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Abstract

We deal with embedding a large scale knowledge graph com-
posed of entities and relations into a continuous vector space.
TransE is a promising method proposed recently, which is
very efficient while achieving state-of-the-art predictive per-
formance. We discuss some mapping properties of relations
which should be considered in embedding, such as reflex-
ive, one-to-many, many-to-one, and many-to-many. We note
that TransE does not do well in dealing with these proper-
ties. Some complex models are capable of preserving these
mapping properties but sacrifice efficiency in the process. To
make a good trade-off between model capacity and efficiency,
in this paper we propose TransH which models a relation as a
hyperplane together with a translation operation on it. In this
way, we can well preserve the above mapping properties of
relations with almost the same model complexity of TransE.
Additionally, as a practical knowledge graph is often far from
completed, how to construct negative examples to reduce
false negative labels in training is very important. Utilizing
the one-to-many/many-to-one mapping property of a relation,
we propose a simple trick to reduce the possibility of false
negative labeling. We conduct extensive experiments on link
prediction, triplet classification and fact extraction on bench-
mark datasets like WordNet and Freebase. Experiments show
TransH delivers significant improvements over TransE on
predictive accuracy with comparable capability to scale up.

Introduction
Knowledge graphs such as Freebase (Bollacker et al. 2008),
WordNet (Miller 1995) and GeneOntology (Ashburner et
al. 2000) have become very important resources to support
many AI related applications, such as web/mobile search,
Q&A, etc. A knowledge graph is a multi-relational graph
composed of entities as nodes and relations as different types
of edges. An instance of edge is a triplet of fact (head entity,
relation, tail entity) (denoted as (h, r, t)). In the past decade,
there have been great achievements in building large scale
knowledge graphs, however, the general paradigm to support
computing is still not clear. Two major difficulties are: (1) A
knowledge graph is a symbolic and logical system while
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applications often involve numerical computing in continu-
ous spaces; (2) It is difficult to aggregate global knowledge
over a graph. The traditional method of reasoning by formal
logic is neither tractable nor robust when dealing with
long range reasoning over a real large scale knowledge
graph. Recently a new approach has been proposed to deal
with the problem, which attempts to embed a knowledge
graph into a continuous vector space while preserving
certain properties of the original graph (Socher et al. 2013;
Bordes et al. 2013a; Weston et al. 2013; Bordes et al. 2011;
2013b; 2012; Chang, Yih, and Meek 2013). For example,
each entity h (or t) is represented as a point h (or t) in
the vector space while each relation r is modeled as an
operation in the space which is characterized by an a vector
r, such as translation, projection, etc. The representations
of entities and relations are obtained by minimizing a
global loss function involving all entities and relations.
As a result, even the embedding representation of a single
entity/relation encodes global information from the whole
knowledge graph. Then the embedding representations can
be used to serve all kinds of applications. A straightforward
one is to complete missing edges in a knowledge graph. For
any candidate triplet (h, r, t), we can confirm the correctness
simply by checking the compatibility of the representations
h and t under the operation characterized by r.

Generally, knowledge graph embedding represents an
entity as a k-dimensional vector h (or t) and defines a
scoring function fr(h, t) to measure the plausibility of the
triplet (h, r, t) in the embedding space. The score function
implies a transformation r on the pair of entities which
characterizes the relation r. For example, in translation
based method (TransE) (Bordes et al. 2013b), fr(h, t) ,
‖h+r−t‖`1/2 , i.e., relation r is characterized by the translat-
ing (vector) r. With different scoring functions, the implied
transformations vary between simple difference (Bordes et
al. 2012), translation (Bordes et al. 2013b), affine (Chang,
Yih, and Meek 2013), general linear (Bordes et al. 2011),
bilinear (Jenatton et al. 2012; Sutskever, Tenenbaum, and
Salakhutdinov 2009), and nonlinear transformations (Socher
et al. 2013). Accordingly the model complexities (in terms
of number of parameters) vary significantly. (Please refer to
Table 1 and Section “Related Works” for details.)

