
Data Quality in Ontology-Based Data Access:
The Case of Consistency

Marco Console, Maurizio Lenzerini
Dipartimento di Ingegneria Informatica, Automatica e

Gestionale “Antonio Ruberti’
Sapienza Università di Roma, Roma, Italy

lastname@dis.uniroma1.it

Abstract
Ontology-based data access (OBDA) is a new paradigm aim-
ing at accessing and managing data by means of an ontol-
ogy, i.e., a conceptual representation of the domain of inter-
est in the underlying information system. In the last years,
this new paradigm has been used for providing users with ab-
stract (independent from technological and system-oriented
aspects), effective, and reasoning-intensive mechanisms for
querying the data residing at the information system sources.
In this paper we argue that OBDA, besides querying data,
provides the right principles for devising a formal approach
to data quality. In particular, we concentrate on one of the
most important dimensions considered both in the literature
and in the practice of data quality, namely consistency. We
define a general framework for data consistency in OBDA,
and present algorithms and complexity analysis for several
relevant tasks related to the problem of checking data quality
under this dimension, both at the extensional level (content of
the data sources), and at the intensional level (schema of the
data sources).

1 Introduction
Ontology-based data access (OBDA) is a new paradigm
aiming at accessing and managing the data of an informa-
tion system by means of an ontology (Lenzerini 2011). The
ontology provides a conceptual representation of the domain
of interest, and suitable mapping assertions relate the con-
cepts and the roles in the ontology to the actual data stored
at the sources. Depending on the process defining the OBDA
specification, there are two types of OBDA systems, that we
call simple and composite. A simple OBDA system mod-
els a top-down scenario in which the information system is
designed starting from the ontology, and the data sources
are defined with the goal of providing correct data structures
for storing the instances of concepts and roles in the ontol-
ogy. A composite OBDA system is built using a bottom-up
approach, where the ontology is superimposed on a set of
pre-existing and autonomous data sources, so as to improve
the access to the data by the users, who can greatly benefit
by an abstract representation of the information system.

In the last years, this new paradigm has been adopted
for allowing the users to query the information sys-
tem through the ontology (Rodriguez-Muro and Calvanese

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2012a; 2012b; Calvanese et al. 2011; Kontchakov et al.
2011; Calı̀, Gottlob, and Pieris 2011; Bienvenu et al. 2013).
In this paper we argue that OBDA, besides querying data,
provides the right principles for devising a formal approach
to data quality. Data quality (Batini and Scannapieco 2006;
Fan and Geerts 2012) is a sub-discipline of Data Manage-
ment whose aim is to investigate principles and techniques
for ensuring high quality of information. Despite many stud-
ies and approaches, data quality is still a hot topic, and is
currently gaining even more importance with the advent of
the Big Data wave (Dong and Srivastava 2013). Quality of
data is characterized by different dimensions, such as com-
pleteness, consistency, accuracy, and currency. In this first
investigation, we concentrate on consistency, which is one
of the most important dimensions considered both in the lit-
erature and in the practice of data quality. Consistency is
the property of an information system of being free from
conflicts and contradictions, such as conflicting information
about the same underlying data object, or incoherence of
data values across different data sets, or the lack of expected
relationships between interdependent attributes, or the lack
of conformance of source data and the source schema with
the business rules of the organization.

Data quality, and in particular consistency, is crucial in
OBDA, both for simple and composite systems. In sim-
ple systems, data consistency ensures that the designed data
structures are suited for representing the instance level of
the information system, without contradicting the domain
knowledge. In composite systems, consistency is a funda-
mental property of data sources, and consistency checking
is crucial for governing the information system, and main-
taining, improving or re-designing its data structures.

In this paper, we present the first study of data quality
issues in OBDA, and provide the following contributions.
• We present a formal framework for data consistency in

OBDA (Section 3), addressing both the extensional level
(content of the sources), and at the intensional level
(schema of the sources) issues. At the intensional level,
the framework is based on two notions, namely faithful-
ness and protection. Intuitively, a source schema is faith-
ful to an OBDA specification if its integrity constraints do
not block any data that is consistent with the ontology. On
the contrary, a source schema protects an OBDA system
from inconsistency if its integrity constraints block every

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1020

data that are in conflict with the ontology.
• We show that for unrestricted OBDA specifications, both

faithfulness and protection are undecidable, and we intro-
duce the notion of lightweight OBDA specification, with
the goal of singling out OBDA specifications that are both
reasonably expressive, and enable efficient quality check-
ing tasks. We then present an extended notion of OBDA
specification, where the data at the source are modelled as
an incomplete database, and illustrate a new technique for
checking satisfiability of such specifications.

