
Pathway Specification and Comparative Queries:
A High Level Language with Petri Net Semantics

Saadat Anwar and Chitta Baral
CIDSE, Arizona State University, Tempe, AZ, USA

Abstract

Understanding biological pathways is an important ac-
tivity in the biological domain for drug development.
Due to the parallelism and complexity inherent in path-
ways, computer models that can answer queries about
pathways are needed. A researcher may ask ‘what-if’
questions comparing alternate scenarios, that require
deeper understanding of the underlying model. In this
paper, we present overview of such a system we devel-
oped and an English-like high level language to express
pathways and queries. Our language is inspired by high
level action and query languages and it uses Petri Net
execution semantics.

Introduction
Biological pathways are highly interconnected networks
of biochemical processes. These processes execute au-
tonomously in parallel, driven by natural constraints of in-
gredient supply and demand, i.e., a process can execute
as soon as its preconditions are satisfied. For example, a
metabolic reaction can occur as soon as sufficient quanti-
ties of its ingredients become available. Many processes are
also governed by additional preconditions, including avail-
ability of additional substances that are not ingredients, sub-
stance gradients, inhibition, and stimulation. Collectively,
these preconditions regulate the reactions through feedback
loops and feed-forwards in the network. Reactions execute at
different speeds, generating products on completion, which
become ingredients for the down-stream reactions. The state
of a pathway is defined by the available substance quanti-
ties, and the chain of reactions between a starting state and
an ending state of a pathway define a trajectory of path-
way’s state evolution. The interplay between limited quan-
tity of ingredients and other preconditions can present mul-
tiple choices for alternate trajectory evolutions at each path-
way state.

Understanding these pathways is of fundamental impor-
tance in biological research for disease diagnosis and drug
development. However, the aforementioned complexities
make it difficult for one person to retain all aspects of the
pathway. As a result, computer based systems are needed to

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

represent these pathways, allowing biologists to pose queries
against them. An important class of questions in this regard
are the so called ‘what-if’ questions, which compare alter-
nate scenarios of a pathway. We find such questions in col-
lege level books that a professor may ask his students to
gauge their understanding of a pathway. For example the
following question from (Reece et al. 2010) appeared in a
recent knowledge representation and reasoning challenge 1:

Question 1. “At one point in the process of glycolysis, both
DHAP and G3P are produced. Isomerase catalyzes the re-
versible conversion between these two isomers. The conver-
sion of DHAP to G3P never reaches equilibrium and G3P is
used in the next step of glycolysis. What would happen to the
rate of glycolysis if DHAP were removed from the process of
glycolysis as quickly as it was produced?”

Answering such questions require simulating different
scenarios and reasoning with the results. For example, ques-
tion 1 asks for comparison of the rate of glycolysis between
the nominal pathway and an alternate pathway in which
DHAP is removed as quickly as it is produced.

In this paper we describe an English-like high level lan-
guage to express pathways and queries. We highlight im-
portant features of its syntax and semantics and give an
overview of an implementation that understands this lan-
guage and answer questions about them. Our language is
inspired by high level action and query languages such
as (Gelfond and Lifschitz 1993; Giunchiglia and Lifschitz
1998; Lee, Lifschitz, and Yang 2013). However, compared
to most existing action languages, which describe tran-
sition systems (Gelfond and Lifschitz 1998) 2, our lan-
guage describes trajectories. Our language is geared to-
wards modeling natural systems, in which actions occur
autonomously (Reiter 1996) when their pre-conditions are
satisfied; and substance quantities do not become negative.
Compared to most other action languages, substance quanti-
ties produced and consumed are additive 3. Our system also
supports a richer query component, which is missing from
most query languages that accompany action languages.

1https://sites.google.com/site/2nddeepkrchallenge/
2Some languages like C+ (Giunchiglia et al. 2004) allow au-

tonomous actions, but their query languages lack expressiveness.
3Although some languages like C+ have been extended to allow

additive fluents (Lee and Lifschitz 2003).

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

981



Some aspects of our system are similar to (Baral et al. 2004),
but their work is limited to signaling pathways, does not al-
low numeric quantities or has provision of loops inherent in
biological pathways.

We use Petri Nets (Peterson 1977) for representing path-
ways as they mimic biological pathway diagrams and can
represent parallel systems. For ease of reasoning and ex-
tensibility, we use Answer Set Programming (ASP) (Baral
2003) for simulating the pathway using the approach
by (Anwar, Baral, and Inoue 2013a; 2013b).

The rest of the paper is organized as follows: we present
important aspects of our high-level language syntax and se-
mantics. Then we illustrate the use of our language with an
example. After that, we briefly describe implementation of
our system that understands this language and conclude with
main contributions.

Description of our system
We present the key elements and discriminating factors of
our high level language below.

Pathway Specification Language
The alphabet of pathway specification language P consists
of disjoint nonempty domain-dependent sets A, F , repre-
senting actions, and fluents, respectively; a fixed set S of
firing styles; a fixed set K of keywords as syntactic sugar
(shown in bold face); a fixed set of punctuations {‘, ’}; and a
fixed set of special constants {‘1’, ‘∗’, ‘max’}; and integers.