Among previous methods, TransE (Bordes et al. 2013b) is
a promising one as it is simple and efficient while achieving
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state-of-the-art predictive performance. However, we find
that there are flaws in TransE when dealing with relations
with mapping properties of reflexive/one-to-many/many-
to-one/many-to-many. Few previous work discuss the role
of these mapping properties in embedding. Some advanced
models with more free parameters are capable of preserving
these mapping properties, however, the model complexity
and running time is significantly increased accordingly.
Moreover, the overall predictive performances of the
advanced models are even worse than TransE (Bordes et al.
2013b). This motivates us to propose a method which makes
a good trad-off between model complexity and efficiency
so that it can overcome the flaws of TransE while inheriting
the efficiency.

In this paper, we start by analyzing the problems of
TransE on reflexive/one-to-many/many-to-one/many-to-
many relations. Accordingly we propose a method named
translation on hyperplanes (TransH) which interprets a
relation as a translating operation on a hyperplane. In
TransH, each relation is characterized by two vectors, the
norm vector (wr) of the hyperplane, and the translation
vector (dr) on the hyperplane. For a golden triplet (h, r, t),
that it is correct in terms of worldly facts, the projections
of h and t on the hyperplane are expected to be connected
by the translation vector dr with low error. This simple
method overcomes the flaws of TransE in dealing with
reflexive/one-to-many/many-to-one/many-to-many rela-
tions while keeping the model complexity almost the same
as that of TransE. Regarding model training, we point out
that carefully constructing negative labels is important in
knowledge embedding. By utilizing the mapping properties
of relations in turn, we propose a simple trick to reduce
the chance of false negative labeling. We conduct extensive
experiments on the tasks of link prediction, triplet clas-
sification and fact extraction on benchmark datasets like
WordNet and Freebase, showing impressive improvements
on different metrics of predictive accuracy. We also show
that the running time of TransH is comparable to TransE.

Related Work
The most related work is briefly summarized in Table 1. All
these methods embed entities into a vector space and en-
force the embedding compatible under a scoring function.
Different models differ in the definition of scoring functions
fr(h, r) which imply some transformations on h and t.

TransE (Bordes et al. 2013b) represents a relation by
a translation vector r so that the pair of embedded enti-
ties in a triplet (h, r, t) can be connected by r with low
error. TransE is very efficient while achieving state-of-the-
art predictive performance. However, it has flaws in dealing
with reflexive/one-to-many/many-to-one/many-to-many re-
lations.

Unstructured is a simplified case of TransE, which con-
siders the graph as mono-relational and sets all translations
r = 0, i.e., the scoring function is ‖h − t‖. It is used as a
naive baseline in (Bordes et al. 2012; 2013b). Obviously it
cannot distinguish different relations.

Distant Model (Bordes et al. 2011) introduces two inde-
pendent projections to the entities in a relation. It represents

a relation by a left matrix Wrh and a right matrix Wrt. Dis-
similarity is measured by L1 distance between Wrhh and
Wrtt. As pointed out by (Socher et al. 2013), this model is
weak in capturing correlations between entities and relations
as it uses two separate matrices.

Bilinear Model (Jenatton et al. 2012; Sutskever, Tenen-
baum, and Salakhutdinov 2009) models second-order cor-
relations between entity embeddings by a quadratic form:
h>Wrt. Thus, each component of an entity interacts with
each component of the other entity.

Single Layer Model (Socher et al. 2013) introduces
nonlinear transformations by neural networks. It concate-
nates h and t as an input layer to a non-linear hidden
layer then the linear output layer gives the resulting score:
u>r f(Wrhh + Wrtt + br). A similar structure is proposed
in (Collobert and Weston 2008).

NTN (Socher et al. 2013) is the most expressive model
so far. It extends the Single Layer Model by considering
the second-order correlations into nonlinear transformation
(neural networks). The score function is u>r f(h>Wrt +
Wrhh + Wrtt + br). As analyzed by the authors, even
when the tensor Wr degenerates to a matrix, it covers all
the above models. However, the model complexity is much
higher, making it difficult to handle large scale graphs.

Beyond these works directly targeting the same problem
of embedding knowledge graphs, there are extensive related
works in the wider area of multi-relational data modeling,
matrix factorization, and recommendations. Please refer to
the Introduction part of (Bordes et al. 2013b).

