
Reasoning on LTL on Finite Traces: Insensitivity to Infiniteness

Giuseppe De Giacomo
Riccardo De Masellis

Dip. di Ing. Informatica, Automatica e Gestionale
Sapienza Università di Roma, Italy

{degiacomo,demasellis}@dis.uniroma1.it

Marco Montali

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

montali@inf.unibz.it

Abstract

In this paper we study when an LTL formula on finite traces
(LTLf formula) is insensitive to infiniteness, that is, it can be
correctly handled as a formula on infinite traces under the
assumption that at a certain point the infinite trace starts re-
peating an end event forever, trivializing all other propositions
to false. This intuition has been put forward and (wrongly)
assumed to hold in general in the literature. We define a neces-
sary and sufficient condition to characterize whether an LTLf
formula is insensitive to infiniteness, which can be automati-
cally checked by any LTL reasoner. Then, we show that typical
LTLf specification patterns used in process and service mod-
eling in CS, as well as trajectory constraints in Planning and
transition-based LTLf specifications of action domains in KR,
are indeed very often insensitive to infiniteness. This may help
to explain why the assumption of interpreting LTL on finite
and on infinite traces has been (wrongly) blurred. Possibly be-
cause of this blurring, virtually all literature detours to Büchi
automata for constructing the NFA that accepts the traces satis-
fying an LTLf formula. As a further contribution, we give a
simple direct algorithm for computing such NFA.

1 Introduction
LTL on finite traces, here called LTLf as in (De Giacomo and
Vardi 2013), has been extensively used in AI. For example, it
is at the base of trajectory constraints for Planning in PDDL
3.0 (Bacchus and Kabanza 2000; Gerevini et al. 2009), the
de-facto standard formalism for representing planning prob-
lems. Notably, LTLf is recently gaining momentum in CS
as a declarative way to specify (terminating) services and
processes (Pesic and van der Aalst 2006; Montali et al. 2010;
Sun, Xu, and Su 2012). We will collectively refer here to this
literature as the DECLARE approach, after the main system in
that area (Pesic, Schonenberg, and van der Aalst 2007).

The presence of a big body of work in LTL on infinite
traces (Gabbay et al. 1980; Vardi 1996; Holzmann 1995),
leads researchers to “hack” it for dealing with finite traces
as well, “blurring” the distinction between the two settings.
For example, both the declarative patterns for processes and
services, widely adopted in the DECLARE approach (Pesic
and van der Aalst 2006; Montali et al. 2010) are directly
inspired by a catalogue of temporal logic patterns developed

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for LTL on infinite traces (Dwyer, Avrunin, and Corbett 1999),
as the trajectory constraints in PDDL 3.0 are. As another
example, in (Edelkamp 2006) it is proposed to directly use
Büchi automata, capturing LTL on infinite traces, for LTLf ,
saying: “[...]we can cast the Büchi automaton as an NFA
(nondeterministic finite automaton, ed.), which accepts a
word (i.e., trace ed.) if it terminates in a final state.” Then in
(Gerevini et al. 2009) this is taken up, saying: “Since PDDL
3.0 constraints are normally evaluated over finite trajectories,
the Büchi acceptance condition, that “an accepting state is
visited infinitely often”, reduces to the standard acceptance
condition that the automaton is in an accepting state at the
end of the trajectory.” (Notice: this is incorrect if one simply
leaves as accepting states those of the Büchi automaton.)

In (van der Aalst and Pesic 2006) the authors gave a quite
appealing, but unfortunately incorrect in general, intuition
for the blurring: “ [. . .] we use the original algorithm for the
generation of (Büchi, ed.) automata, but we slightly change
the DecSerFlow (i.e., DECLARE, ed.) model before creating
the automaton. To be able to check if a finite trace is ac-
cepting, we add one “invisible” activity and one “invisible”
constraint to every DecSerFlow model and then construct
the automaton. With this we specify that each execution of
the model will eventually end. We introduce an “invisible”
activity e, which represents the ending activity in the model.
We use this activity to specify that the service will end - the
termination constraint. This constraint has the LTL formula
3e ∧2(e→◦e)).” In DECLARE it is assumed that only one
activity can happen (i.e., only a proposition is true) at ev-
ery time point, so the presence of the “e(nd)” activity above
implies that all other propositions trivialize to false.

