8 using a system with a 2.4 GHz
Intel Core 2 Duo processor, 4 GB RAM, and racket v5.3.6.

On Regression We first study prego’s query reduction
alone, that is, the CPU time for regr-bel over plans with
purely noisy actions. The average times, over 50 trials, are
reported in the table below: we find that regression is very
effective, taking less than 6700 ms for 106 noisy actions.

Plan length 20 80 500 5000 104 106

Time (ms) 0 1 3 31 64 6680

On Noise Next, we consider calculating degrees of beliefs
using eval-bel: (Q1) plans with purely noisy acting; (Q2)
plans with interleaved noisy acting and sensing; (Q3) plans
with purely noise-free actions. Average times are shown in
Figure 4. Surprisingly, we find Q2 > Q1 > Q3. Note for a
plan of length n, for Q3, we integrate over just one vari-
able (the fluent h), for Q1 we integrate over n + 1 variables
since each noisy action introduces a new integration variable
(e.g. 100 integrals for 99 noisy actions), and for Q2 we inte-
grate over n/2 + 1 variables since sensing does not introduce
a new variable, but rather a new term in the expression being
integrated (see regr-bel above). So the runtimes reflect the
fact that the integrand is much more complex in Q2.

On Determinization In discrete domains, beliefs can also
be calculated using classical regression (Reiter 2001a), by
means of the following determinizations: (D1) reason about
the initial uncertainty by regressing plans wrt each of the
possible initial states, and (D2) reason about noisy actions
in plans by regressing wrt all possible outcomes. We are
now interested in demonstrating that prego’s belief-based
methodology outperforms classical regression used for this
purpose. To maximize objectivity, classical regression is
evaluated using prego itself as given by Definition 1’s item
1, 2 and 4, which then corresponds to Reiter’s (2001a).

In continuous domains, of course, one further needs a-
priori discretizations. For D2, we crudely discretize the
normally-distributed nfwd as a discrete noisy action with 3
possible outcomes. We will further discretize the initial be-
lief that h is uniformly distributed on [2,12] in two ways: di-
visions of .5 units thereby leading to 20 possible initial states
(D1/20), and divisions of .1 units thereby leading to 100 pos-
sible initial states (D1/100). The plots are provided in Fig-

10Analogous experiments with similar developments have been
performed on real-world planning domains (Meuleau et al. 2009)
and context-dependent specifications, which are left for a longer
version of the paper.
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Figure 4: Q1 (red), Q2 (dashed blue), Q3 (magenta with markers).
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Figure 5: Q1 (solid red), Q3 (solid red with squares), D1/20 over
noise-free plans (dashed blue with circles), D2+D1/20 over noisy
plans (undecorated dashed blue), D1/100 over noise-free plans
(dotted magenta with triangle markers), and D2+D1/100 over noisy
plans (dotted magenta with diamond markers).

ure 5: Q3 and D1/20 are comparable, but D1/100 is more
expensive than Q1; that is, classical regression with D1/100
over noise-free plans is more intensive than continuous be-
lief regression over noisy actions. Finally, when consider-
ing even a 3-outcome nfwd discretization, we find that Q1
and D2+D1/100 are far apart: regressing beliefs over a plan
length of 96 noisy actions takes 472 ms vs. classical regres-
sion with D1/100 and 10 noisy actions needs ≈ 3 × 106 ms.

Related Work
The prego framework is based on the situation calcu-
lus. While this language is quite expressive, popular inter-
preters either make the closed-world assumption, or only al-
low certain kinds of disjunctive knowledge (Reiter 2001a;
Finzi, Pirri, and Reiter 2000; Fan et al. 2012). In other
words: no degrees of belief. The notable exception to this
is the MDP-inspired dtgolog and related proposals (Reiter
2001a). Although a full comparison is difficult since dt-
golog implements a particular planning methodology while
prego is just a specification language, there are significant
differences: dtgolog is for fully observable domains and
only supports discrete probabilities. There has been recent

work on POMDP extensions (Sanner and Kersting 2010;
Zamani et al. 2012). However, they assume discrete noise
in effectors, and make other strong structural assumptions,
such as context-free (strips-style) actions. In our view,
context-dependent SSAs are one of the reasons to consider
using a language like the situation calculus in the first place.

While the situation calculus has received a lot of atten-
tion, there are, of course, other action languages; e.g. see
(Thielscher 2001; Van Benthem, Gerbrandy, and Kooi 2009;
Iocchi et al. 2009) for treatments on probabilities in other
formalisms. They are, however, limited to discrete proba-
bilities. Thus, we differ from these and many others (Poole
1998; Mateus et al. 2001; Grosskreutz and Lakemeyer
2003b; 2003a) in being able to address continuity in a gen-
eral way, except for (Belle and Levesque 2013a) that we
build on. See (Bacchus, Halpern, and Levesque 1999; Belle
and Levesque 2013a) for more discussions. In addition,
prego is seen to be more expressive than current probabilis-
tic planning languages (Kushmerick, Hanks, and Weld 1995;
Younes and Littman 2004; Sanner 2011). Other continuous
models for planning, such as (Meuleau et al. 2009), are pro-
cedural rather than declarative, and do not support contex-
tual SSAs. As argued in (Bacchus, Halpern, and Levesque
1999), the same representational limitations also apply to
most probabilistic formalisms, such as Kalman Filters and
Dynamic Bayesian Networks (Boyen and Koller 1998).11

Finally, recent work on relational probabilistic languages
(Richardson and Domingos 2006; Milch et al. 2005) and
probabilistic programming (Goodman et al. 2008) feature
sophisticated stochastic models, but do not handle actions.

Conclusions
This paper proposed a new declarative representation lan-
guage, and studied a formal and computational account for
projection with degrees of beliefs. The language allows for
discrete and continuous fluents, noisy actions and noisy sen-
sors. It incorporates important features of action languages,
thereby providing an interesting bridge between realistic
robotic concerns, on the one hand, and logic-based represen-
tation languages, on the other. We also reported on empirical
studies that demonstrate why we feel that the prego system
is powerful enough to explore real-time reactivity in cogni-
tive robotics applications. To the best of our knowledge, no
other proposal of this generality has been investigated.

There are two main avenues for the future. First, progres-
sion. The regression system in prego maintains the initial
state, and is appropriate for planning. For some applications,
it is desirable to periodically update the system (Vassos and
Levesque 2008). Following (Belle and Levesque 2014), we
would like to explore progression in prego and perhaps eval-
uate that against particle filters (Thrun, Burgard, and Fox
2005). Second, in a companion paper, we intend to consider
the equivalent of golog’s program structures for prego.

11As shown in (Belle and Levesque 2013b), when the BAT is re-
stricted to normally-distributed fluents and effectors, regression can
be shown to yield expressions identical to a Kalman filter. However,
Kalman filters only maintain the current world state, and so they
correspond to a kind of progression (Vassos and Levesque 2008).
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