Each fluent f ∈ F has a domain dom(f) which is either
integer or binary and specifies the values f can take. A state
s is an interpretation of F that maps fluents to their values.
We write s(f) = v to represent “f has the value v in state s”.
States are indexed, such that consecutive states si and si+1
represent an evolution over one time step from i to i + 1
due to firing of an action set Ti in si. We illustrate the role
of various constructs using a hypothetical example from the
biological domain 4:

domain of sug is integer, fac is integer,

acoa is integer, h2o is integer (1)
box may execute causing fac change value by -1,
acoa change value by +1 (2)
if h2o has value 1 or higher (3)

inhibit box if sug has value 1 or higher (4)
initially sug has value 3, fac has value 4,

acoa has value 0, h2o has value 0 (5)

Above query is about a process called beta-oxidation rep-
resented by ‘box’, the effect of which is captured in lines
(2)-(3). Line (1) declares fluents for the substances used in
the pathway and their domain, i.e. sugar (‘sug’), fatty-acids
(‘fac’), acetyl-CoA (‘acoa’), and water (‘h2o’) are repre-
sented by numeric fluents. Line (2) describes the effect of
beta oxidation on its inputs and outputs, i.e. when beta-
oxidation occurs, it consumes 1 unit of fatty-acids and pro-
duces 1 unit of acetyl-CoA. It implicitly defines a precondi-
tion that beta-oxidation cannot occur unless there is at least

4Multiple domain and initially statements have been written
in a comma-separated compact form.

1 unit of fatty-acids available. Line (3) describes an explicit
precondition (or guard) of beta oxidation, i.e. it cannot occur
unless there is at least 1 unit of water available. The water is,
however, not consumed during beta oxidation. Line (4) ex-
plicitly inhibits beta-oxidation when there is any sugar avail-
able; and line (5) sets up the initial conditions of the path-
way, s.t. initial quantities of sugar, fatty-acids, acetyl-CoA,
and water are 3,4,0,0, respectively.

Now we introduce various statements and clauses, give
their intuitive definitions, and show how they are combined
to construct a pathway specification (or domain description).
In the following description, f is a fluent, a is an action,w ∈
N+ ∪ {0}, d ∈ N+, S ∈ {1, ∗,max}, e ∈ (N \ {0}) ∪ {∗}
for integer or e ∈ {1,−1, ∗} for binary fluents.

An effect clause has the form:

f change value by e (6)

A guard cond clause can take the forms:

f has value w or higher (7)
f has value lower than w (8)

The domain description contains statements of the forms:

domain of f is ‘integer′|‘binary′ (9)
a may execute causing effect1, . . . , effectm

if guard cond1, . . . , guard condn (10)
inhibit a if guard cond1, . . . , guard condn (11)
initially f has value w (12)
a executes in d time units (13)
firing style S (14)

where m > 0 and n ≥ 0.
A fluent domain declaration statement (9) declares the

values a fluent f can take. While binary domain is com-
monly used for representing substances in a signaling path-
way, metabolic pathways use positive numeric values. Since
the domain is for a physical entity, we disallow fluents with
negative values. A may-execute statement (10) captures the
pre-conditions of an action a and its impact. A single may-
execute statement must not have effect i, effectj with ei < 0
and ej < 0; or ei > 0 and ej > 0 for the same fluent.
An inhibit statement (11) captures explicit inhibition con-
ditions for an action a. An initial condition statement (12)
captures the initial state of pathway (e.g. as substance dis-
tribution). A duration statement (13) represents the duration
d an action a takes to execute. A firing style statement (14)
specifies how many actions may execute in parallel, where,
S is either “1”, “∗”, or “max” for serial execution, arbitrary
amount of parallelism, and maximum parallelism. Actions
execute automatically when fireable, subject to the available
fluent quantities.
Definition 1 (Pathway Specification). A pathway specifi-
cation is composed of one or more domain, may-execute,
inhibit, initially, duration statements, and one firing style
statement.

A pathway specification is consistent if (i) there is at most
one firing style statement (ii) at most one duration statement
for an action a; (iii) the guard cond1, . . . , guard condn
from a may-execute are disjoint from any other may-execute

982



for the same action 5; (iv) domain of fluents, effects, condi-
tions and numeric values are consistent, i.e., effects and con-
ditions on binary fluents must be binary; and (v) the pathway
specification does not cause it to violate fluent domains by
producing non-binary values for binary fluents.

When missing, duration of an action is assumed to be 1;
and initial fluent quantity for a fluent is assumed to be 0.

Intuitively, a pathway specification D represents a set of
trajectories of the form: σ = s0, T0, s1, . . . , sk−1, Tk−1, sk.
Each trajectory encodes an evolution of the pathway. Start-
ing from an initial state s0, each si, si+1 pair represents the
state evolution in one time step due to execution of the ac-
tion set Ti in state si producing si+1. An action set Ti is
only executable in state si, if the total decrease of fluent val-
ues due to ei < 0 and ei = ∗ will not result in any of the
fluents becoming negative. Changes to fluents due to ei > 0
for the action set Ti occur over subsequent time-steps de-
pending upon the durations of actions involved. Thus, the
state si(fi) is the sum of ei > 0 for actions of duration d
that occurred d time steps before (current time step) i, i.e.
a ∈ Ti−d.