• Based on this result, we devise algorithms for check-
ing faithfulness (Section 4) and checking protection (Sec-
tion 5) in lightweight OBDA systems, and characterize
their computational complexity. We show that, for this
class of OBDA systems, data quality is no more complex
than reasoning about schema constraints in a traditional
database setting. In other words, checking data quality
in lightweight specifications behave exactly as querying,
since in both querying and quality checking, the complex-
ity of carrying out the task through the ontology does not
increase with respect to traditional databases.

• When the source schema does not protect the OBDA sys-
tem from inconsistency, satisfiability should be checked
at run time. With the goal of minimizing the number of
axioms that are needed to consider during such check, we
introduce the notion of superfluous axiom, i.e., an axiom
of the ontology that can be ignored without endangering
the correctness of the satisfiability check. We present an
algorithm for superfluousness in Section 6, and show that
it has the same nice computational properties as faithful-
ness and protection.
Using ontologies for characterizing data quality is not a

new idea (Wand and Wang 1996). However, we are not
aware of any other formal approach aiming at devising prin-
ciples, techniques, algorithms and formal analysis for data
consistency in OBDA. We believe that the work presented
here provides the basis for a novel investigation on the issue
of data quality, grounded on the idea of using the ontology
as a the fundamental tool for measuring the quality of the
information system. Possible developments of our work in
this direction are outlined in the final section of the paper.

2 Preliminaries
In this section we present some preliminary notions on
databases and ontologies that are at the basis of the OBDA
approach, and we illustrate what is an OBDA system.

Databases. We consider relational databases, and refer
to (Abiteboul, Hull, and Vianu 1995) for a more detailed
account of databases. A schema S is a pair 〈ΣS , CS〉, where
ΣS is the alphabet of S, and CS is the set of integrity con-
straints (or simply constraints) of S, which are rules that
each database conforming to the schema must obey. A
database for S, or simply a ΣS -database, is a finite set
of ground atoms over the predicates in ΣS and the con-
stants in an alphabet Γ (constants are subject to the unique
name assumption). A ΣS -database D is legal for S, written
D |= S, if it satisfies all the integrity constraints in CS , writ-
ten D |= CS . Also, we say that D ∪ CS is satisfiable if there

exists a ΣS -database D′ such that D ⊆ D′ and D′ |= CS .
In general, constraints in S are expressed as first-order

logic (FOL) sentences, or subclasses thereof. A popu-
lar subclass is constituted by tuple-generating dependencies
(tgds) and equality-generating dependencies (egds) (Beeri
and Vardi 1981; Calı̀ et al. 2010). A tgd has the form
∀~xφ(~x) → ∃~yψ(~x, ~y), where both φ(~x) and ψ(~x, ~y) are
conjunctive queries, i.e., conjunctions of atoms with free
variables ~x, and ~x ∪ ~y, respectively. An egd has the form
∀~xφ(~x, ~y) → x1 = x2, where x1, x2 are among the vari-
ables in ~x. For technical reasons, we assume that the con-
junctive queries used in tgds and egds do not contain con-
stants. Note that, given a ΣS -database D and a set CS of
tgds and egds, checking whether D |= CS can be done in
PSPACE, whereas checking whether D ∪ CS is satisfiable,
i.e., there exists a ΣS -database D′ such that D′ ⊇ D and
D′ |= CS , is undecidable (Abiteboul, Hull, and Vianu 1995).

A notable subclass of tgds and egds that is very rel-
evant in practice, and has a decidable satisfiability prob-
lem is the class of weakly-acyclic tgds and egds. This
class captures the most important relational database con-
straints, including keys, functional dependencies, foreign
keys, and a large class of inclusion dependencies. If CS
is a set of weakly-acyclic tgds and egds, then checking
whether D ∪ CS is satisfiable can be done by means of
the chase algorithm. Informally, the chase is a procedure
that, starting from D, repeatedly adds new facts (atoms pos-
sibly with variables) according to the tgds in CS , and en-
forces equality of terms (constants and variables) accord-
ing to the egds in CS . The property of the chase is that
D ∪ CS is satisfiable if and only if the chase does not fail,
where the chase is said to fail if the set computed by the pro-
cedure, denoted by chaseCS (D), contains an explicit con-
tradiction, i.e., an equality of two different constants. For
acyclic tgds and egds, chaseCS (D) is finite, and can be
computed in EXPTIME. We refer to (Fagin et al. 2005;
Kolaitis, Panttaja, and Tan 2006) for a formal account of
weakly acyclic tdgs, egds, and the chase.
Description Logic Ontologies. An ontology is a concep-
tualization of a domain of interest expressed in terms of a
formal language. Here, we consider logic-based languages,
and, more specifically, Description Logics (DLs) (Baader et
al. 2010). Generally speaking, a knowledge base expressed
in a DL is a pair 〈T ,A〉 where the TBox T is the ontol-
ogy, i.e., a set of axioms specifying universal properties of
the concepts and the roles that are relevant in the domain,
and the ABox A contains axioms specifying the instances of
concepts and roles.

