
The Most Uncreative Examinee: A First Step toward
Wide Coverage Natural Language Math Problem Solving

Takuya Matsuzaki,1 Hidenao Iwane,1,2 Hirokazu Anai,1,2,3 Noriko H. Arai1
1 National Institute of Informatics, Japan

2 Fujitsu Laboratories Ltd., Japan 3 Kyushu University, Japan
{takuya-matsuzaki,arai}@nii.ac.jp; {iwane,anai}@jp.fujitsu.com

Abstract

We report on a project aiming at developing a system
that solves a wide range of math problems written in
natural language. In the system, formal analysis of nat-
ural language semantics is coupled with automated rea-
soning technologies including computer algebra, using
logic as their common language. We have developed a
prototype system that accepts as its input a linguistically
annotated problem text. Using the prototype system as
a reference point, we analyzed real university entrance
examination problems from the viewpoint of end-to-end
automated reasoning. Further, evaluation on entrance
exam mock tests revealed that an optimistic estimate of
the system’s performance already matches human aver-
ages on a few test sets.

Introduction
Natural language math problem solving has a special status
among various tests for the language understanding ability
of a computational machinery. This is because one of the
most successful approximations of our intuitive grasp of “the
meaning of language” to date is to know the truth-conditions
of the sentences that are usually expressed as logical formu-
las, and formal logic has been primarily developed for, and
most successfully applied to, the formalization of mathemat-
ics.

We take a (much extended) conservative extension of
Zermelo-Fraenkel (ZF) set theory as the target language of
the translation from problem texts. ZF set theory is a natural
choice because of its coverage over wide fields (as wide as
almost all) of math, and a math problem written in natural
language very often involves sets and related concepts such
as tuples and functions, either implicitly or explicitly.

The downside of the expressiveness of the ZF set theory is
that it is not practical to do reasoning directly based on it. We
thus need to find another representation of the problem that
is expressible in a more manageable theory through a me-
chanical procedure that operates on the initial ZF formula.
It is a daunting task, in that it is apparently not possible in
general, and it is a close kin to a long-standing problem in
AI (McCarthy 1964).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Having it in mind, though, we have developed a pro-
totype system, in which the initial ZF formula is itera-
tively rewritten by applying several kinds of equivalence-
preserving transformation rules until we find the rewritten
formula is directly re-interpretable in a theory that is more
amenable to automatic reasoning. When it succeeds, we in-
voke a solver (e.g., a decision procedure or a prover) spe-
cialized to that theory to find the answer.

The simple design of our system is largely inspired by a
classical result by Tarski (1951), which states that the the-
ory of real closed field (RCF) allows quantifier-elimination
(QE). From the viewpoint of problem solving, it means that,
given a problem in the form of “Find the value of x,” once
we derive its representation as any formula φ in the first-
order language of RCF, we can in principle find all possible
values of x.

A serious limitation in the above approach is in the time
complexity of RCF-QE. Currently, the most practical algo-
rithm has the time complexity of doubly exponential in the
number of variables in the input formula. The practical ap-
plicability of RCF-QE is hence very sensitive to how we rep-
resent the problem as an RCF formula. We are thus keen to
know whether or not the above approach is practicable on
a formula that is mechanically translated from natural lan-
guage and then transformed by a simple rewriting algorithm.

We evaluated our prototype system on real university en-
trance exam problems. First we examined the problems from
the viewpoint of end-to-end problem solving, with special
care on the possibility of automatically identifying a mathe-
matical theory in which a problem shall be solved. We then
supplied the system with two sorts of translations of the
problems in ZF set theory: one is manually translated and
the other is semi-automatically derived from a linguistically
annotated problem text. By comparing the results, we in-
vestigated the effect of the mechanical derivation of the ZF
formulas on the representation change and the reasoning in
a theory. Finally, we applied the system to several entrance
exam mock tests, on which we can compare the system’s
performance with the average scores of the real test-takers.
The experimental results are optimistic estimates of the sys-
tem’s end-to-end performance in that some of the language
processing components are surrogated by linguistic annota-
tions. The overall result is however encouraging and it sug-
gests several directions of further investigations.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1098

Figure 1: Problem solving pipeline

Figure 2: Linguistic annotation on the problem text

Overview of the Problem Solving Pipeline
We give an overview of the problem solving pipeline
(Fig. 1). The system receives an annotated problem text as
the input. The sentences in the problems are then translated
to logical forms through grammar-based parsing, using the
annotations on the text as the constraints in the parsing pro-
cess. The sentence-level logical forms are then combined
into a problem-level semantic representation according to
the inter-sentence logical relations annotated on the prob-
lem. We then attempt to rewrite the the problem-level logical
form into an equivalent formula that can be expressed in a
theory in which automated reasoning is practically possible.
Finally, a reasoner is invoked on the formula to find the an-
swer. In the rest of this section, we first explain the linguistic
annotations on the problems and then give some sketches of
the processes in the pipeline.