Query Specification Language
The alphabet of query language Q consists of the same sets
A,F from P representing actions, and fluents, respectively;
a fixed set of reserved keywords K shown in bold in syn-
tax below; a fixed set {‘ : ’, ‘; ’, ‘, ’, ‘′’} of punctuations;
a fixed set of {<,>,=} of directions; and constants. Our
query language asks questions about biological entities and
processes in a biological pathway described by a pathway
specification (or domain description). A query statement is
composed of a query description (the quantity, or property
being sought by the question), interventions (changes to the
pathway), observations (about states and actions of the path-
way), and initial setup conditions. For example, the follow-
ing query indirectly determines the direction of change in
the rate of glycolysis by comparing the rate of production of
‘bpg13’ w.r.t. the glycolysis pathway given in (Reece et al.
2010, Figure 9.9); and corresponds to question (1).

direction of change in average

rate of production of bpg13 is d

when observed between time step 0 and time step k;

comparing nominal with modified pathway obtained

due to interventions :

remove dhap as soon as produced;

using initial setup :

continuously supply f16bp in quantity 1; (15)

Intuitively, a query statement is evaluated against the trajec-
tories of a pathway (or domain description). The pathway is
first modified by first applying the initial setup conditions,
and the interventions. The modified pathway is them sim-
ulated and its trajectories are filtered to retain only those
which satisfy the observations specified in the query state-
ment. Next we define the syntax of the query language and

5Note that ‘f has value 5 or higher ’ overlaps with
‘f has value 7 or higher ’.

its elements 6, give their intuitive meaning, and how these
components fit together to form a query statement. In the
following description, a’s are actions, f ’s are fluents, n’s are
numbers, q’s are positive integer numbers, d is one of the
directions from {<,>,=}.
〈point〉 ::= time step ts (16)
〈interval〉 ::= 〈point〉 and 〈point〉 (17)
〈aggop〉 ::= minimum |maximum | average (18)
〈quant intf 〉 ::= rate of production of f is n (19)
| rate of firing of a is n (20)
〈quant ptf 〉 ::= value of f is higher than n (21)
| value of f is n (22)
〈qual intf 〉 ::= f is accumulating (23)
〈qual ptf 〉 ::= a occurs (24)
| a does not occur (25)
| a1 switches to a2 (26)
〈quant agg intf 〉 ::= 〈aggop〉 rate of firing of a is n (27)
| 〈aggop〉 rate of production of f is n (28)
〈quant agg ptf 〉 ::= 〈aggop〉 value of f is n (29)
〈quant cagg intf 〉 ::= direction of change in

〈aggop〉 rate of production of f is d (30)
| direction of change in

〈aggop〉 rate of firing of a is d (31)
〈quant cagg ptf 〉 ::= direction of change in

〈aggop〉 value of f is d (32)
〈simp intf 〉 ::= 〈quant intf〉 | 〈qual intf〉 (33)
〈simp ptf 〉 ::= 〈quant ptf〉 | 〈qual ptf〉 (34)
〈int obs〉

::= 〈simp ptf〉 | 〈simp ptf〉 at 〈point〉 | 〈simp intf〉 (35)
| 〈simp intf〉when observed between 〈interval〉 (36)
〈qdesc〉 ::= 〈int obs〉 (37)
| 〈int obs〉 in all trajectories (38)
| 〈quant agg intf〉

when observed between 〈interval〉 (39)
| 〈quant agg ptf〉when observed at 〈point〉 (40)
〈cqdesc〉 ::= 〈quant cagg intf〉

when observed between 〈interval〉 (41)
| 〈quant cagg ptf〉when observed at 〈point〉 (42)
〈interv〉 ::= remove f as soon as produced (43)
| disable a (44)
| continuously supply f in quantity q (45)
| add delay of q time units in availability of f (46)
| set value of f to q (47)
〈icond〉 ::= (45) | (47) (48)
〈qstmt〉 ::= 〈qdesc〉;

due to interventions : 〈interv〉1, . . . , 〈interv〉N1;

due to observations : 〈int obs〉1, . . . , 〈int obs〉N2;

using initial setup : 〈icond〉1, . . . , 〈icond〉N3; (49)

6Although some of our single-trajectory queries can be repre-
sented as LTL formulas, we have chosen to keep the current repre-
sentation as it is more intuitive for our biological domain.