In fact, the two variants of LTL on finite and infinite traces
are quite different, as discussed, e.g., in (Baier and McIl-
raith 2006; De Giacomo and Vardi 2013). So, why can the
research community live up with this blurring between finite
and infinite traces? We help to answer this question in this
paper by showing that the intuition in (van der Aalst and
Pesic 2006) reported above is surprisingly correct over sev-
eral widely used formulas. Specifically, we define the notion
of insensitivity to infiniteness for an LTLf formula, which cap-
tures exactly the intuition in (van der Aalst and Pesic 2006).1

1Note that in (Bauer and Haslum 2010) a similar idea is consid-
ered, for finite traces that are extended by repeating at infinitum the

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1027

We, then, define a necessary and sufficient condition, which
can be automatically checked by any LTL reasoner, to verify
whether an LTLf formula is insensitive to infiniteness. Using
such a condition, we show that all LTLf formulas correspond-
ing to the DECLARE patterns but one, are indeed insensitive
to infiniteness. We also show that virtually all transition-
based specifications of action domains expressed in LTLf are
insensitive to infiniteness, and that most PDDL 3.0 trajec-
tory constraints can be easily adjusted to meet this property.
Possibly because of the blurring between finite and infinite
traces, virtually all literature in AI and CS detours to Büchi
automata for building the NFA that accepts the traces satisfy-
ing an LTLf formula (Giannakopoulou and Havelund 2001;
Edelkamp 2006; Baier and McIlraith 2006; Baier, Katoen,
and Guldstrand Larsen 2008; Bauer and Haslum 2010;
Westergaard 2011). As a further contribution, we give a sim-
ple direct algorithm for computing such NFA.

2 LTLf : LTL on Finite Traces
LTLf (De Giacomo and Vardi 2013) uses the same syntax
of the original LTL (Pnueli 1977). Formulas of LTLf are
built from a set P of propositional symbols and are closed
under the boolean connectives, the unary temporal operator
◦ (next-time) and the binary temporal operator U (until):

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2 with a ∈ P
Intuitively, ◦ϕ says that ϕ holds at the next instant, ϕ1 U ϕ2

says that at some future instant ϕ2 will hold and until that
point ϕ1 holds. Common abbreviations are also used, includ-
ing the ones listed below.
• Standard boolean abbreviations, such as true , false , ∨,→.
• last = ¬◦true denotes the last instant of the sequence.

Over infinite traces it corresponds to ◦false and is indeed
always false, while in LTLf it becomes true at the last
instance of the sequence.

• •ϕ = ¬◦¬ϕ is interpreted as a weak next, stating that if
last does not hold then ϕ must hold in the next state.
• 3ϕ = true U ϕ says that ϕ will eventually hold before the

last instant (included).
• 2ϕ = ¬3¬ϕ says that from the current instant till the last

instant ϕ will always hold.
• ϕ1Rϕ2 = ¬(¬ϕ1 U ¬ϕ2) means that ϕ1 releases ϕ2, i.e.,

either ϕ2 must hold forever, or until ϕ1 also holds.
• ϕ1W ϕ2 = (ϕ1 U ϕ2∨2ϕ1) is interpreted as a weak until,

and means that ϕ1 holds until ϕ2 or forever.
The semantics of LTLf is given in terms of finite traces de-
noting a finite sequence of consecutive instants of time, i.e.,
finite words π over the alphabet of 2P , containing all possible
interpretations of the propositional symbols in P . Given a
finite trace π, we inductively define when an LTLf formula ϕ
is true at an instant i (for 0 ≤ i ≤ n), written π, i |= ϕ, as:
• π, i |= a, for a ∈ P iff a ∈ π(i).
• π, i |= ¬ϕ iff π, i 6|= ϕ.
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2.
• π, i |= ◦ϕ iff i < n and π, i+1 |= ϕ.

propositional assignment in the last element of the finite trace. Their
results can be considered complementary to ours.