Embedding by Translating on Hyperplanes
We first describe common notations. h denotes a head en-
tity, r denotes a relation and t denotes a tail entity. The bold
letters h, r, t denote the corresponding embedding represen-
tations. ∆ denotes the set of golden triplets, and ∆′ denotes
the set of incorrect triplets. Hence we use (h, r, t) ∈ ∆ to
state “(h, r, t) is correct”. E is the set of entities. R is the set
of relations.

Relations’ Mapping Properties in Embedding
As introduced in Introduction & Related Work (Table 1),
TransE models a relation r as a translation vector r ∈ Rk

and assumes the error ‖h + r − t‖`1/`2 is low if (h, r, t) is
a golden triplet. It applies well to irreflexive and one-to-one
relations but has problems when dealing with reflexive or
many-to-one/one-to-many/many-to-many relations.

Considering the ideal case of no-error embedding where
h + r − t = 0 if (h, r, t) ∈ ∆, we can get the following
consequences directly from TransE model.

• If (h, r, t) ∈ ∆ and (t, r, h) ∈ ∆, i.e., r is a reflexive map,
then r = 0 and h = t.

• If ∀i ∈ {0, . . . ,m}, (hi, r, t) ∈ ∆, i.e., r is a many-to-one
map, then h0 = . . . = hm. Similarly, if ∀i, (h, r, ti) ∈ ∆,
i.e., r is a one-to-many map, then t0 = . . . = tm.

The reason leading to the above consequences is, in
TransE, the representation of an entity is the same when in-
volved in any relations, ignoring distributed representations
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Table 1: Different embedding models: the scoring functions fr(h, t) and the model complexity (the number of parameters). ne
and nr are the number of unique entities and relations, respectively. It is the often case that nr � ne. k is the dimension of
embedding space. s is the number of hidden nodes of a neural network or the number of slices of a tensor.

Model Score function fr(h, t) # Parameters

TransE (Bordes et al. 2013b) ‖h+ r− t‖`1/2 , r ∈ Rk O(nek + nrk)

Unstructured (Bordes et al. 2012) ‖h− t‖22 O(nek)

Distant (Bordes et al. 2011) ‖Wrhh−Wrtt‖1, Wrh,Wrt ∈ Rk×k O(nek + 2nrk
2)

Bilinear (Jenatton et al. 2012) h>Wrt,Wr ∈ Rk×k O(nek + nrk
2)

Single Layer u>r f(Wrhh+Wrtt+ br) O(nek + nr(sk + s))
ur,br ∈ Rs,Wrh,Wrt ∈ Rs×k

NTN (Socher et al. 2013) u>r f(h
>Wrt+Wrhh+Wrtt+ br) O(nek + nr(sk

2 + 2sk + 2s))
ur,br ∈ Rs,Wr ∈ Rk×k×s,Wrh,Wrt ∈ Rs×k

TransH (this paper) ‖(h−w>r hwr) + dr − (t−w>r twr)‖22 O(nek + 2nrk)
wr,dr ∈ Rk

h t
r

(a) TransE

h
t

dr

t⊥

h⊥

(b) TransH

Figure 1: Simple illustration of TransE and TransH.

of entities when involved in different relations. Although
TransE does not enforce h + r − t = 0 for golden triplets,
it uses a ranking loss to encourage lower error for golden
triplets and higher error for incorrect triplets (Bordes et al.
2013b), the tendency in the above propositions still exists.

Translating on Hyperplanes (TransH)

To overcome the problems of TransE in modeling
reflexive/one-to-many/many-to-one/many-to-many re-
lations, we propose a model which enables an entity to
have distributed representations when involved in different
relations. As illustrated in Figure 1, for a relation r, we
position the relation-specific translation vector dr in the
relation-specific hyperplane wr (the normal vector) rather
than in the same space of entity embeddings. Specifically,
for a triplet (h, r, t), the embedding h and t are first
projected to the hyperplane wr. The projections are denoted
as h⊥ and t⊥, respectively. We expect h⊥ and t⊥ can be
connected by a translation vector dr on the hyperplane
with low error if (h, r, t) is a golden triplet. Thus we
define a scoring function ‖h⊥ + dr − t⊥‖22 to measure
the plausibility that the triplet is incorrect. By restricting

‖wr‖2 = 1, it is easy to get

h⊥ = h−w>r hwr, t⊥ = t−w>r twr.