983



| 〈cqdesc〉; comparing nominal pathway with

modified pathway obtained

due to interventions :〈interv〉1, . . . , 〈interv〉N1;

due to observations :〈int obs〉1, . . . , 〈int obs〉N2;

using initial setup :〈icond〉1, . . . , 〈icond〉N3; (50)

Given a pathway specification (domain description) P with
trajectories of the form σ = s0, T0, s1, . . . , sk−1, Tk−1, sk,
where each si, Ti, si+1 is an evolution from state si to state
si+1 due to firing of Ti. Intuitively, a point is a time-step and
interval defines a continuous range of time-steps on a trajec-
tory, then point formulas (represented by ptf ) are evaluated
w.r.t. a point on the trajectory, while interval formulas (rep-
resented by intf ) are evaluated w.r.t. an interval on a trajec-
tory, e.g. rate of production of f over interval [i, j] is given
by (sj(f) − si(f))/(j − i). Quantitative formulas (repre-
sented by quant) are evaluated for some quantity n, while
qualitative formulas (represented by qual) are evaluated for
some qualitative attribute of a state / trajectory. Aggregate
quantitative formulas (represented by quant agg) are evalu-
ated for some quantity n, which is an aggregate of quantities
n1, . . . , nm for trajectories σ1, . . . , σm, e.g. the average ag-
gregate is computed as n = (n1 + · · · + nm)/m. Com-
parative quantitative formulas (represented by quant cagg)
are evaluated for some direction of change between aggre-
gate quantities n (over trajectories σ1, . . . , σm) and n′ (over
trajectories σ′1, . . . , σ

′
m′ ), e.g. the change direction is ‘>’ if

n′ > n.
Intuitively, an internal observation (represented by

int obs) is a simple point formula that holds at any point on
a trajectory, a simple point formula that holds at a specific
point, a simple interval formula that holds over any interval
on a trajectory, or a simple interval formula that holds over
a specific interval. Intuitively, an internal observation filters
the set of trajectories produced by a pathway specification.

Intuitively, a query description (represented by qdesc) is
one of the possible point formulas that holds at a specific
point, an interval formula that holds over a specific range,
an internal observation, an internal observation over all tra-
jectories in a set of given trajectories. A comparative query
description (represented by cqdesc) is one of the quantita-
tive comparative aggregate point formula at a specific point
on two sets of trajectories, or a quantitative comparative ag-
gregate interval formula over a specific interval on two sets
of trajectories. Intuitively, a query description or a compara-
tive query description specifies the property that we want to
have hold true over the trajectories of the domain pathway.

Intuitively, an intervention (represented by interv) spec-
ifies a modification to the pathway specification, e.g. inter-
vention (43) modifies the pathway such that all quantity of
f is removed as soon as it is produced.

Intuitively, a query statement (represented by qstmt) is
a comparative query statement if it contains a comparative
query description, and non-comparative otherwise. A query
statement is composed of a query statement, interventions to
the pathway, internal observations to filter the trajectories,
and initial conditions. Intuitively, a query statement asks
whether a query description holds in a pathway, after mod-
ifying it with initial setup, interventions and observations.

While, a comparative query statement asks whether a query
description holds when a nominal pathway is compared to a
modified pathway, subject to same initial setup, but interven-
tions and observations only applied to the modified pathway.

Pathway Semantics
The semantics of our pathway are given by a Guarded-Arc
Petri Net, which allows choice between different effects
(arc-sets) of a transition, such that only one effect (arc-set)
is active for a transition in a given state determined by its
arc-guard 7.

Definition 2 (Guard). A guard condition takes one of the
following forms: (f < v), (f ≤ v), (f > v), (f ≥
v), or (f = v), where f is a fluent; and v is a fluent or a nu-
meric constant. A guard is a propositional formula of guard
conditions, with each guard condition treated as a proposi-
tion.

An interpretation of a guard G is a possible assignment
of a value to each fleuent f ∈ G from the domain of f . A
guard G is satisfied w.r.t. a state s, written s |= G iff G has
an interpretation in which each of its fluents f has the value
s(f) and G is true.

Definition 3 (Guarded-Arc Petri Net). A Guarded-Arc
Petri Net is a tuple PNG = (P, T,G,E,R,W,D, TG,L):

P is a finite set of places
T is a finite set of transitions
G is a set of guards as defined in definition (2)

TG : T → G are the transition guards
E ⊆ (T × P ×G) ∪ (P × T ×G) are the guarded arcs
R ⊆ P × T ×G are the guarded reset arcs

W : E → N+ are arc weights

D : T → N+ are the transition durations

L : P → N+ specifies maximum tokens for each place

subject to constraints: (i) P ∩T = ∅ (ii) R∩E = ∅ (iii) Let
t ∈ T be a transition, and ggt = {g : (t, p, g) ∈ E} ∪
{g : (p, t, g) ∈ E} ∪ {g : (p, t, g) ∈ R} be the set of arc-
guards for normal and reset arcs connected to it, then any
two distinct guards g1 ∈ ggt, g2 ∈ ggt must not have an
interpretation that makes both g1 and g2 true.

We make a simplifying assumption that all places are
readable by using their place names. Execution of the PNG

occurs in discrete time steps. The marking (or state) of a
Guarded-Arc Petri Net PNG is the token assignment of
each place pi ∈ P . Initial marking is given by M0 : P →
N0, while the token assignment at step k is written as Mk.

Next we define the execution semantics of PNG. We
start with terminology used below. Let (i) s0 = M0 rep-
resent the the initial marking (or state), sk = Mk repre-
sent the marking (or state) at time step k, (ii) sk(p) rep-
resent the marking of place p at time step k, such that

7Our model is similar to the model in (Jensen, Kristensen, and
Wells 2007) in many aspects with differences in certain key seman-
tics related to biological modeling, such as reset arts.