Linguistic Annotations
We annotated the problem texts with four kinds of linguistic
information: math expression semantics (Cramer, Koepke,
and Schröder 2011), coreferential expressions (Haghighi
and Klein 2010), syntactic dependency trees (Kudo and
Matsumoto 2002), and logical connectives among sentences
(Lin, Kan, and Ng 2009). Fig. 2 shows an example of an
annotated problem that includes two sentences S1 and S2.
In the figure, two math expressions in S1 and one in S2 are
annotated with their semantic representations using the se-
mantic language that will be introduced shortly. The words
in the sentence are grouped into chunks1 and the syntactic
dependencies among the chunks are annotated (the arrows).

We also annotated coreferential expressions in the text
with their referents. For instance, the definite noun phrase
“the tangent point” in S2 refers to an object that is not explic-
itly mentioned anywhere but understood from the context.
To annotate various coreferential expressions uniformly, we

1The chunk is a syntactic unit called bun-setsu in Japanese. The
English word chunks in the figure roughly match the bun-setsus in
their Japanese translations.

annotated them with their paraphrases that identify the (un-
derstood) referents. For instance, “the tangent point” in S2

is annotated with its paraphrase, “the tangent point of C and
L,” as shown in the figure.

Finally, we annotate the logical relations among the sen-
tences as a binary tree whose leaves are the sentences and
internal nodes are labeled with logical connectives. For the
two sentences S1 and S2 in Fig. 2, we annotate their relation
simply as S1 & S2, which stands for their conjunction.

The annotations are used as surrogates of the automatic
language processing tools such as those cited above. We
leave as future work the adaptation of existing language pro-
cessing tools to the math text.

Semantic Representation
We use dynamic predicate logic (DPL) (Groenendijk and
Stokhof 1991) as the base of our semantic representation
language. The dynamic nature of the logic is essential for
handling variable bindings across sentences. In a nutshell,
existential quantifiers (∃) in DPL have their scopes over dy-
namic conjunction (;) and implication (→), but not across
disjunction (∨) nor negation (¬). Furthermore, ∃-bindings
across implications are interpreted as universal quantifica-
tion. Thus, (∃x;P (x));Q(x) and (∃x;P (x)) → Q(x) are
interpreted respectively (in the usual predicate logic nota-
tion) as ∃x(P (x) ∧Q(x)) and ∀x(P (x)→ Q(x)).

We extend the language in a few directions. First, we use
its higher-order version for representing mathematical func-
tions and sets using lambda abstractions denoted as (Λx.M).
We also use another kind of lambda abstractions (λx.M)
for semantic composition through beta reduction. For exam-
ple, the semantic representation of “the range of y = x2 is
y ≥ 0” can be derived as follows:

[[the range of y = x2 is y ≥ 0]]
→ [[is]] [[y ≥ 0]] ([[the range of]] [[y = x2]])
→ (λu.λv.(v=u)) [[y ≥ 0]] ([[the range of]] [[y = x2]])
→ ([[the range of]] [[y = x2]]) = [[y ≥ 0]]
→ (λf.Λy.(∃w; y=f(w)) (Λx.x2)) = (Λy.(y≥0))
→ Λy.(∃w; y=(Λx.x2)w)=Λy.(y≥0)

The terms (and formulas) in the logic are typed as in the
usual simply-typed lambda calculus. In addition to the type
of truth values (Bool), we define basic types for real num-
bers (R), integers (Z), etc., and also polymorphic types such
as lists of type α (ListOf α). These types are utilized both
for organizing the knowledge-base (a large set of defining
axioms for predicates and functions) and for the semantic
disambiguation of the natural language sentences by the se-
lectional restrictions of the words.