Then the score function is

fr(h, t) = ‖(h−w>r hwr) + dr − (t−w>r twr)‖22.
The score is expected to be lower for a golden triplet and
higher for an incorrect triplet. We name this model TransH.
The model parameters are, all the entities’ embeddings,
{ei}|E|i=1, all the relations’ hyperplanes and translation vec-
tors, {(wr,dr)}|R|r=1.

In TransH, by introducing the mechanism of projecting to
the relation-specific hyperplane, it enables different roles of
an entity in different relations/triplets.

Training
To encourage discrimination between golden triplets and in-
correct triplets, we use the following margin-based ranking
loss:

L =
∑

(h,r,t)∈∆

∑
(h′,r′,t′)∈∆′

(h,r,t)

[fr(h, t) + γ − fr′(h′, t′)]+,

where [x]+ , max(0, x), ∆ is the set of positive (golden)
triplets, ∆′(h,r,t) denotes the set of negative triplets con-
structed by corrupting (h, r, t), γ is the margin separating
positive and negative triplets. The next subsection will in-
troduce the details of constructing ∆′(h,r,t).

The following constraints are considered when we mini-
mize the loss L:

∀e ∈ E, ‖e‖2 ≤ 1, //scale (1)

∀r ∈ R, |w>r dr|/‖dr‖2 ≤ ε, //orthogonal (2)
∀r ∈ R, ‖wr‖2 = 1, //unit normal vector (3)

where the constraint (2) guarantees the translation vector dr
is in the hyperplane. Instead of directly optimizing the loss
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function with constraints, we convert it to the following un-
constrained loss by means of soft constraints:

L =
∑

(h,r,t)∈∆

∑
(h′,r′,t′)∈∆′

(h,r,t)

[
fr(h, t) + γ − fr′(h′, t′)

]
+

+ C

{∑
e∈E

[
‖e‖22 − 1

]
+
+
∑
r∈R

[
(w>r dr)

2

‖dr‖22
− ε2

]
+

}
, (4)

where C is a hyper-parameter weighting the importance of
soft constraints.

We adopt stochastic gradient descent (SGD) to minimize
the above loss function. The set of golden triplets (the
triplets from the knowledge graph) are randomly traversed
multiple times. When a golden triplet is visited, a negative
triplet is randomly constructed (according to the next sec-
tion). After a mini-batch, the gradient is computed and the
model parameters are updated. Notice that the constraint (3)
is missed in Eq. (4). Instead, to satisfy constraint (3),
we project each wr to unit `2-ball before visiting each
mini-batch.

Reducing False Negative Labels
As described in the previous section, training involves con-
structing negative triplets for a golden triplet. Previous meth-
ods simply get negative triplets by randomly corrupting the
golden triplet. For example, in TransE, for a golden triplet
(h, r, t), a negative triplet (h′, r, t′) is obtained by randomly
sampling a pair of entities (h′, t′) from E. However, as a
real knowledge graph is often far from completed, this way
of randomly sampling may introduce many false negative
labels into training.

We adopt a different approach for TransH. Basically, we
set different probabilities for replacing the head or tail entity
when corrupting the triplet, which depends on the mapping
property of the relation, i.e., one-to-many, many-to-one or
many-to-many. We tend to give more chance to replacing
the head entity if the relation is one-to-many and give more
chance to replacing the tail entity if the relation is many-
to-one. In this way, the chance of generating false negative
labels is reduced. Specifically, among all the triplets of a
relation r, we first get the following two statistics: (1) the
average number of tail entities per head entity, denoted as
tph; (2) the average number of head entities per tail en-
tity, denoted as hpt. Then we define a Bernoulli distribution
with parameter tph

tph+hpt for sampling: given a golden triplet

(h, r, t) of the relation r, with probability tph
tph+hpt we cor-

rupt the triplet by replacing the head, and with probability
hpt

tph+hpt we corrupt the triplet by replacing the tail.

Experiments
We empirically study and evaluate related methods on three
tasks: link prediction (Bordes et al. 2013b), triplets clas-
sification (Socher et al. 2013), and relational fact extrac-
tion (Weston et al. 2013). All three tasks evaluate the accu-
racy of predicting unseen triplets, from different viewpoints
and application context.