984



sk = [sk(p0), . . . , sk(pn)], where P = {p0, . . . , pn} (iii) Tk
be the firing-set that fired in step k, (iv) enk be the set of en-
abled transitions in state sk, (v) delk(p, {t1, . . . , tn}) be the
sum of tokens that will be consumed from place p if tran-
sitions t1, . . . , tn fired in state sk, (vi) overck({t1, . . . , tn})
be the set of places that will have over-consumption of to-
kens if transitions t1, . . . , tn were to fire simultaneously
in state sk, (vii) selk(fs) be the set of possible firing-set
choices in state sk using fs firing style (viii) addk(p) be
the total production of tokens in place p (in state sk) due
to actions terminating in state sk, (ix) sk+1 be the next state
computed from state sk due to firing transition-set Tk Then,
the execution semantics of the Guarded-Arc Petri Net PNG

starting from state s0 using firing-style fs is given as follows:

enk = {t : t ∈ T, sk |= TG(t), ∀(p, t, g) ∈ E,
(sk |= g, sk(p) ≥W (p, t, g))}

delk(p, {t1, . . . , tn}) =∑
i=1,...,n

W (p, ti, g) : (p, ti, g) ∈ E, sk |= g

+
∑

i=1,...,n

sk(p) : (p, ti, g) ∈ R, sk |= g

overck({t1, . . . , tn}) = {p : p ∈ P,
sk(p) < delk(p, {t1, . . . , tn})}

selk(1) = {{ss} : ss ∈ enk, overck({ss}) = ∅}
selk(∗) = {ss : ss ∈ 2enk , overck(ss) = ∅}
selk(max) = {ss : ss ∈ 2enk , overck(p, ss) = ∅,

(@ss′ ∈ 2enk : ss ⊂ ss′, overck(ss′) = ∅)}
Tk ∈ selk(fs)

addk(p) =
∑

j=0,...,k

W (ti, p, g)

: (ti, p, g) ∈ E, ti ∈ Tj , D(ti) + j = k + 1

sk+1(p) = min(sk(p)− delk(p, Tk) + addk(p), L(p)) (51)

Definition 4 (Trajectory). σ = s0, T0, s1, . . . , sk−1, Tk−1,
sk is a trajectory of PNG iff given s0 = M0, each Ti is
a possible firing-set in si whose firing produces si+1 per
PNG’s execution semantics in (51).

Query Semantics
First we give the semantics of domain modification due to
an intervention by examples. Consider intervention (43),
we create the modified domain description D′ = D �
(remove f as soon as produced) as follows:

D
′

= D + {tr may execute causing f change value by ∗}

Applying intervention (45) D′ = D � (continuously
supply f in quantity q) results in the following
changes:

D′ = D + {tf may execute causing

f change value by + q}

Next we define the semantics of some common formu-
las and observation using LTL-style. Let σ = s0, T0, s1,
. . . , Tk−1, sk represent a trajectory of domain D with initial
marking s0. Let actions Ti firing in state si be observable in
si such that Ti ⊆ si.

Let 〈si, σ〉 |= F represent F holds at point i in σ;
{〈s1

i , σ1〉, . . . , 〈smi , σm〉} |= F represent F holds at point
i in trajectories σ1, . . . , σm;

{
{〈s1

i , σ1〉, . . . , 〈smi , σm〉},
{〈s̄1

i , σ̄1〉, . . . , 〈s̄m̄i , σ̄m̄〉}
}
|= F represent F holds at

point i in both sets {σ1, . . . , σm} and {σ̄1, . . . , σ̄m̄};
(〈si, σ〉, j) |= F represent F holds over interval [i, j] in
σ; ({〈s1

i , σ1〉, . . . , 〈smi , σm〉}, j) |= F represent F holds
over interval [i, j] in σ1, . . . , σm; and (

{
{〈s1

i , σ1〉, . . . ,
〈smi , σm〉}, {〈s̄1

i , σ̄1〉, . . . , 〈s̄m̄i , σ̄m̄〉}
}
, j) |= F represent

F holds over interval [i, j] over two sets {σ1, . . . , σm} and
{σ̄1, . . . , σ̄m̄}. Then the semantics of a rate query are given
as follows:

(〈si, σ〉, j) |= rate of production of f is n

if n = (sj(f)− si(f))/(j − i) (52)

({〈s1
i , σ1〉, . . . , 〈smi , σm〉}, j) |=

average rate of production of f is r

if ∃[r1, . . . , rm] : (〈s1
i , σ1〉, j) |= rate of production

of f is r1 . . . (〈smi , σm〉, j) |= rate of production

of f is rm and r = (r1 + · · ·+ rm)/m (53)({
{〈s1

i , σ1〉, . . . , 〈smi , σm〉}, {〈s̄1
i , σ̄1〉, . . . , 〈s̄m̄i , σ̄m̄〉}

}
, j
)

|= direction of change in average rate of

production of f is d

if ∃ n1 : ({〈s1
i , σ1〉, . . . , 〈smi , σm〉}, j) |= average rate

of production of f is n1 and

∃ n2 : ({〈s̄1
i , σ̄1〉, . . . , 〈s̄m̄i , σ̄m̄〉}, j) |= average rate

of production of f is n2 and n2 d n1 (54)