Finally, we add two operators for representing impera-
tive sentences in the math problems. One denotes a request
for a proof of a formula φ: Show[φ]. The other denotes
a request for finding values satisfying a condition φ(x):
Find(x)[φ(x)]. Hereafter, we call them directives. For in-
stance, a problem: “Determine the range of c s.t. x2+x+c =
0 has two real solutions” can be written as a Find directive:

Find(c)

[
∃x1∈R;∃x2∈R;x1 6= x2;
x21 + x1 + c = 0;x22 + x2 + c = 0

]
.

1099

Semantic Composition through CCG Parsing
The semantic representation of a sentence is composed using
Combinatory Categorial Grammar (CCG) (Steedman 2001).
In a CCG grammar, a handful of grammar rules are used to
compose sentences from lexical items defined in a lexicon.
A lexical item is a triple of a word, its category, and a se-
mantic function. The category is either a basic category (S
for sentence, NP for noun phrase, etc.) or a function cate-
gory of the form X/Y or X\Y , where X and Y are again
categories. A word of category X/Y and X\Y takes its ar-
gument of category Y to form a phrase of category X . The
direction of slashes specifies whether the argument phrase
precedes (\) the function word or succeeds (/) it. A gram-
mar rule specifies how to combine the categories and the
semantic functions in parallel. Two examples of such rules
are forward application (>) and forward composition (>B):

X/Y : f + Y : x→ X : fx (>)
X/Y : f + Y/Z : g → X/Z : λx.f(gx) (>B).

The usage of “is” as in “x is 1” can hence be defined as:

is := S\NP/NP : λy.λx.(x = y),

which equates the subject (x) and the object (y) NPs.
We have implemented a Japanese CCG grammar. The

overall design of the grammar follows the analysis by Bekki
(2010). In addition to the basic constructions, we covered
various phenomena including imperatives, focus particles
with logical effects (similar to English “too”, “only” etc.),
it-clefts, and argument-taking nouns. Our current lexicon
contains 6,000 lexical entries that define the associations be-
tween 1,600 word forms and 2,500 semantic functions.

We can in principle parse a sentence directly with the
CCG grammar. In fact, wide-coverage CCG grammars and
statistical parsers have been developed for several languages
including Japanese and English (Clark and Curran 2007;
Uematsu et al. 2013). They are however not directly appli-
cable for our purpose because the semantic analyses pro-
duced by their grammars are not detailed enough, and the
parsers are trained on newspaper text. We instead use a two-
step parsing strategy where a dependency analysis is used
as constraints on the structure of CCG parse trees, and a
symbolic CCG parser searches for a coherent analysis obey-
ing the constraints. In the experiments in the current paper,
we hand-corrected the dependency analysis produced by a
publicly available dependency parser (Kudo and Matsumoto
2002). We plan to retrain the parser on a dependency tree-
bank on math problem texts that is currently under develop-
ment.

Semantic Composition across Sentences
To handle a mixture of declarative sentences and imperative
sentences in a math problem, we define the denotation of a
discourse (i.e., a sequence of sentences) as a pair of formula
D, which denotes the declarative content of the discourse,
and a list of directives [I1, I2, . . .], which represents the con-
tent of the imperative sentences. A complication comes in
here because the declarative and imperative content of a dis-
course both depend on their preceding context.

For instance, the meanings of a noun phrase “the maxi-
mum value of x” and an imperative sentence “Find the value
of x” cannot be fully determined in isolation from its con-
text; the denotations of these expressions have to be defined
as functions of the meanings of the preceding context. To de-
rive the paired meanings of declarative and imperative con-
tent, we define two connectives & and⇒ as follows:

[[s1&s2]] = λc.((D1;D2), I1 ++I2)
[[s1 ⇒ s2]] = λc.((D1 → D2), I1 ++I2)

where

D1 = πD([[s1]]c) I1 = πI([[s1]]c)
D2 = πD([[s2]](c;D1)) I2 = πI([[s2]](c;D1)),

and πD and πI respectively stand for the projections from
a pair to its first and second elements. The declarative (D1)
and imperative (I1) content of s1 may thus depend on s1’s
preceding context c, which is passed as an argument of s1’s
semantic function [[s1]]. In actuality, the context is just a dy-
namic conjunctions (;) of the declarative content of preced-
ing sentences, which is accumulated along the logical struc-
ture among the sentences. The semantic function [[s2]] hence
receives the conjunction (c;D1) as its context regardless of
its relation (& or⇒) to s1.