In this paper, in particular in lightweight OBDA, we focus
on ontologies expressed in DL-LiteA (Calvanese et al. 2005;
Poggi et al. 2008), a member of the DL-Lite family1 of
tractable Description Logics (DLs). For the sake of brevity,
we provide only a short account of DL-LiteA here.

The syntax of concept, role and attribute expressions in
DL-LiteA over an alphabet ΣT is specified by means of
the following grammar (where A,P, U are atomic concepts,

1Not to be confused with the set of DLs studied in (Artale et al.
2009), which form the DL-Litebool family.

1021

roles, and attributes, respectively, and T1, . . . , Tn are un-
bounded pairwise disjoint predefined value-domains):

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→ T1 | · · · | Tn
Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

A DL-LiteA TBox T over an alphabet ΣT is constituted by:
• the set T + of “positive” inclusion assertions between con-

cepts, roles and attributes (e.g., A v ∃P−);
• the set T − of “negative” assertions, partitioned into:

– the set T d of disjointness assertions between concepts,
roles and attributes (e.g., A v ¬∃P);

– the set T f of functionality assertions, i.e., (funct Q),
or (funct U).

In DL-LiteA TBoxes we further impose that roles and at-
tributes occurring in functionality assertions cannot be spe-
cialized, i.e., they cannot occur in the right-hand side of pos-
itive inclusions.

Note that checking DL-LiteA-KB for sat-
isfiability, i.e., checking if Mod(〈T ,A〉) =
{ I | I is an interpretation for ΣT such that I |= T }
is non-empty , can be done in AC0 with respect to A and in
PTIME with respect to T .
Ontology-based Data Access. An OBDA system is consti-
tuted by an OBDA specification, the intensional level of the
system, and a database, representing the data stored in the
sources, i.e., the extensional level of the system.

An OBDA specification provides the characteristics of the
three basic components of the system, as specified by the
following definition.

Definition 1 An OBDA specification B is a triple
〈T ,M,S〉, where
• T is a TBox, called the ontology of B, with alphabet ΣT ;
• S = 〈ΣS , CS〉 is a database schema, called the source

schema of B;
• M is a finite set of mapping assertions between S and
T , called the mapping of B, where each mapping asser-
tion is of the form ∀~xφ(~x) → ∃~yψ(~x, ~y), where φ(~x) is
a conjunctive query over ΣS with free variables ~x, and
ψ(~x, ~y) is a conjunctive query over the alphabet ΣT with
free variables ~x ∪ ~y.

In what follows, we will refer to a specific form of map-
pings, called GAV, extensively studied in the database liter-
ature (Halevy 2001; Lenzerini 2002). A GAV (Global-as-
view) mapping assertion is a mapping assertion in which no
existential variable appears in ψ, and can therefore be writ-
ten as ∀~xφ(~x) → ψ(~z), where all the variables in ~z appear
also in ~x.

As we said before, when we pair an OBDA specification
B = 〈T ,M,S〉 with a ΣS -databaseD, we obtain an OBDA
system. We define the semantics of an OBDA system by
specifying which are the models of B relative to D, denoted
by ModD(B). Intuitively, if D is not legal with respect to
S, such models form the empty set. Otherwise, such models
are the interpretations I for ΣT that satisfy T , and such that
the pair (D, I) satisfy all mapping assertions inM, written
(D, I) |=M.

Definition 2 Let B = 〈T ,M,S〉 be an OBDA specifica-
tion, and let D be a ΣS -database. Then ModD(B) =
{ I | I |= T , (D, I) |=M, and D |= CS }.

Checking whether an OBDA system constituted by B and
D is satisfiable amounts to checking whether ModD(B) 6=
∅. If the system is managed by suitable software compo-
nents including a database management system ensuring that
D |= CS , then the satisfiability checking reduces to verify-
ing whether there exists an interpretation I for ΣT that sat-
isfies T , and such that the pair (D, I) satisfies all mapping
assertions inM.

3 Foundations
In this section, we introduce the notions we use for charac-
terizing data quality in OBDA, in particular with respect to
the consistency dimension.

We start by considering the quality of the content of the
data source, i.e., we discuss data consistency at the exten-
sional level. What we formalize here is the simple idea that
the level of quality of a database D at the extensional level
is related to the consistency of D with respect to T andM.