{
{〈s1

0, σ1〉, . . . , 〈sm0 , σm〉}, {〈s̄1
0, σ̄1〉, . . . , 〈s̄m̄0 , σ̄m̄〉}

}
|= direction of change in average rate of

production of f is d when observed between

time step i and time step j

if
({
{〈s1

i , σ1〉, . . . , 〈smi , σm〉}, {〈s̄1
i , σ̄1〉, . . . , 〈s̄m̄i , σ̄m̄〉}

}
, j
)

|= direction of change in 〈average rate of

production of f is d (55)

Definition 5. Let D be a domain description and Q be a
query statement (49) with query descriptionU , interventions
V1, . . . , V|V |, internal observations O1, . . . , O|O|, and ini-
tial conditions I1, . . . , I|I|. Let D1 ≡ D � I1 � · · · � I|I| �
V1�· · ·�V|V | be the modified domain description constructed
by applying the initial conditions and interventions from Q
and σ1, . . . , σm be its trajectories that satisfy O1, . . . , O|O|.
Then, D satisfies Q (written D |= Q) if {σ1, . . . , σm} |= U .

Definition 6. Let D be a domain description and Q be
a comparative query statement (50) with query descrip-
tion U , interventions V1, . . . , V|V |, internal observations
O1, . . . , O|O|, and initial conditions I1, . . . , I|I|. Let D0 ≡
D � I1 � · · · � I|I| be the nominal domain description
constructed by applying the initial conditions from Q and
σ1, . . . , σm be its trajectories. Let D1 ≡ D � I1 � · · · �
I|I| � V1 � · · · � V|V | be the alternate domain description

985



constructed by applying the initial conditions and interven-
tions from Q and σ̄1, . . . , σ̄m̄ be its trajectories that sat-
isfy O1, . . . , O|O|. Then, D satisfies Q (written D |= Q)

if
(
{σ1, . . . , σm}, {σ̄1, . . . , σ̄m̄}

)
|= U .

The following propositions follow from the above de-
scription.

Proposition 1. Let D be a domain description and Q be
a non-comparative query statement. Then, D |= Q iff
D′ |= Q′ where D′ ≡ D � I1 · · · � I|I| � V1 · · · � V|V |
and Q′ ≡ Q with I1, . . . , I|I|, V1, . . . , V|V | removed, where
I1, . . . , I|I| are the initial conditions in Q and V1, . . . , V|V |
are the interventions in Q.

Proposition 2. Let D be a domain description and Q be
a non-comparative query statement. Then, D |= Q iff
{σ1, . . . , σn} |= Q′, where σ1, . . . , σn are trajectories of D′
that satisfyO1, . . . , O|O|, D′ ≡ D�I1 · · ·�I|I|�V1 · · ·�V|V |
and Q′ ≡ Q with I1, . . . , I|I|, V1, . . . , V|V |, O1, . . . , O|O|
removed; I1, . . . , I|I| are the initial conditions in Q,
V1, . . . , V|V | are the interventions in Q, and O1, . . . , O|O|
are internal observations in Q.

Proposition 3. Let D be a domain description and Q
be a comparative query statement. Then, D |= Q iff
({σ1, . . . , σn}, {σ′1, . . . , σ′n′}) |= Q′, where σ1, . . . , σn
are trajectories of D′, and σ′1, . . . , σ

′
n′ are trajectories

of D′′ that satisfy O1, . . . , O|O|, D′ ≡ D � I1 · · · �
I|I|, D′′ ≡ D � I1 · · · � I|I| � V1 · · · � V|V |, Q′ ≡
Q with I1, . . . , I|I|, V1, . . . , V|V |, O1, . . . , O|O| removed;
I1, . . . , I|I| are the initial conditions in Q, V1, . . . , V|V | are
the interventions in Q, andO1, . . . , O|O| are internal obser-
vations in Q.

Intuitively, proposition 1 states that a domain description
D satisfies a (non-comparative) query statement Q when-
ever the modified domain description D′ constructed by ap-
plying interventions and initial conditions from Q to D sat-
isfies the modified query statement Q′ constructed by re-
moving interventions and initial conditions from Q. Propo-
sition 2 states that a domain description D satisfies a (non-
comparative) query statement Q whenever the trajectories
of the modified domain description D′ constructed by ap-
plying interventions and initial conditions from Q to D that
satisfy observations in Q, satisfy the modified query state-
ment Q′ constructed by removing interventions, initial con-
ditions, and observations from Q. Proposition 3 states that
a domain description D satisfies a comparative query state-
ment Q whenever the comparison between trajectories of
the nominal domain description D′ constructed by applying
initial conditions from Q and the trajectories of the alter-
nate domain description D′′ constructed by applying inter-
ventions and initial conditions from Q that satisfy the obser-
vations in Q satisfy the query statement Q′ constructed by
removing interventions, initial conditions and observations
from Q.