Suppose we have the following lexical entries:

assume := S/S : λs.λc.(s(c), [])
find := S/NP : λt.λc.(>,Find(z)[c; t(c) = z]).

Assuming that the denotation2 of “the solutions of x2 = a”
is λc.Λx.(x2 = a), we have the denotations of the two sen-
tences, s1: “Assume a > 0” and s2: “Find the solutions of
x2 = a” as follows:

s1 : λc.(a > 0, [])
s2 : λc.(>,

[
Find(z)[c; (Λx.(x2 = a)) = z]

]
).

By combining them according to the above definition, and
then applying [[s1&s2]] to the empty context >, we have :

[[s1&s2]]> =(
(a > 0;>),

[
Find(z)

[
>; a > 0;
(Λx.(x2 = a)) = z

]])
.

Note that having (a > 0;>) in the first component is neces-
sary since when there are more sentences that follow s1 and
s2, the assumption a > 0 is still active there.

Formula Rewriting
The final output from the semantic composition is a formula
in ZF set theory. Although the expressiveness and the unifor-
mity of the semantic language is essential for understanding
problems in various sub-domain with a single system, it is
not practical to use the language directly as the vehicle of
inference. We thus hope to find a formula that is equivalent
to the initial input but can also be interpreted as a proposi-
tion expressed in a more manageable (especially decidable)

2The outer λc of λc.Λx.(x2 = a) actually does nothing since
its meaning does not depend on the context, but context-dependent
phrases such as “maximum of x” needs it to build its semantics.

1100

theory. Although it is not possible in a general setting, we
determined to start with a very simple procedure for that pur-
pose. Our hope is, by gradually adding sophistications to the
procedure, to reach a good characterization of the problems
that are solvable by a modestly trained average human.

Our current procedure is a greedy (no backtracking) appli-
cation of several types of equivalence-preserving rewriting
rules. Once we find a rewritten formula is in a sub-language
of ZF set theory that corresponds to the language of a local
theory such as real-closed field or Peano arithmetic, we stop
the rewriting and pass the formula to a solver (i.e., a decision
procedure or a theorem prover).

We currently use rewriting rules of the following types:
• Trivial transformations of a formula, such as
∃x(x=α ∧ φ(x))⇒ φ(α) and ∀x(x=α→φ(x))⇒ φ(α)
(x is not free in α in both rules)

• β-reduction of the Λ-terms
• Rewriting of the terms by computer algebra systems

(CASs): e.g., the calculation of the integrals and differ-
entiations in the formula

• Rewriting of the predicates and functions using their def-
initions in a knowledge-base (axioms). E.g.,:
is divisible by(n,m)⇒ ∃k∈Z(n = km)

distance((x1, y2), (x2, y2))⇒
√

(x1−x2)2 + (y1−y2)2

• Evaluation of predicates and functions by a program im-
plemented based on CASs

The last type of the rule is used for the predicates and func-
tions for which direct definitions in the form axioms are im-
practical. For instance, a function in the semantic language
is implemented to calculate the area of a region enclosed by
a set of curves defined by polynomials.

Reasoning with Computer Algebra and ATP
The current implementation of our problem solving pipeline
includes two solvers. One is a prover for the formulas on
integer arithmetic that is implemented in the Reduce com-
mand of Mathematica 9. The other is our implementation
of quantifier-elimination for real-closed field (RCF-QE). In
this section, we give a brief overview of the RCF-QE solver.

The first-order language of RCF consists of polynomial
equations and inequalities, boolean operators (∨,∧,→,¬
etc.), and quantifiers (∀,∃). Together with a mechanical
transformation from fractional roots and rational fractions of
polynomials, we can express many mathematical problems
in RCF. RCF allows quantifier-elimination (Tarski 1951): for
any RCF formula φ, we can algorithmically find an equiv-
alent quantifier-free formula ψ. It means that the theory of
RCF is decidable (we get > or ⊥ by QE on a closed for-
mula), and also we can find the value (or the set of values)
for x conditioned by an open formula φ(x) by solving a sys-
tem of equations and inequalities resulted from QE on φ(x).