Definition 3 Let B = 〈T ,M,S〉 be an OBDA specifica-
tion, and let D be a ΣS -database. Then D is said to be con-
sistent with respect to T andM in B, or simply consistent
in B, if ModD(〈T ,M, 〈ΣS , ∅〉〉) 6= ∅.

Note that we are not reducing consistency of D to check-
ing satisfiability of the OBDA system constituted by B and
D. Indeed, satisfiability of B and D requires that D satisfies
CS , while we interpret data consistency at the extensional
level as checking consistency of the data source with respect
to the TBox and the mapping of the OBDA specification,
independently from the constraints in CS . Since this prob-
lem has already been studied (see, for example, (Poggi et
al. 2008)), we do not address it any further here. We only
note that the check can be done inAC0 with respect toD, in
PTIME with respect to T , and in coNP with respect toM.

We now turn our attention to the quality of the source
schema with respect to the consistency dimension. We in-
troduce two notions for characterizing such quality at the
intensional level, namely faithfulness and protection.

Definition 4 Let B = 〈T ,M,S〉 be an OBDA specifica-
tion. S is said to be faithful to T andM in B with respect to
consistency, or simply faithful to B, if for all ΣS -database
D such that ModD(〈T ,M, 〈ΣS , ∅〉〉) 6= ∅, we have that
D |= CS .

Intuitively, the schema S is faithful to B if it does not con-
strain the source in such a way to filter out data that would
not cause the OBDA system to fall into inconsistency, i.e.,
if every ΣS -database D that does not cause any inconsisten-
cies to T andM, does not violate any constraint in S.

We now turn our attention to protection, and provide its
formal definition.

Definition 5 Let B = 〈T ,M,S〉 be an OBDA specifica-
tion. S is said to protect T and M from inconsistency,
or simply protect B, if for all ΣS -database D such that
ModD(〈T ,M, 〈ΣS , ∅〉〉) = ∅, we have that D 6|= CS .

1022

Intuitively, the schema S protects B if it does constrain
the data in such a way to prevent the system from falling
into inconsistencies, i.e., if every ΣS -database that, when
paired to T throughM, causes some inconsistency, violates
at least one of the constraints in S.

The three aspects of data quality that we have discussed
can be formally evaluated by resorting to three correspond-
ing decision problems, that we now formalize.

Definition 6 Given an OBDA specificationB = 〈T ,M,S〉,
• Data consistency is the following decision problem: given

a ΣS -database D, check whether D is consistent in B.
• Faithfulness is the following decision problem: check

whether S is faithful to B.
• Protection is the following decision problem: check

whether S protects B.

As we said, we do not deal in detail with data consis-
tency at the extensional level in this paper. As for the other
problems, we observe that, in characterizing their compu-
tational complexity, the expressive power of the language
used to specify CS plays an important role. In particu-
lar, if T and M are such that for every ΣS -database D,
ModD(〈T ,M, 〈ΣS , ∅〉〉) 6= ∅, then S is faithful to B if and
only if CS is valid. Analogously, if T andM are such that
for every ΣS -database D, ModD(〈T ,M, 〈ΣS , ∅〉〉) = ∅,
then S protects B if and only if S is unsatisfiable.

Since in unrestricted OBDA specifications, CS can be any
set of FOL sentences, from the above observations we can
easily derive the following theorem.

Theorem 1 For unrestricted OBDA specifications, both
protection and faithfulness are undecidable.

This suggests considering suitable limitations in the vari-
ous components of the OBDA specification. To capture this,
we introduce the notion of lightweight OBDA specifications.

Definition 7 B = 〈T ,M,S〉 is a lightweight OBDA speci-
fication if (i) T is a DL-LiteA TBox, (ii)M is a GAV map-
ping, and (iii) the integrity constraints CS of S form a set of
weakly acyclic tgds and egds.

Lightweight OBDA systems enjoy several desirable prop-
erties that we cannot discuss here for lack of space. We
only briefly discuss how we can answer queries in a satis-
fiable lightweight OBDA system, i.e., compute the tuples
satisfying the query in all the models of the system. Let
B = 〈T ,M,S〉 be a lightweight OBDA system, and D a
ΣS -database. The results in (Poggi et al. 2008) show that, in
order to answer a union of conjunctive query q (expressed in
the alphabet ΣT) posed to B = 〈T ,M,S〉 and D, we can
compute the perfect rewriting RT ,M of q with respect to T
andM, which is a union of conjunctive query over the al-
phabet ΣS , and then evaluate RT ,M over D. We will make
use of this result in the following.

In the rest of the paper, we address faithfulness and pro-
tection in lightweight OBDA specifications. For both tasks,
we will face the problem of checking whether an incomplete
database is consistent with respect to a lightweight OBDA
specification. Thus, we now precisely define this problem,
and illustrate how to solve it.