Si SfS1
{¬a}

{a, ¬b} {¬a, b}
{¬b} {a, ¬b}

{¬a}

(a) Büchi automaton

Si

(b) NFA

Figure 1: Automata for formula (1)

• π, i |= ϕ1 U ϕ2 iff for some j s.t. i ≤ j ≤ n , we have
π, j |= ϕ2, and for all k, i ≤ k < j, we have π, k |= ϕ1.

A formula ϕ is true in π, in notation π |= ϕ, if π, 0 |= ϕ.
A formula ϕ is satisfiable if it is true in some finite trace,
and it is valid if it is true in every finite trace. A formula ϕ
logically implies a formula ϕ′, written ϕ |= ϕ′, if for every
finite trace π we have that π |= ϕ implies π |= ϕ′. Notice that
satisfiability, validity and logical implication are all mutually
reducible to each other: for example ϕ is valid iff ¬ϕ is
unsatisfiable. Similarly, ϕ |= ϕ′ iff ϕ ∧ ¬ϕ′ is unsatisfiable.
Theorem 1. (De Giacomo and Vardi 2013) Satisfiability
(hence validity and logical implication) for LTLf formulas is
PSPACE-complete.
We observe that LTL on infinite traces and LTLf are quite
different. E.g., the formula

3a ∧2(a→3b) ∧2(b→3a) ∧2(¬a ∨ ¬b) (1)
is unsatisfiable in LTLf but is satisfiable in LTL. In other
words, in a finite trace setting 3a∧2(a→3b)∧2(b→3a)
implies that eventually both a and b are going to be simulta-
neously true. Interestingly, the NFA for (1) on finite traces and
the Büchi automaton for the same formula on infinite traces
are radically different. In fact, the NFA recognizes nothing
(cf. Figure 1b), while the Büchi automaton is shown in Fig-
ure 1a. Certainly, one cannot consider such Büchi automaton
as a correct NFA for the formula on finite traces by simply
considering the accepting states as final.

3 Insensitivity to Infiniteness
Often the distinction between interpreting LTL formulas over
finite vs. infinite traces is blurred via some hacking. In this
section we want to tackle this issue in a precise way.

One can reduce LTLf into LTL (on infinite traces), while
preserving all standard reasoning task, such as satisfiability,
validity, etc. In particular, given an LTLf formula ϕ we can
construct a corresponding LTL formula, as follows: (i) intro-
duce a fresh proposition “end” to denote that the trace is
ended (note that end 6∈ P , and that last is true just before the
first occurrence of end); (ii) require that end eventually holds
(3end); (iii) require that once end becomes true it stays true
forever (2(end→◦end)); (iv) require that when end is true,
all other propositions are reset to false (2(end→∧

a∈P ¬a));
(v) translate the LTLf formula into an LTL formula as follows:

f(a) 7→ a f(ϕ1 U ϕ2) 7→ f(ϕ1) U (f(ϕ2) ∧ ¬end)
f(¬ϕ) 7→ ¬f(ϕ) f(3ϕ) 7→3(f(ϕ) ∧ ¬end)

f(ϕ1 ∧ ϕ2) 7→ f(ϕ1) ∧ f(ϕ2) f(•ϕ) 7→◦(f(ϕ) ∨ end)

f(◦ϕ) 7→◦(f(ϕ) ∧ ¬end) f(2ϕ) 7→ 2(f(ϕ) ∨ end)

Theorem 2. Let πi be an infinite trace. Then

πi |= 3end ∧2(end → ◦end) ∧2(end →
∧
a∈P
¬a)

iff it is has the form πi = πf{end}ω, where end is always
false in πf .

1028

Proof (sketch). The only if direction is immediate. For the
if direction, suffice it to observe that if πi satisfies 3end ∧
2(end →◦end) ∧2(end →∧

a∈P ¬a) then there must be
a first instant in which end becomes true, hence πi must have
the form πf{end}ω where end is always false in πf .

Theorem 3. Let ϕ be an LTLf formula and πi = πf{end}ω
an infinite trace where end is always false in πf . Then

πf |= ϕ iff πf{end}ω |= f(ϕ).

Proof (sketch). Both direction can be shown by induction on
the structure of the formula ϕ.