Table 2: Data sets used in the experiments.
Dataset #R #E #Trip. (Train / Valid / Test)

WN18 18 40,943 141,442 5,000 5,000
FB15k 1,345 14,951 483,142 50,000 59,071
WN11 11 38,696 112,581 2,609 10,544
FB13 13 75,043 316,232 5,908 23,733
FB5M 1,192 5,385,322 19,193,556 50,000 59,071

Link Prediction
Used in (Bordes et al. 2011; 2013b), this task is to complete
a triplet (h, r, t) with h or t missing, i.e., predict t given
(h, r) or predict h given (r, t). Rather than requiring one
best answer, this task emphasizes more on ranking a set of
candidate entities from the knowledge graph.

We use the same two data sets which are used in
TransE (Bordes et al. 2011; 2013b): WN18, a subset of
Wordnet; FB15k, a relatively dense subgraph of Freebase
where all entities are present in Wikilinks database 1. Both
are released in (Bordes et al. 2013b). Please see Table 2 for
more details.

Evaluation protocol. We follow the same protocol in
TransE (Bordes et al. 2013b): For each testing triplet
(h, r, t), we replace the tail t by every entity e in the knowl-
edge graph and calculate a dissimilarity score (according to
the scoring function fr) on the corrupted triplet (h, r, e) .
Ranking the scores in ascending order, we then get the rank
of the original correct triplet. Similarly, we can get another
rank for (h, r, t) by corrupting the head h. Aggregated over
all the testing triplets, two metrics are reported: the aver-
aged rank (denoted as Mean), and the proportion of ranks
not larger than 10 (denoted as Hits@10). This is called the
“raw” setting. Notice that if a corrupted triplet exists in the
knowledge graph, as it is also correct, ranking it before the
original triplet is not wrong. To eliminate this factor, we re-
move those corrupted triplets which exist in either training,
valid, or testing set before getting the rank of each testing
triplet. This setting is called “filt”. In both settings, a lower
Mean is better while a higher Hits@10 is better.

Implementation. As the data sets are the same, we
directly copy experimental results of several baselines
from (Bordes et al. 2013b). In training TransH, we use
learning rate α for SGD among {0.001, 0.005, 0.01},
the margin γ among {0.25, 0.5, 1, 2}, the embedding di-
mension k among {50, 75, 100}, the weight C among
{0.015625, 0.0625, 0.25, 1.0}, and batch size B among
{20, 75, 300, 1200, 4800}. The optimal parameters are de-
termined by the validation set. Regarding the strategy of
constructing negative labels, we use “unif” to denote the tra-
ditional way of replacing head or tail with equal probability,
and use “bern.” to denote reducing false negative labels by
replacing head or tail with different probabilities. Under the
“unif” setting, the optimal configurations are: α = 0.01,
γ = 1, k = 50, C = 0.25, and B = 75 on WN18;
α = 0.005, γ = 0.5, k = 50, C = 0.015625, and B = 1200
on FB15k. Under “bern” setting, the optimal configurations

1http://code.google.com/p/wiki-links/
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are: α = 0.01, γ = 1, k = 50, C = 0.25, and B = 1200
on WN18; α = 0.005, γ = 0.25, k = 100, C = 1.0, and
B = 4800 on FB15k. For both datasets, we traverse all the
training triplets for 500 rounds.

Results. The results are reported in Table 3. The sim-
ple models TransE, TransH, and even the naive baseline
Unstructured (i.e., TransE without translation) outperform
other approaches on WN18 in terms of the Mean metric.
This may be because the number of relations in WN18 is
quite small so that it is acceptable to ignore the different
types of relations. On FB15k, TransH consistently outper-
forms the counterparts. We hypothesize that the improve-
ments are due to the relaxed geometric assumption com-
pared with TransE so that the reflexive/one-to-many/many-
to-one/many-to-many relations can be better handled. To
confirm the point, we dig into the detailed results of dif-
ferent mapping categories of relations, as reported in Ta-
ble 4. Within the 1,345 relations, 24% are one-to-one, 23%
are one-to-many, 29% are many-to-one, and 24% are many-
to-many2. Overall, TransE is the runner up on FB15k. How-
ever, its relative superiorities on one-to-many and many-to-
one relations are not as good as those on one-to-one re-
lations. TransH brings promising improvements to TransE
on one-to-many, many-to-one, and many-to-many relations.
Outstripping our expectations, the performance on one-to-
one is also significantly improved (> 60%). This may be
due to the “graph” property: entities are connected with
relations so that better embeddings of some parts lead to
better results on the whole. Table 5 reports the results of
Hits@10 on some typical one-to-many/many-to-one/many-
to-many/reflexive relations. The imrovement of TransH over
TransE on these relations are very promising.