Definition 8 Let S = 〈ΣS , CS〉 be a schema, and let V be
an alphabet of variables. An incomplete ΣS -database is a
ΣS -database where variables from V can appear in the ar-
guments of relations.

Intuitively, an incomplete database F represents all the
databases that are a subset of the set of facts obtained by
instantiating the variables of F with constants. Formally,
we say that a (complete) database D is an instance of F ,
written D � F , if there is a homomorphism from F to D.
The semantics of an OBDA specification with respect to an
incomplete database is then defined as follows.
Definition 9 Let B = 〈T ,M,S〉 be an OBDA specifi-
cation, and let F be an incomplete ΣS -database. Then
ModF (B) = { I | there exists a ΣS -database D such that
D � F , and ModD(B) 6= ∅}.

Observe that, in general, for a lightweight OBDA specifi-
cation B = 〈T ,M,S〉, CS ∪M ∪ T cannot be expressed
as a set of acyclic tgds and egds. However, CS ∪M ∪ T f
can indeed be expressed as s a set of weakly acyclic tdgs and
egds, and therefore chaseCS∪M∪T f (F) is a finite structure
that can be computed in a finite amount of time. Also, it is
immediate to verify that from chaseCS∪M∪T f (F) one can
obtain an ABox over the alphabet of T , simply by keeping
only the atoms over the alphabet ΣT , and substituting every
variable in such atoms with a fresh constant. We denote such
an ABox by AchaseCS∪M∪T f (F).

Theorem 2 Let B = 〈T ,M,S〉 be a lightweight OBDA
specification, and let F be an incomplete ΣS -database.
ThenModF (B) = ∅ if and only if chaseCS∪M∪T f (F) fails,
or the DL-LiteA-KB 〈T + ∪ T d,AchaseCS∪M∪T f (F)〉 is un-
satisfiable.

The above theorem directly suggests the following algo-
rithm for checking B ∪ F for satisfiability, i.e., for checking
whether ModF (B) 6= ∅:
1. if chaseCS∪M∪T f (F) fails, then return false;
2. otherwise, from chaseCS∪M∪T f (F) build the ABox
AchaseCS∪M∪T f (F), and return the result of checking

whether 〈T + ∪ T d,A〉 is satisfiable, by relying on the
algorithm for satisfiability checking in DL-Lite-KBs.

From the correctness of the above algorithm, we can then
derive the following result.
Theorem 3 If B = 〈T ,M,S〉 is a lightweight OBDA spec-
ification, and F an incomplete ΣS -database, then checking
whether ModF (B) = ∅ can be done in EXPTIME with re-
spect to S andM, and in PTIME with respect to F and T .

4 Faithfulness in lightweight OBDA
In this section we study the problem of checking whether a
source schema is faithful to a lightweight OBDA specifica-
tion. The technique we present is based on several notions,
that we now introduce.

The first notion concerns the idea of expressing the ex-
istence of a violation of a constraint in CS by means of a
suitable conjunctive query in the alphabet ΣS . To this end,
we define the function V as follows.

1023

Definition 10 If 〈ΣS , CS〉 is a source schema, and β ∈ CS ,
then V(β) is defined as follows:
• if β is of the form ∀~xφ(~x) → x1 = x2, then V(β) is the

query ∃~xφ(~x) ∧ (x1 6= x2)
• if β is of the form ∀~xφ(~x)→ ∃~yψ(~x, ~y), then V(β) is the

query ∃~xφ(~x).

We call trivial an egd of the form ∀~xφ(~x)→ x = x. Anal-
ogously, we call trivial a tgd ∀~xφ(~x) → ∃~yψ(~x, ~y) when-
ever the query φ(~x) is contained in the query ∃~yψ(~x, ~y).
The next lemma shows that the query V(β) really captures
the violations to β.
Lemma 1 Let D be a ΣS -database and let β ∈ CS be not
trivial. If D 6|= β, the D |= V(β).

We now define a function, calledF , that, given a conjunc-
tive query in the alphabet ΣS , possibly with one inequality,
returns an incomplete ΣS -database satisfying the query.
Definition 11 If γ is conjunctive query with at most one in-
equality in the alphabet ΣS , then F(γ) is defined as follows.
• if γ is of the form ∃~xφ(~x, ~y) ∧ (x1 6= x2), then F(γ) is

the incomplete ΣS -database that is obtained from γ by
choosing two fresh constants c1 and c2 not appearing in
γ, and then substituting x1 with c1 and c2 for x2 in γ.
• if γ is a conjunctive query without inequalities, thenF(γ)

is the incomplete ΣS -database coinciding with γ.