We now exploit the formal notions behind the above two
theorems to define the notion of insensitivity to infiniteness,
capturing the intuition discussed in the introduction.

Definition 1. An LTLf formula ϕ is insensitive to infiniteness
if for every (infinite) trace πi = πf{end}ω where end is
always false in πf , we have that

πf |= ϕ iff πf{end}ω |= ϕ

LTLf formulas that are insensitive to infiniteness can be
translated into LTL by simply adding the conditions on end
without applying the translation function f(·). Notice that if
an LTLf formula is insensitive to infiniteness, we can essen-
tially blur the distinction between finite and infinite traces
by simply asserting in the infinite case that there exists an
end of the significant part and that once such end is reached
every proposition is trivially reset to false in the infinite trace.

Next theorem gives us necessary and sufficient conditions
for an LTLf formula to be insensitive to infiniteness.

Theorem 4. An LTLf ϕ is insensitive to infiniteness if and
only if the following LTL formula is valid:

(3end∧2(end→◦end)∧2(end→
∧
a∈P
¬a))→(ϕ ≡ f(ϕ))

Proof. (If direction.) By Theorem 2, we know that for every
infinite trace satisfying the premise of the implication must
have the form πi = πf{end}ω where end is always false in
πf . While by Theorem 3 πf |= ϕ if and only if πf{end}ω |=
f(ϕ). But then by the consequent of the implication we have
that πf{end}ω |= ϕ, hence ϕ is insensitive to infiniteness.

(Only if direction.) Since ϕ is insensitive to infiniteness,
we have that for every (infinite) trace πi = πf{end}ω
where end is always false in πf : πf |= ϕ if and only if
πf{end}ω |= ϕ. On the other hand, by Theorem 3, we have
that πf |= ϕ if and only if πf{end}ω |= f(ϕ). By com-
bining the two above equivalences we get πf{end}ω |= ϕ
if and only if πf{end}ω |= f(ϕ), which in turn implies
πf{end}ω |= ϕ ≡ f(ϕ). Now by Theorem 2 we have that
an infinite trace has the form πi = πf{end}ω if and only if
πi |= 3end∧2(end→◦end)∧2(end→∧

a∈P ¬a). Hence,
we get πi |= 3end∧2(end→◦end)∧2(end→∧

a∈P ¬a)
implies πi |= ϕ ≡ f(ϕ), which is the claim.

This theorem is quite interesting since it gives us a tech-
nique to check an LTLf formula for insensitivity to the in-
finiteness: we simply need to check the standard LTL formula
3end ∧2(end → ◦end) ∧2(end →∧

a∈P ¬a))→ (ϕ ≡

f(ϕ) for validity, or its negation for unsatisfiability, which
can be done by checking for emptiness the corresponding
Büchi automata, see e.g., (Vardi 1996). For example, one can
check that the LTLf formula (1) is insensitive to infiniteness.

We close the section by showing that the class of LTLf
formulas that are insensitive to infiniteness is closed under
Boolean operations.

Theorem 5. Let ϕ1 and ϕ2 be two LTLf formulas that are
insensitive to infiniteness. Then the LTLf formulas ¬ϕi (i =
1, 2) and ϕ1 ∧ ϕ2 are also insensitive to infiniteness.

Proof. By induction on the structure of the formula, consid-
ering the definition of insensitive to infiniteness.

4 DECLARE Process Modeling
DECLARE is a language and framework for the declara-
tive, constraint-based modelling of processes and services. It
started from seminal works on ConDec (Pesic and van der
Aalst 2006) and DecSerFlow (van der Aalst and Pesic 2006;
Montali et al. 2010). A thorough treatment of constraint-
based processes can be found in (Pesic 2008; Montali 2010).