The time complexity of the most widely-used RCF-QE
algorithm is doubly exponential in the number of variables
in the formula (Collins 1975). Intensive research pursuing a
practical QE algorithm has made much progress and resulted
in sophisticated algorithms implemented in, e.g., REDLOG
(Dolzmann and Sturm 1997), QEPCAD B (Brown 2003),

Table 1: A classification of the problems

Theory #Qs
Real Closed Field (RCF) 47
Peano Arithmetic (PA) 10

Transcendental Func. 23
ZF Set Theory RCF+PA 15

Other 4
total 99

and SyNRAC (Iwane et al. 2013). However, many interest-
ing problems including more than six variables are still out-
of-reach of the current QE algorithms.

To make things worse, the formulas produced by the me-
chanical translation tend to be ridiculously long. It is ba-
sically because of the redundancy in the mechanically de-
rived formulas. Such redundancy is however inevitable since
the translation is basically done word-by-word, without any
(theory-dependent) reasoning based on the global context.

We thus enhanced the practical efficiency of our RCF-QE
solver by introducing various techniques. They include (1)
specialised algorithms for formulas in certain forms (Loos
and Weispfenning 1993; Hong 1993; Iwane, Higuchi, and
Anai 2013), (2) simplification of the intermediate formu-
las (Wilson, Bradford, and Davenport 2012; Dolzmann and
Sturm 1995), (3) decomposition of the formulas into inde-
pendently solvable parts, and (4) parallel computation.

Experiments on University Entrance Exam
Math Problems

We applied our system to real university entrance exam
math problems. We first show an analysis of the mathemat-
ical content of the problems from the viewpoint of auto-
mated reasoning embedded in an end-to-end problem solv-
ing pipeline. We then show experimental results based on
two sorts of formal representations of the problems: one is
translated manually from the problems and the other is de-
rived semi-automatically from the linguistically annotated
problem texts. We thus evaluated the additional difficulty
due to the linguistic complexity of the problems.

Real Math Exams as a Benchmark for AR
The problems were taken from the entrance exams of seven
national universities in Japan (Hokkaido Univ., Tohoku U.,
Tokyo U., Nagoya U., Osaka U., Kyoto U., and Kyushu U.)
in year 1999. We chose year 1999 because a half of the more
recent data has been used in the development of the sys-
tem and the other half is kept for future use. In total, there
were 124 problems in 65 parts in the 1999 exams. From the
124 problems, we eliminated 25 problems that involve prob-
ability theory or combinatorics because they are not directly
translatable to our current semantic language.

The remaining 99 problems include various subjects such
as real and natural number arithmetic, 2D and 3D geometry,
linear algebra, precalculus, and calculus. Table 1 shows to
what theories of mathematics they are to be classified. The
problems classified in the first two rows had fairly clear signs

1101

that indicate the main parts of the inference required in the
problems can be framed either as a quantifier-elimination for
RCF and equation solving, or a theorem proving in PA. They
occupy approximately 60% of the problems.

The problems in the rest 40% are more problematic in
that we do not know any theory in which the problems can
be directly expressed and the reasoning can be carried out
practically. We also note here that it is not always easy to
mechanically determine whether or not a natural language
math problem can be expressed in a certain theory. See Q1-
Q3 below for instance:

Q1: Find the sides of the square whose perimeter is 4.
Q2: Find the perimeter of a circle whose radius is 1.
Q3: Find the maximum distance of two points on a cir-
cle whose radius is 1.

Despite the mutual overlaps in the concepts and wordings in
them, Q1 and Q3 are expressible in RCF but Q2 is not. This
is because Q2 essentially involves a transcendental number
π. We thus know no matter how we represent the problem
(e.g., by going back to the definition of integration), it is
never expressible in the language of RCF.

Nonetheless, we give a rough classification of the prob-
lems in “ZF set theory” group as follows. First, 23 of the
problems require some inference involving transcendental
functions (trigonometric functions and their inverse, loga-
rithm, and exponential). We found a half of them (12 prob-
lems) can be transformed to a formula in the language of
RCF by using the functions of CASs (integration, max/min
finding, and the calculation of limits) and replacement of
transcendental functions with variables (e.g., x := sin θ,
y := cos θ with a constraint x2 + y2 = 1). The procedures
are inevitably heuristic and we need further investigation to
see to what extent we can automate it in practice.

The 15 problems labeled “RCF+PA” involve both natural
numbers (or integers or rational numbers) and real numbers
in the problems. Most of them require either a proof for a
statement in the form of “... Show that the real number x is
natural/rational number,” or induction for proving a propo-
sition on the mixture of natural and real numbers.