Triplets Classification
This task is to confirm whether a given triplet (h, r, t) is cor-
rect or not, i.e., binary classification on a triplet. It is used
in (Socher et al. 2013) to evaluate NTN model.

Three data sets are used in this task. Two of them are
the same as in NTN (Socher et al. 2013): WN11, a sub-
set of WordNet; FB13, a subset of Freebase. As WN11 and
FB13 contain very small number of relations, we also use
the FB15k data set which contains much more relations. See
Table 2 for details.

Evaluation protocol. We follow the same protocol in
NTN (Socher et al. 2013). Evaluation of classification
needs negative labels. The released sets of WN11 and
FB13 already contain negative triplets which are constructed
by (Socher et al. 2013), where each golden triplet is cor-
rupted to get one negative triplet. For FB15k, we construct
the negative triplets following the same procedure used for
FB13 in (Socher et al. 2013).

The decision rule for classification is simple: for a triplet
(h, r, t), if the dissimilarity score (by the score function

2For each relation r, we compute averaged number of tails per
head (tphr), averaged number of head per tail (hptr). If tphr <
1.5 and hptr < 1.5, r is treated as one-to-one. If tphr ≥ 1.5
and hptr ≥ 1.5, r is treated as a many-to-many. If hptr < 1.5
and tphr ≥ 1.5, r is treated as one-to-many. If hptr ≥ 1.5 and
tphr < 1.5, r is treated as many-to-one.

Table 5: Hits@10 of TransE and TransH on some exam-
ples of one-to-many∗, many-to-one†, many-to-many‡, and
reflexive§ relations.

Relation Hits@10 (TransE / TransH)
Left Right

football position/players∗ 100 / 100 16.7 / 22.2
production company/films∗ 65.6 / 85.6 9.3 / 16.0
director/film∗ 75.8 / 89.6 50.5 / 80.2

disease/treatments† 33.3 / 66.6 100 / 100
person/place of birth† 30.0 / 37.5 72.1 / 87.6
film/production companies† 11.3 / 21.0 77.6 / 87.8

field of study/students majoring‡24.5 / 66.0 28.3 / 62.3
award winner/awards won‡ 40.2 / 87.5 42.8 / 86.6
sports position/players‡ 28.6 / 100 64.3 / 86.2

person/sibling s§ 21.1 / 63.2 21.1 / 36.8
person/spouse s§ 18.5 / 35.2 18.5 / 42.6

fr) is below a relation-specific threshold σr, then predict
positive. Otherwise predict negative. The relation-specific
threshold σr is determined according to (maximizing) the
classification accuracy on the validation set.

Implementation. For WN11 and FB13, as we use the
same data sets, directly copying the results of different meth-
ods from (Socher et al. 2013). For FB15k not used in (Socher
et al. 2013), we implement TransE and TransH by ourselves,
and use the released code for NTN.

For TransE, we search learning rate α in
{0.001, 0.005, 0.01, 0.1}, margin γ in {1.0, 2.0}, em-
bedding dimension k in {20, 50, 100}, and batch size B in
{30, 120, 480, 1920}. We also apply the trick of reducing
false negative labels to TransE. The optimal configurations
of TransE (bern.) are: α = 0.01, k = 20, γ = 2.0,
B = 120, and L1 as dissimilarity on WN11; α = 0.001,
k = 100, γ = 2.0, B = 30, and L1 as dissimilarity on
FB13; α = 0.005, k = 100, γ = 2.0, B = 480, and L1

as dissimilarity on FB15k. For TransH, the search space of
hyperparameters is identical to link prediction. The optimal
hyperparameters of TransH (bern.) are: α = 0.01, k = 100,
γ = 2.0, C = 0.25, and B = 4800 on WN11; α = 0.001,
k = 100, γ = 0.25, C = 0.0625, and B = 4800 on
FB13; α = 0.01, k = 100, γ = 0.25, C = 0.0625, and
B = 4800 on FB15k. We didn’t change the configuration of
NTN code on FB113 where dimension k = 100, number of
slices equals 3. Since FB15k is relatively large, we limit the
number of epochs to 500.