Proof of the above propositions are based on the defini-
tions 5,6 of satisfiability of a query statement Q by domain
D; the semantics of the query description U in the query
statement; and the structure of the query statements. The

forward direction is proven by showing that the trajectories
of the modified domain descriptions (constructed by apply-
ing initial conditions and interventions) filtered by the inter-
nal observations (as appropriate) satisfy the query descrip-
tion U in the query statement Q. The reverse direction is
proven by showing that one can select a domain description
D that, when modified through selected initial setup con-
ditions and interventions represents the same trajectories as
D′, and one can select observations that filter these trajecto-
ries to only those satisfied by the query description U . The
selected initial setup conditions, interventions, and the ob-
servations when added to Q′ give us Q.

Illustrative Example
We illustrate our high level language by applying it to ques-
tion (1) and the relevant glycolysis pathway.

f16bp t4

dhap t5a

tr

g3p t5b

t6 bpg13

t3

2

Figure 1: Petri Net for question 1.

The following pathway specification encodes the domain
description D for question (1) and produces the PN in Fig. 1
minus the tr, t3 transitions:

domain of f16bp is integer, dhap is integer,

g3p is integer, bpg13 is integer

t4 may execute causing f16bp change value by -1,
dhap change value by +1, g3p change value by +1

t5a may execute causing dhap change value by -1,
g3p change value by +1

t5b may execute causing g3p change value by -1,
dhap change value by +1

t6 may execute causing g3p change value by -1,
bpg13 change value by +2

initially f16bp has value 0, dhap has value 0,

g3p has value 0, bpg13 has value 0

firing style max

The question is asking for the direction of change in the rate
of glycolysis when the nominal pathway is compared against
a modified pathway in which DHAP is removed as soon as
it is produced. Since this rate can vary with the trajectory of
the world evolution, we consider the average change in rate.
Using domain knowledge (Reece et al. 2010, Figure 9.9), we
measure the rate of glycolysis indirectly by measuring the
rate of production of bpg13, a downstream product, which
is converted into equivalent quantity of the end product of
glycolysis. We also add continuous supply of source ingre-
dient f16bp at the rate of 1 unit per time step to prevent
starvation. This results in a query statement (15) Q for some

986



simulation length k. We evaluate it for the direction d using
our deep reasoning system, which gives us d =′<′, suggest-
ing that the rate of glycolysis will be lowered when DHAP
is removed as soon as it is produced.

Implementation
We implemented a system 8 that understands a subset of
our high level language using Python as the driver as well
as the high level language parser; and Clingo (Gebser et
al. 2011) as the ASP solver. The system takes a pathway
specification, a query specification, and simulation parame-
ters, such as simulation length and maximum possible to-
kens at any place for query evaluation. Our system uses
Petri Net semantics for modeling the biological pathway
and ASP for simulating it. Interventions in questions are
modeled as Petri Net extensions and translated into ASP
using the approach in (Anwar, Baral, and Inoue 2013a;
2013b). This gave us the translations of extensions such as
reset arcs, inhibit arcs (Peterson 1977), read arcs (Chris-
tensen and Hansen 1993), colored tokens (Peterson and oth-
ers 1980), and timed transitions (Ramchandani 1974) etc.
We augmented the encoding further to include additional
extensions, such as conditional effects of actions, and more
generalized inhibitions supported by our language.

Next, we briefly summarize how our system processes
a non-comparative aggregate quantitative query statement,
then describe how the comparative quantitative query from
previous section is evaluated.

To evaluate a non-comparative query, the system builds a
Petri Net model from the pathway specification. It then ap-
plies the initial conditions and interventions from the query
statement to this model. The model is then translated into
ASP. The resulting ASP code is augmented with constraints
for (internal) observations. Answer sets of the augmented
code provide the filtered trajectories. Atoms needed to com-
pute the quantity specified in the query (e.g. rate of produc-
tion) are extracted from the answer sets and quantity values
aggregated across answer sets. The aggregated value is com-
pared against any aggregate value provided for query state-
ment satisfaction or the computed value is returned.

To evaluate comparative quantitative query statement
from the previous section is decomposed into two sub-
queries, Q0 for nominal case and Q1 for the modified case:

Q0 ≡ average rate of production of bpg13 is navg

when observed between time step 0 and time step k;
using initial setup :

continuously supply f16bp in quantity 1;

Q1 ≡ average rate of production of bpg13 is n′
avg

when observed between time step 0 and time step k;
due to interventions :

remove dhap as soon as produced;
using initial setup :

continuously supply f16bp in quantity 1;

The queries are evaluated w.r.t. the same initial conditions
for average rates navg, n′avg that satisfy direction d in the
original query statement. The Petri Net model in Figure 1
shows nominal case (D0) in solid lines and the interventions

8https://sites.google.com/site/deepqa2014/

added for the alternate case (D1) as dotted lines. The aver-
age results are compared using d to determine if they specify
the direction given in the comparative query statement.

Conclusion

We have presented a high level (English like) language for
specifying pathways and asking queries against them. Our
pathway specification language uses Petri Net semantics as
the simulation model and our query language is inspired by
action languages. Our query language is one of the main
contributions of this paper. It allows aggregate queries over
a set of trajectories, comparative aggregate queries over two
sets of trajectories, and interventions that are more general
than actions which can be used to modify the pathway as
specified in a query statement. Our approach improves on
the query languages associated with action languages, by
implementing comparative queries.