For the last four problems labeled as “Other”, we could
not find appropriate formalization in any local theories. For
instance, one of them asks to find the shortest path on the
side-surface of a cone that connects the two ends of a di-
ameter of the bottom face. We here should note that current
categorization is based on informal observations on human
problem-solving procedures. Some of the problems may re-
quire stronger language and axioms to fulfill the true end-to-
end solution, and hence may be out of reach of the current
formal reasoning technologies. This is not very surprising
considering such a “basic fact” as Jordan Curve theorem (“a
simple closed curve in the 2D plane divides its complement
into two regions: inside and outside”) has only been proved
as late as in the 20th century (Veblen 1905).

Solving RCF Problems
As shown above, 40% of the problems (those categorized in
“ZF set theory”) are apparently not solvable in our current
system. We also found nine out of the ten problems catego-

Table 2: Results of Solving RCF Problems

Translation
Manual Semi-Auto

Solved 28 23
Time Out 12 14
Impl. Issue 4 2
No RCF Formula 2 2
Unknown Directive 1 1
Translation Error None 3
Grammar Design None 2

total 47 47

rized as “PA” in Table 1 could not be solved with our current
implementation based on a prover in Mathematica 9.0 even
when we translate the problems into first-order formulas as
simply as possible. We thus focus here on the 47 problems
categorized as “RCF” problems to have an estimate on the
practicality of solving them in a true end-to-end setting.

To diagnose the failures more closely, we tested the sys-
tem in two settings. In the first setting, we manually trans-
lated the 47 “RCF” problems to our semantic language. The
translation was done as faithfully as possible to the textual
expressions of the problems. In the second setting, we de-
rived the logical translations of the problems from their lin-
guistically annotated text. The annotations (for the 47 prob-
lems) included 865 dependency edges for 111 sentences, in
which 81% of the edges were directly taken from the output
of a dependency parser and the rest were by manual correc-
tions, 29 paraphrases of coreferential phrases, 360 seman-
tic annotations for math expressions, and 85 inter-sentence
logical connectives. Two-thirds of the inter-sentence logi-
cal connectives were conjunctions (&; see §2) and the rest
were implications (⇒; see §2). In the course of the semi-
automatic translation, we found most problems included a
few words (or unknown usages of known words) not in our
current CCG lexicon. We added 67 lexical entries in total
to cover such words, most of which were different expres-
sions for the concepts already in the semantic vocabulary.
The experimental results hence should be interpreted as an
upper-bound disregarding the out-of-vocabulary problem.

We classified the results on the 47 problems as in Table 2.
The first row (labeled “Solved”) shows the number of the
problems for which the system produced correct answers
(i.e., the correct values or conditions for “Find” directives
and a proof by QE for “Show” directives). The system thus
solved roughly 60% of the problems on the manual transla-
tions and 50% on the semi-automatic translations.

The second row (“Time Out”) shows the number of prob-
lems on which the computation time exceeded the pre-
determined threshold (15 min). We are quite happy with the
small difference between the numbers of time-out on manual
and semi-auto translation. The semi-auto translation often
produces massive formula as a result of mechanical, strictly
word-by-word translation. The ability of the QE solver in
handling such huge formulas gives much freedom in pursing
principled analysis of natural language semantics without
worrying much about the computational cost in the solver.

1102

Table 3: Results on Univ. Tokyo Mock Test

Science Course (full score: 120)
Test set Translation Human

Manual Semi-Auto Avg.
2013 Jul 40 40 21.8
2012 Nov 40 40 32.5
2012 Jul 25 18 29.8

Humanities Course (full score: 80)
Test set Translation Human

Manual Semi-Auto Avg.
2013 Jul 40 40 24.9
2012 Nov 20 8 25.7
2012 Jul 40 40 30.9

The third row (“Impl. Issue”) shows the number of the
problems on which the system failed to solve due to several
technical issues in interfacing with the CAS systems. The
sum of the problems in the first three rows (Solved+ Time
Our + Impl. Issue) are those for which our simple rewrit-
ing algorithm found a formula expressible in RCF. There
were only two problems on which the algorithm failed (both
on the manual and the semi-auto translations) to find such
a formula (“No RCF Formula”). In one of them, we need
to reconstruct the shape (i.e., defining inequalities) of an in-
finitely long triangular prism only by knowing the shapes of
its cut sections with a moving plane. The reasoning is not
very difficult but in the current framework we cannot handle
it unless introducing many ad-hoc rewriting rules.