The DECLARE framework provides a set P of propositions
representing atomic tasks (i.e., actions), which are units of
work in the process. Notice that properties of states are not
represented. DECLARE assumes that, at each point in time,
one and only one task is executed, and that the process even-
tually terminates. Following the second assumption, LTLf is
used to specify DECLARE processes, whereas the first assump-
tion is captured by the following LTLf formula, assumed as an
implicit constraint: ξP = 2(

∨
a∈P a) ∧2(

∧
a,b∈P,a6=b a→

¬b), which we call the DECLARE assumption.
A DECLARE model is a set C of LTLf constraints over

P , used to restrict the allowed execution traces. Among all
possible LTLf constraints, some specific patterns have been
singled out as particularly meaningful for expressing DE-
CLARE processes, taking inspiration from (Dwyer, Avrunin,
and Corbett 1999). As shown in Table 1, patterns are grouped
into four families: (i) existence (unary) constraints, stat-
ing that the target task must/cannot be executed (a certain
amount of times); (ii) choice (binary) constraints, modeling
choice of execution; (iii) relation (binary) constraints, mod-
eling that whenever the source task is executed, then the
target task must also be executed (possibly with additional
requirements); (iv) negation (binary) constraints, modeling
that whenever the source task is executed, then the target task
cannot be executed (possibly with additional restrictions).

Observe that the set of finite traces that satisfies the con-
straints C together with the DECLARE assumption ξP can be
captured by a single deterministic process, obtained by:
1. generating the corresponding NFA (exponential step);
2. transforming it into a DFA- deterministic finite-state au-

tomaton (exponential step);
3. trimming the resulting DFA by removing every state from

which no final state is reachable (polynomial step).
The obtained DFA is indeed a process in the sense that at
every step, depending only on the history (i.e., the current
state), it exposes the set of tasks that are legally executable
and eventually lead to a final state (assuming fairness of the

1029

Table 1: Declare patterns and their insensitivity to infiniteness

NAME NOTATION LTLf FORMALIZATION DESCRIPTION INSENSITIVE
E

X
IS

T
E

N
C

E

Existence
1..∗

a 3a a must be executed at least once Y

Absence 2
0..1

a ¬3(a ∧3a) a can be executed at most once Y

C
H

O
IC

E Choice a −− ♦−− b 3a ∨3b a or b must be executed Y

Exclusive Choice a −− �−− b (3a ∨3b) ∧ ¬(3a ∧3b) Either a or b must be executed, but not both Y

R
E

L
A

T
IO

N

Resp. existence a •−−−− b 3a→3b If a is executed, then b must be executed as well Y

Coexistence a •−−−• b (3a→3b) ∧ (3b→3a) Either a and b are both executed, or none of them is executed Y

Response a •−−−I b 2(a→3b) Every time a is executed, b must be executed afterwards Y

Precedence a −−−I• b ¬bW a b can be executed only if a has been executed before Y

Succession a •−−I• b 2(a→3b) ∧ (¬bW a) b must be executed after a, and a must precede b Y

Alt. Response a •===I b 2(a→ ◦(¬aU b)) Every a must be followed by b, without any other a inbetween Y

Alt. Precedence a ===I• b (¬bW a) ∧2(b→ ◦(¬bW a)) Every b must be preceded by a, without any other b inbetween Y

Alt. Succession a •==I• b 2(a→ ◦(¬aU b)) ∧ (¬bW a) ∧2(b→ ◦(¬bW a)) Combination of alternate response and alternate precedence Y

Chain Response a •=−=−=−I b 2(a→ ◦b) If a is executed then b must be executed next Y

Chain Precedence a =−=−=−I• b 2(◦b→ a) Task b can be executed only immediately after a Y

Chain Succession a •=−=−I• b 2(a ≡ ◦b) Tasks a and b must be executed next to each other Y

N
E

G
A

T
IO

N Not Coexistence a •−−−•‖ b ¬(3a ∧3b) Only one among tasks a and b can be executed, but not both Y

Neg. Succession a •−−I•‖ b 2(a→¬3b) Task a cannot be followed by b, and b cannot be preceded by a Y

Neg. Chain Succession a •=−=−I•‖ b 2(a ≡ ◦¬b) Tasks a and b cannot be executed next to each other N

execution, which disallows remaining forever in a loop). In
the DECLARE implementation, this process is maintained im-
plicit, and traces are generated incrementally, in accordance
with the constraints. This requires an engine that, at each
state, infers which tasks are legal (cf. enactment below).