Lemma 2 Let B = 〈T ,M, 〈ΣS , CS〉〉 be a lightweight
OBDA specification, let β ∈ CS , and letD be a ΣS -database
D. Then if D 6|= β then D is an instance of F(V(β)).

Theorem 4 Let B = 〈T ,M,S〉 be a lightweight OBDA
specification, and let S = 〈ΣS , CS〉. Then S is faithful to
B if and only if for each β ∈ CS which is not trivial, we have
that ModF(V(β))(〈T ,M, 〈ΣS , ∅〉〉) = ∅.

Proof. (Sketch) If-part. Suppose that for
each β ∈ CS which is not trivial, we have that
ModF(V (β))(〈T ,M, 〈ΣS , ∅〉〉) = ∅, and S is not faithful
to B with respect to consistency. Let D be a database
such that ModD(〈T ,M, 〈ΣS , ∅〉〉) 6= ∅, and D 6|= CS .
Since D 6|= CS , it follows that there is a β ∈ CS such
that D 6|= β. But D 6|= β implies that β is not trivial, and
D |= V(β). By exploiting Lemma 2, we can show that this
implies that D is an instance of F(V(β)), and this in turn
implies that ModF(V(β))(〈T ,M, 〈ΣS , ∅〉〉) 6= ∅, which is a
contradiction.

Only-if-part. Suppose that S is faithful to B with respect
to consistency, and there is β ∈ CS which is not trivial such
that ModF(V(β))(〈T ,M, 〈ΣS , ∅〉〉) 6= ∅. By construction
we have that, starting from F(V(β)) we can easily build
a ΣS -database D that is an instance of F(V(β)) such that
ModD(〈T ,M, 〈ΣS , ∅〉〉) 6= ∅, and D 6|= CS , proving that S
is not faithful to B with respect to consistency, and therefore
leading to a contradiction.

The theorem directly provides an algorithm for check-
ing faithfulness. The algorithm considers each β in CS in
turn, and checks whether it is not trivial, and is such that
ModF(V(β))(〈T ,M, 〈ΣS , ∅〉〉) = ∅. To verify the condi-
tion ModF(V(β))(〈T ,M, 〈ΣS , ∅〉〉) = ∅, the algorithm re-
sorts to the technique described in Section 3 (note that in this

case CS is not considered). From the characteristics of this
algorithm, we can derive the following result.

Theorem 5 Faithfulness in lightweight OBDA specifica-
tions is in PTIME with respect to S and T , and in EXPTIME
with respect toM.

5 Protection in lightweight OBDA
In this section we address the problem of checking protec-
tion in lightweight OBDA specifications. The technique we
present is based on the idea of carrying out the protection
check on the basis of an axiom-by-axiom method. To for-
malize this idea, we now introduce the notion of a source
schema protecting an OBDA specification from inconsisten-
cies arising due to a single axiom in the ontology.

Definition 12 Let B = 〈T ,M,S〉 be an OBDA specifi-
cation, and let α ∈ T −. Then S protects B from α-
inconsistencies if for all ΣS -database D, if ModD(〈T + ∪
{α},M, 〈ΣS , ∅〉〉) = ∅, then D 6|= CS .

With this notion in place, we can now show that the prob-
lem of checking whether a schema S protects a lightweight
OBDA specification B can be reduced to the problem of
checking whether S α-protects B, for each α ∈ T −.

Theorem 6 Let B = 〈T ,M,S〉 be a lightweight OBDA
specification. Then S protects B if and only if for each
α ∈ T −, S protects B from α-inconsistencies.

We are now left with the problem of checking whether S
protects B from α-inconsistencies, for α ∈ T −. The key ob-
servation for coming up with a technique solving this prob-
lem is that the existence of a violation of α ∈ T − can be
encoded as a conjunctive query over the alphabet of T . In
order to define the conjunctive query associated to an axiom
in T −, we extend the function V described in the previous
section, as follows.

Definition 13 If T is a DL-LiteA TBox, and α ∈ T −, then
V(α) is defined as follows:
• if α = (funct R) then

then V(α) = R(x, y) ∧R(x, z) ∧ y 6= z
• if α = (funct R−) then

then V(α) = R(y, x) ∧R(z, x) ∧ y 6= z
• if α = A v ¬B then then V(α) = A(x) ∧B(x)

Given an interpretation I for T , and α ∈ T −, it is easy
to prove that I |= ¬α if and only if I |= V(α). By relying
on this notion, we can state the main result of this section:
in a lightweight OBDA specification, checking weather S
protects B from α-inconsistencies can be reformulated as a
satisfiability problem. This is shown by the next theorem.

Theorem 7 Let B = 〈T ,M,S〉 a lightweight OBDA spec-
ification, and let α ∈ T −. Then S protects B from α-
inconsistencies if and only if for each q ∈ RT ,M(V(α))),
ModF(q)(〈∅, ∅,S〉) = ∅.