One problem (“Unknown Directive”) could not be han-
dled because it asks for a natural language description of a
shape (ellipse) rather than its defining equation. For three
problems, the semi-automatic translation produced wrong
formulas (“Translation Error”). This was caused because the
CCG derivation trees produced by the two-step parsing may
include both wrong and correct translations due to the am-
biguity of the grammar. We currently use a simple ranking
function based on the shape of derivation trees to select a
translation. The failures indicate that in some cases we need
to utilize the solver to select a correct translation; wrong
translations often give non-sensical answers, such as “there
is no answer”, but we can know it only by solving. Finally,
in two problems we found grammatical constructions that
cannot be properly analyzed within the current basic design
of our CCG grammar (“Grammar Design”).

Experiments on Tokyo Univ. Entrance
Examination Mock Tests

We evaluated the prototype system on the University of
Tokyo entrance exam mock tests held by one of the largest
cram schools in Japan (Yoyogi Seminar). The problems in
the mock tests are roughly at the same difficulty level as the
real entrance exams. There are two types of tests, one is for
future applicants for the Univ. of Tokyo science courses and
the other is for humanities courses. Both types of the mock
tests are sat by thousands of test takers.

The experimental setting is the same as before: we run
the system both on manual translation of the problems and
those semi-automatically derived from annotated texts. Ta-
ble 3 shows the results on the six latest test sets that were
available to us at the time of writing. The successfully solved
problems included those on 2D and 3D geometry, linear al-
gebra, calculus and natural number arithmetic.

On the semi-automatic setting, the system failed to solve
two problems that were solved on their manual translations.
One of the failures was due to a wrong translation of “two”
in a problem that starts by saying “You have two functions:
f(x) = ax+ b and g(x) = x+ 1.” From several conditions
given later in the problem, we eventually find a = 1 and
b = 1; hence the functions f and g are actually identical;
i.e., there is only one function. Meanwhile, on another prob-
lem, the RCF-QE solver failed to process both the manually
and semi-automatically translated inputs within an allotted
time. Later inspection revealed that a modest estimate of the
necessary computation time is far beyond the capacity of
any conceivable hardware: in the course of the computation,
a decomposition of R7 into more than 1051 cells have to be
considered. It clearly indicates the need for further investi-
gation on the problem representations to proceed much far
in the direction envisaged in the current paper.

Overall, the results are encouraging. In four out of the
six test sets, the scores attained by the prototype system
matched the averages of human test takers. We should note
again that the results are optimistic estimates of the perfor-
mance of a true end-to-end system wherein the linguistic an-
notations on the text are automatically produced by language
processing. The results however show that the overall archi-
tecture of our system is a reasonable choice at least as a first
step toward a true end-to-end wide coverage problem solver.

Related Work
Since Bobrow’s STUDENT (1964), there is a long line of AI
work on solving math problems written in natural language
(Mukherjee and Garain (2008) gives a recent survey). Most
previous work however focused on developing an intermedi-
ate language specialized to a certain type of problems, such
as arithmetic word problems, rather than covering various
problems in a single formal system (e.g., ZF set theory) as in
our approach. Meanwhile, there have been several proposals
and attempts to equip proof verifiers and provers with (con-
trolled) natural language interfaces (Ganesalingam 2009;
Cramer, Koepke, and Schröder 2011; Ranta 2011). To our
knowledge, however, no previous work in that line have
quantitatively evaluated such systems on real math text.

Conclusion
We have presented a prototype of a math problem solving
system wherein a grammar-based translation of math prob-
lem text is combined with automated reasoner, through a
equivalence-preserving formula rewriting. Empirical evalu-
ation on real and mock university entrance exam problems
showed positive results that indicate the viability of a true
end-to-end problem solving system in the direction pointed
in the current paper.

1103

Acknowledgments
This research was supported by Todai Robot Project at Na-
tional Institute of Informatics. We are gratefully acknowl-
edge Gakko Hojin Takamiya Gakuen Yoyogi Seminar for
the University of Tokyo entrance exam mock test data.