Though some aspects of our language may appear cum-
bersome to a person with background in action languages,
we retained the syntax to allow coherent description of a va-
riety of complex interventions and queries.

We illustrated how an example question comparing al-
ternate scenarios of a biological pathway is encoded in our
high level language; and summarized how our implementa-
tion performs query evaluation. We will elaborate on these
aspects in companion papers.

Our approach fits into a larger problem of representing
and reasoning about biological pathways gaining interest
lately, geared towards developing an end-to-end system that
extracts biological knowledge from texts, assembles it into
pathways, determines the right level of abstraction eliminat-
ing irrelevant details, and answers such questions about them
that require understanding of the inner workings of these
pathways; with the ability to pose questions in natural lan-
guage and present results in a natural language or a visual
representation such as graphs. These aspects serve as guide-
lines for future extension to our work, and indeed there is
existing work on many of these, including from our group,
e.g., see (Tari et al. 2009; 2010) for pathway construction
from text extraction and translating natural language ques-
tions to formal queries that we will extend.

The importance of determining the right level of abstrac-
tion by eliminating irrelevant details is two fold. On one
hand it can improve performance by reducing problem size
and computational resources needed, while on the other, it
presents cleaner results that are easier to interpret by elim-
inating extraneous information. In this regard, techniques
from multi-scale modeling (see (Dada and Mendes 2011;
Heiner and Gilbert 2013)) could be applicable.

Additional areas of improvements include encapsulating
time information in the queries such that it is hidden from
the user, as well as the ability to apply interventions at arbi-
trary points during the simulation. Our current implementa-
tion uses Clingo, which handles discrete quantities only. We
intend to extend this work to include continuous real num-
bers based on work by (Lee and Meng 2013).

987



References
Anwar, S.; Baral, C.; and Inoue, K. 2013a. Encoding higher
level extensions of Petri nets in answer set programming.
In Cabalar, P., and Son, T., eds., Logic Programming and
Nonmonotonic Reasoning, volume 8148 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg. 116–121.
Anwar, S.; Baral, C.; and Inoue, K. 2013b. Encoding Petri
nets in answer set programming for simulation based rea-
soning. TPLP 13(4-5-Online-Supplement).
Baral, C.; Chancellor, K.; Tran, N.; Tran, N.; Joy, A.; and
Berens, M. 2004. A knowledge based approach for repre-
senting and reasoning about signaling networks. Bioinfor-
matics 20(suppl 1):i15–i22.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Christensen, S., and Hansen, N. D. 1993. Coloured Petri
nets extended with place capacities, test arcs and inhibitor
arcs. Springer.
Dada, J. O., and Mendes, P. 2011. Multi-scale modelling and
simulation in systems biology. Integrative Biology 3(2):86–
96.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The Potsdam
answer set solving collection. AICom 24(2):105–124.
Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. The Journal of Logic Pro-
gramming 17(2):301–321.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on AI 3(16).
Giunchiglia, E., and Lifschitz, V. 1998. An action lan-
guage based on causal explanation: Preliminary report. In
AAAI/IAAI, 623–630. Citeseer.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1):49–104.
Heiner, M., and Gilbert, D. 2013. Biomodel engineering
for multiscale systems biology. Progress in biophysics and
molecular biology 111(2):119–128.
Jensen, K.; Kristensen, L. M.; and Wells, L. 2007. Coloured
Petri nets and CPN Tools for modelling and validation of
concurrent systems. International Journal on Software Tools
for Technology Transfer 9(3-4):213–254.
Lee, J., and Lifschitz, V. 2003. Describing additive fluents
in action language C+. In Proc. of IJCAI 2003.
Lee, J., and Meng, Y. 2013. Answer set programming mod-
ulo theories and reasoning about continuous changes. IJ-
CAI’13.
Lee, J.; Lifschitz, V.; and Yang, F. 2013. Action language
BC: Preliminary report. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI).
Peterson, J., et al. 1980. A note on colored Petri nets. Infor-
mation Processing Letters 11(1):40–43.
Peterson, J. L. 1977. Petri nets. Computing Surveys
9(3):223–252.

Ramchandani, C. 1974. Analysis of asynchronous concur-
rent systems by Petri nets. Technical report, DTIC Docu-
ment.
Reece, J.; Cain, M.; Urry, L.; Minorsky, P.; and Wasserman,
S. 2010. Campbell Biology. Pearson Benjamin Cummings.
Reiter, R. 1996. Natural actions, concurrency and continu-
ous time in the situation calculus. KR 96:2–13.
Tari, L.; Hakenberg, J.; Gonzalez, G.; and Baral, C. 2009.
Querying a parse tree database of medline text to synthesize
user-specific biomolecular networks. Proc Pac Symp Bio-
comput 14:87–98.
Tari, L.; Baral, C.; Anwar, S.; Liang, S.; and Hakenberg,
J. 2010. Synthesis of pharmacokinetic pathways through
knowledge acquisition and automated reasoning. Pacific
Symposium on Biocomputing 15:465–476.

988