Results. Accuracies are reported in Table 6. On WN11,
TransH outperforms all the other methods. On FB13, the
powerful model NTN is indeed the best one. However, on
the larger set FB15k, TransE and TransH are much better
than NTN. Notice that the number (1,345) of relations of
FB15k is much larger than that (13) of FB13 while the
number of entities are close (see Table 2). This means
FB13 is a very dense subgraph where strong correlations
exist between entities. In this case, modeling the complex
correlations between entities by tensor and nonlinear
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Table 3: Link prediction results
Dataset WN18 FB15k

Metric MEAN HITS@10 MEAN HITS@10
Raw Filt. Raw Filt. Raw Filt. Raw Filt.

Unstructured (Bordes et al. 2012) 315 304 35.3 38.2 1,074 979 4.5 6.3
RESCAL (Nickel, Tresp, and Kriegel 2011) 1,180 1,163 37.2 52.8 828 683 28.4 44.1

SE (Bordes et al. 2011) 1,011 985 68.5 80.5 273 162 28.8 39.8
SME (Linear) (Bordes et al. 2012) 545 533 65.1 74.1 274 154 30.7 40.8

SME (Bilinear) (Bordes et al. 2012) 526 509 54.7 61.3 284 158 31.3 41.3
LFM (Jenatton et al. 2012) 469 456 71.4 81.6 283 164 26.0 33.1

TransE (Bordes et al. 2013b) 263 251 75.4 89.2 243 125 34.9 47.1

TransH (unif.) 318 303 75.4 86.7 211 84 42.5 58.5
TransH (bern.) 400.8 388 73.0 82.3 212 87 45.7 64.4

Table 4: Results on FB15k by relation category
Task Predicting left (HITS@10) Predicting right (HITS@10)

Relation Category 1-to-1 1-to-n n-to-1 n-to-n 1-to-1 1-to-n n-to-1 n-to-n

Unstructured (Bordes et al. 2012) 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
SE (Bordes et al. 2011) 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME (Linear) (Bordes et al. 2012) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3
SME (Bilinear) (Bordes et al. 2012) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE (Bordes et al. 2013b) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH (unif.) 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8
TransH (bern.) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

transformation helps with embedding. However, on the
much sparser subgraph of FB15k, it seems the simple
assumption of translation or translation on hyperplanes is
enough while the complex model of NTN is not necessary.
Concerning running time, the cost of NTN is much higher
than TransE/TransH. In addition, on all the three data sets,
the trick of reducing false negative labeling (the results with
“bern.”) helps both TransE and TransH.

In NTN (Socher et al. 2013), the results of combining
it with word embedding (Mikolov et al. 2013) are also
reported. However, how best to combine word embedding
is model dependent and also an open problem that goes
beyond the scope of this paper. For a clear and fair compar-
ison, all the results in Table 6 are without combination with
word embedding.

Relational Fact Extraction from Text
Extracting relational facts from text is an impor-
tant channel for enriching a knowledge graph. Most
existing extracting methods (Mintz et al. 2009;
Riedel, Yao, and McCallum 2010; Hoffmann et al. 2011;
Surdeanu et al. 2012) distantly collect evidences from
an external text corpus for a candidate fact, ignoring the
capability of the knowledge graph itself to reason the new
fact. Actually, knowledge graph embedding is able to score
a candidate fact, without observing any evidence from ex-
ternal text corpus. Recently (Weston et al. 2013) combined
the score from TransE (evidence from knowledge graphs)
with the score from a text side extraction model (evidence

Table 6: Triplet classification: accuracies (%). “40h”, “5m”
and “30m” in the brackets are the running (wall clock) time.