Proof. (Sketch) If-part Let q ∈ RT ,M(V(α))) be such
that ModF(q)(〈∅, ∅,S〉) 6= ∅. Further, let D be one of the
instances of F(q) such that D |= S. For such definite
database we have that D |= RT ,M(V(α)), being the lat-
ter a union of conjunctive queries. Since T is a DL-LiteA

1024

TBox, ModD(〈T + ∪ {α},M, 〈ΣS , ∅〉〉) = ∅, and D is le-
gal with respect to CS , we conclude that S does not protect
B from α-inconsistencies.

Only-if-part Assume S does not protect B from α-
inconsistencies. Then for at least one database D we have
that ModD(〈T + ∪ {α},M, 〈ΣS , ∅〉〉) = ∅ but D |= CS .
Since T is a DL-Lite TBox, the violation of α can be rep-
resented by RT ,M(V(α)) over ΣS . Let q ∈ RT ,M(V(α))
be one of the conjunctive queries evaluating true over D.
This means that D |= CS ∪ {q}, and therefore, by the
definition of F , D |= F(q) ∪ CS too, thus proving that
ModF(q)(〈∅, ∅,S〉) 6= ∅.

The above theorem directly provides an algorithm for
checking whether S protects B. The algorithm considers
each α ∈ T − in turn, and check whether S protects B
from α-inconsistencies by applying the method suggested
by theorem 7. The result will be false if and only there
is a specific α ∈ T − such that ModF(q)(〈∅, ∅,S〉) 6= ∅
for some q ∈ RT ,M(V(α))). Obviously, to check whether
ModF(q)(〈∅, ∅,S〉) = ∅, we rely on the technique presented
in Section 3.

By analysing the computational complexity of this algo-
rithm, it is immediate to derive the following result.

Theorem 8 Protection in lightweight OBDA specifications
is in PTIME with respect to T and M, and in EXPTIME
with respect to S.

6 Superfluousness
In an OBDA specification B = 〈T ,M,S〉 where the source
schema S does not protect B from inconsistency, satisfiabil-
ity should be checked at run time: given the ΣS -database
D at hand, we should check whether ModD(〈T ,M,S〉) 6=
∅. In general, this is costly. Since in lightweight OBDA
specifications checking whether ModD(〈T ,M,S〉) 6= ∅
means checking whether for each α ∈ T −, ModD(〈T + ∪
{α},M,S〉) 6= ∅, the cost of the satisfiability check grows
with the number of axioms in T −. Thus, one might wonder
if there is a way to minimize the number of axioms that are
needed to consider during such check. To come up with a
precise method toward this goal, we introduce the notion of
superfluousness.

Definition 14 Let B = 〈T ,M,S〉 be an OBDA specifica-
tion, and let α ∈ T −. Then α is said to be superfluous in B
with respect to satisfiability, or simply superfluous inB, if for
all ΣS -databaseD such thatD |= S, ModD(〈T ,M, ∅〉) =
∅ implies ModD(〈T \ {α},M, ∅〉) = ∅.

Note that the above definition really captures the notion
that we are looking for: in checking B for satisfiability with
respect to a database D, we can ignore an axiom in T − ex-
actly when such axiom is superfluous in B.

The next theorem states that protection of B from α-
inconsistencies is sufficient for superfluousness of α in B.

Theorem 9 Let B = 〈T ,M,S〉 be an OBDA specification,
and let α ∈ T −. If S protects B from α-inconsistencies,
then α is superfluous in B.

On the other hand, there are cases where S does not pro-
tect B from α-inconsistencies, but α is still superfluous in
B. The next theorem provides a complete characterization
of superfluousness in lightweight OBDA specifications.
Theorem 10 Let B = 〈T ,M,S〉 be a lightweight OBDA
specification. Then α ∈ T − is superfluous in B if and only
if for each q ∈ RT ,M(V(α)),ModF(q)(〈T \{α},M,S〉 =
∅.

Proof. (Sketch) If-part. Suppose that for each
q ∈ RT ,M(V(α)), ModF(q)(〈T \ {α},M,S〉) =
∅. We consider a (definite) ΣS -database D such that
ModD(〈T ,M,S〉) = ∅, and take into account two cases. In
the first case, there is a q ∈ RT ,M(V(α)) and a homomor-
phism fromF(q) toD; sinceModF(q)(〈T \{α},M,S〉) =
∅, it holds that ModD(〈T \ {α},M,S〉) = ∅. In the
second case, for no q ∈ RT ,M(V(α)), we have a homo-
morphism from F(q) to D. Since ModD(〈T ,M,S〉) =
∅, and B is a lightweight OBDA specification, it holds
that there is a α′ ∈ T− different from α such that
ModD(〈T + ∪ {α′},M,S〉) = ∅, which implies that
ModD(〈T \ {α},M,S〉) = ∅. So, we have proved that
for all ΣS -database D, ModD(〈T ,M,S〉) = ∅ implies
ModD(〈T \ {α},M,S〉) = ∅, i.e., α is superfluous in B.