References
Bekki, D. 2010. Nihongo-bunpou no keishiki-riron (in
Japanese). Kuroshio Shuppan.
Bobrow, D. G. 1964. Natural language input for a computer
problem solving system. Ph.D. Dissertation, Massachusetts
Institute of Technology.
Brown, C. W. 2003. QEPCAD B - a program for com-
puting with semi-algebraic sets using CADs. SIGSAM Bull.
37(4):97–108.
Clark, S., and Curran, J. R. 2007. Wide-coverage efficient
statistical parsing with ccg and log-linear models. Comput.
Linguist. 33(4):493–552.
Collins, G. E. 1975. Quantifier elimination for real closed
fields by cylindrical algebraic decomposition. In Automata
Theory and Formal Languages 2nd GI Conference Kaiser-
slautern, May 20-23, 1975, volume 33 of Lecture Notes in
Computer Science, 134–183. Springer-Verlag.
Cramer, M.; Koepke, P.; and Schröder, B. 2011. Parsing and
disambiguation of symbolic mathematics in the naproche
system. In Proceedings of the 18th Calculemus and 10th
International Conference on Intelligent Computer Mathe-
matics, MKM’11, 180–195. Berlin, Heidelberg: Springer-
Verlag.
Dolzmann, A., and Sturm, T. 1995. Simplification of
quantifier-free formulas over ordered fields. Journal of Sym-
bolic Computation 24:209–231.
Dolzmann, A., and Sturm, T. 1997. REDLOG: computer
algebra meets computer logic. SIGSAM Bull. (2):2–9.
Ganesalingam, M. 2009. The Language of Mathematics.
Ph.D. Dissertation, University of Cambridge.
Groenendijk, J., and Stokhof, M. 1991. Dynamic predicate
logic. Linguistics and Philosophy 14(1):39–100.
Haghighi, A., and Klein, D. 2010. Coreference resolu-
tion in a modular, entity-centered model. In Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, 385–393. Los Angeles, California: Asso-
ciation for Computational Linguistics.
Hong, H. 1993. Quantifier elimination for formulas con-
strained by quadratic equations. In Proceedings of the 1993
international symposium on Symbolic and algebraic compu-
tation, ISSAC ’93, 264–274. New York, NY, USA: ACM.
Iwane, H.; Yanami, H.; Anai, H.; and Yokoyama, K. 2013.
An effective implementation of symbolic-numeric cylin-
drical algebraic decomposition for quantifier elimination.
Theor. Comput. Sci. 479:43–69.
Iwane, H.; Higuchi, H.; and Anai, H. 2013. An effec-
tive implementation of a special quantifier elimination for
a sign definite condition by logical formula simplification.
In CASC, 194–208.

Kudo, T., and Matsumoto, Y. 2002. Japanese dependency
analysis using cascaded chunking. In Proceedings of the
6th Conference on Natural Language Learning - Volume 20,
COLING-02, 1–7. Stroudsburg, PA, USA: Association for
Computational Linguistics.
Lin, Z.; Kan, M.-Y.; and Ng, H. T. 2009. Recognizing
implicit discourse relations in the penn discourse treebank.
In Proceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 1 - Volume 1,
EMNLP ’09, 343–351. Stroudsburg, PA, USA: Association
for Computational Linguistics.
Loos, R., and Weispfenning, V. 1993. Applying linear quan-
tifier elimination. The Computer Journal 36(5):450–462.
McCarthy, J. 1964. A tough nut for proof procedures. Ai
memo, MIT.
Mukherjee, A., and Garain, U. 2008. A review of methods
for automatic understanding of natural language mathemat-
ical problems. Artif. Intell. Rev. 29(2):93–122.
Ranta, A. 2011. Translating between language and logic:
What is easy and what is difficult. In Bjørner, N., and
Sofronie-Stokkermans, V., eds., Automated Deduction –
CADE-23, volume 6803 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg. 5–25.
Steedman, M. 2001. The Syntactic Process. Bradford
Books. Mit Press.
Tarski, A. 1951. A Decision Method for Elementary Algebra
and Geometry. Berkeley: University of California Press.
Uematsu, S.; Matsuzaki, T.; Hanaoka, H.; Miyao, Y.; and
Mima, H. 2013. Integrating multiple dependency corpora
for inducing wide-coverage japanese ccg resources. In Pro-
ceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1042–
1051. Sofia, Bulgaria: Association for Computational Lin-
guistics.
Veblen, O. 1905. Theory on plane curves in non-metrical
analysis situs. Transactions of the American Mathematical
Society 6(1):pp. 83–98.
Wilson, D. J.; Bradford, R. J.; and Davenport, J. H.
2012. Speeding up cylindrical algebraic decomposition by
Gröbner bases. CoRR abs/1205.6285.

1104