Dataset WN11 FB13 FB15k

Distant Model 53.0 75.2 -
Hadamard Model 70.0 63.7 -

Single Layer Model 69.9 85.3 -
Bilinear Model 73.8 84.3 -

NTN 70.4 87.1 66.5 (≈ 40h)
TransE (unif.) 75.85 70.9 79.7 (≈ 5m)
TransE (bern.) 75.87 81.5 87.3 (≈ 5m)

TransH (unif.) 77.68 76.5 80.2 (≈ 30m)
TransH (bern.) 78.80 83.3 87.7 (≈ 30m)

from text corpus) and observed promising improvement.
In this experiment, we compare the contribution of TransH
and TransE to improve relational fact extraction.

This experiment involves two major parts: text side ex-
traction model and knowledge graph embedding.

For text side, we use the same data set in (Weston et al.
2013)—NYT+FB 3 released by (Riedel, Yao, and McCal-
lum 2010). They aligned Freebase relations with the New
York Times corpus by tagging entities in text using Stan-
ford NER (Finkel, Grenager, and Manning 2005) and linking
them to Freebase IDs through string matching on names. We
only consider the most popular 50 predicates in the data set

3http://iesl.cs.umass.edu/riedel/data-univSchema/
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Figure 2: Precision-recall curves of TransE/TransH for fact extraction. (a) Combining the score from TransE/TransH and the
score from Sm2r using the same rule in (Weston et al. 2013). (b) On the candidate facts accepted by Sm2r, we only use the
score from TransE/TransH for prediction.

including the negative class—“NA”. Then the data set is split
into two parts: one for training, another for testing. As to the
text side extraction method, both TransE and TransH can be
used to provide prior scores for any text side methods. For a
clear and fair comparison with TransE reported in (Weston
et al. 2013), we implement the same text side method Wsa-
bie M2R in (Weston et al. 2013), which is denoted as Sm2r
in this paper.

For knowledge graph embedding, (Weston et al. 2013)
used a subset of Freebase consisting of the most popular 4M
entities and all the 23k Freebase relations. As they have not
released the subset used in their experiment, we follow a
similar procedure to produce a subset FB5M (Table 2) from
Freebase. What is important is, we remove all the entity
pairs that appear in the testing set from FB5M so that the
generalization testing is not fake. We choose parameters for
TransE/TransH without a comprehensive search due to the
scale of FB5M. For simplicity, in both TransE and TransH,
we set the embedding dimension k to be 50, the learning rate
for SGD α to 0.01, the margin γ to 1.0, and dissimilarity of
TransE to L2.

Following the same rule of combining the score from
knowledge graph embedding with the score from the text
side model, we can obtain the precision-recall curves for
TransE and TransH, as shown in Figure 2 (a). From the
figure we can see TransH consistently outperforms TransE
as a “prior” model on improving the text side extraction
method Sm2r.

The results in Figure 2 (a) depend on the specific rule of
combining the score from knowledge graph embedding with
the score from text side model. Actually the combining rule
in (Weston et al. 2013) is quite ad-hoc, which may not be
the best way. Thus Figure 2 (a) does not clearly demonstrate
the separate capability of TransE/TransH as a stand-alone
model for relational fact prediction. To clearly demonstrate
the stand-alone capability of TransE/TransH, we first use the

text side model Sm2r to assign each entity pair to the rela-
tion with the highest confidence score, then keep those facts
where the assigned relation is not “NA”. On these accepted
candidate facts, we only use the score of TransE/TransH
to predict. The results are illustrated in Figure 2 (b). Both
TransE and TransH perform better than the text side model
Sm2r on this subset of candidates. TransH performs much
better than TransE when recall is higher than 0.6.

Conclusion
In this paper, we have introduced TransH, a new model
to embed a knowledge graph in a continuous vector
space. TransH overcomes the flaws of TransE concerning
the reflexive/one-to-many/many-to-one/many-to-many rela-
tions while inheriting its efficiency. Extensive experiments
on the tasks of link prediction, triplet classification, and rela-
tional fact extraction show that TransH brings promising im-
provements to TransE. The trick of reducing false negative
labels proposed in this paper is also proven to be effective.
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