Only-if-part. Suppose that there is a q ∈ RT ,M(V(α))
such that ModF(q)(〈T \ {α},M,S〉 6= ∅. From
F(q) we can easily obtain a ΣS -database D such that
ModD(〈T \{α},M,S〉) = ∅, butModD(〈{α},M,S〉) =
∅, implying that there is a ΣS -database D such that
ModD(〈T ,M,S〉) = ∅, and ModD(〈T \ {α},M,S〉) =
∅, i.e., α is not superfluous in B.

The above theorem directly suggests an algorithm for
checking α ∈ T − for superfluousness in lightweight OBDA
specifications. Once again, the algorithm exploits the tech-
nique presented before for checking satisfiability with re-
spect to an incomplete database (in this case, the incomplete
database F(q)). From this observation, it is easy to derive
the complexity of the superfluousness algorithm.
Theorem 11 Superfluousness in lightweight OBDA specifi-
cations is in PTIME with respect to T , and in EXPTIME
with respect toM and S.

7 Conclusions
We have presented the first investigation on the issue of
data quality in OBDA systems. We have proposed a for-
mal framework, and illustrated several results for the case of
data consistency in lightweight OBDA specifications. Our
approach shows that basing data quality on the conceptual
model of the domain represented by the ontology sheds new
light to the long-standing problem of ensuring data quality
in information systems.

We will continue our work along different directions. In
particular, while in this paper we have studied the class of
weakly acyclic tdgs and egds, we plan to consider other
source constraints that are relevant in practice, such as cyclic
foreign keys. Also, we aim at broadening our investigation
so as to address other data quality dimensions beyond con-
sistency, in particular completeness and accuracy.

1025

Acknowledgements
Work partially supported by the EU under FP7, project Op-
tique (Scalable End-user Access to Big Data), grant n. FP7-
318338.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison Wesley Publ. Co.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations.
J. of Artificial Intelligence Research 36:1–69.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2010. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press. Paperback edition.
Batini, C., and Scannapieco, M. 2006. Data Quality: Con-
cepts, Methodologies and Techniques. Data-Centric Systems
and Applications. Springer.
Beeri, C., and Vardi, M. Y. 1981. The implication problem
for data dependencies. In Proc. of ICALP’81, volume 115
of LNCS, 73–85. Springer.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2013.
Ontology-based data access: A study through disjunctive
datalog, CSP, and MMSNP. In Proc. of PODS 2013. ACM
Press.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A family of logical knowledge
representation and query languages for new applications. In
Proc. of LICS 2010, 228–242.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2011. New expres-
sive languages for ontological query answering. In Proc. of
AAAI 2011, 1541–1546.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2005. DL-Lite: Tractable description logics
for ontologies. In Proc. of AAAI 2005, 602–607.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The Mastro system for ontology-based
data access. Semantic Web J. 2(1):43–53.
Dong, X. L., and Srivastava, D. 2013. Big data integration.
PVLDB 6(11):1188–1189.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: Semantics and query answering. Theoreti-
cal Computer Science 336(1):89–124.
Fan, W., and Geerts, F. 2012. Foundations of Data Qual-
ity Management. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers.
Halevy, A. Y. 2001. Answering queries using views: A
survey. VLDB Journal 10(4):270–294.
Kolaitis, P. G.; Panttaja, J.; and Tan, W. C. 2006. The com-
plexity of data exchange. In Proc. of PODS 2006, 30–39.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The combined approach to ontology-
based data access. In Proc. of IJCAI 2011, 2656–2661.

Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In Proc. of PODS 2002, 233–246.
Lenzerini, M. 2011. Ontology-based data management. In
Proc. of CIKM 2011, 5–6.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. on Data Semantics X:133–173.
Rodriguez-Muro, M., and Calvanese, D. 2012a. High per-
formance query answering over DL-Lite ontologies. In Proc.
of KR 2012, 308–318.
Rodriguez-Muro, M., and Calvanese, D. 2012b. Quest,
an OWL 2 QL reasoner for ontology-based data access. In
Proc. of OWLED 2012, volume 849 of CEUR, ceur-ws.org.
Wand, Y., and Wang, R. Y. 1996. Anchoring data qual-
ity dimensions in ontological foundations. Commun. ACM
39(11):86–95.

1026