Three fundamental reasoning services are of interest in DE-
CLARE: (i) Consistency, which checks whether the model is
executable, i.e., there exists at least one (finite) trace πf over
P such that πf |= C∧ξP where, with a little abuse of notation,
we use C to denote the LTLf formula

∧
C∈C C. (ii) Detection

of dead tasks, which checks whether the model contains tasks
that can never be executed; a task a ∈ P is dead if, for every
(finite) trace πf over P: πf |= (C ∧ ξP)→ 2¬a. (iii) En-
actment, which drives the execution of the model, inferring
which tasks are currently legal, which constraints are cur-
rently pending (i.e., require to do something), and whether
the execution can be currently ended or not; specifically,
given a (finite) trace π1 denoting the execution so far:
• Task a ∈ P is legal in π1 if there exist a (finite, possibly

empty) trace π2 s.t.: π1aπ2 |= C ∧ ξP .
• Constraint C ∈ C is pending in π1 if π1 6|= C.
• The execution can be ended in π1 if π1 |= C ∧ ξP .
All these services reduce to standard reasoning in LTLf .

It turns out that all DECLARE patterns but one are insensi-
tive to infiniteness (see Table 1).
Theorem 6. All the DECLARE patterns, with the exception
of negation chain succession, are insensitive to infiniteness,
independently from the DECLARE assumption.

The theorem can be proven automatically, making use of an

LTL reasoner on infinite traces. Specifically, each DECLARE
pattern can be grounded on a concrete set of tasks (proposi-
tions), and then, by Theorem 4, we simply need to check the
validity of the corresponding formula. In fact, we encoded
each validity check in the model checker NuSMV2, following
the approach of satisfiability via model checking (Rozier and
Vardi 2007). E.g., the following NuSMV specification checks
whether response is insensitive to infiniteness:

MODULE main

VAR a:boolean; b:boolean; other:boolean; end:boolean;

LTLSPEC

(F(end) & G(end -> X(end)) & G(end -> (!b & !a)))

-> ((G(a -> X(F(b)))) <->

(G((a -> (X((F(b & !end))) & !end)) | end)))

NuSMV confirmed that all patterns but the negation chain
succession are insensitive to infiniteness. This is true both
making or not the DECLARE assumption, and independently
on whether P only contains the propositions explicitly men-
tioned in the pattern, or also further ones.

Let us discuss the negation chain succession, which is not
insensitive to infiniteness. On infinite traces, 2(a ≡ ◦¬b) re-
tains the meaning specified in Table 1. On finite traces, it also
forbids a to be the last-executed task in the finite trace, since
it requires a to be followed by another task that is different
from b. E.g., we have that {a}{end}ω |= 2(a ≡ ◦¬b), but
{a} 6|= 2(a ≡ ◦¬b). This is not foreseen in the informal

2The full list of specifications is available here:
http://www.inf.unibz.it/ montali/AAAI14

1030

description present in all papers about DECLARE, and shows
the subtlety of directly adopting formulas originally devised
in the infinite-trace setting to the one of finite traces. In fact,
the same meaning is retained only for those formulas that
are insensitive to infiniteness. Notice that the correct way of
formalizing the intended meaning of negation chain succes-
sion on finite traces is 2(a ≡ •¬b) (that is, 2(a ≡ ¬◦b)).
This is equivalent to the other formulation in the infinite-trace
setting, and actually it is insensitive to infiniteness.

Notice that there are several other DECLARE constraints,
beyond standard patterns, that are not insensitive to infinite-
ness, such as 2a. Over infinite traces, 2a states that a must
be executed forever, whereas, on finite traces, it obviously
stops requiring a when the trace ends.

5 Action Domains and Trajectories
We often characterize an action domain by the set of al-
lowed evolutions, each represented as a sequence of situa-
tions (Reiter 2001). To do so, we typically introduce a set
of atomic facts, called fluents, whose truth value changes
as the system evolves from one situation to the next be-
cause of actions. Since LTL/LTLf do not provide a direct
notion of action, we use propositions to denote them, as
in (Calvanese, De Giacomo, and Vardi 2002). Hence, we
partition P into fluents F and actions A, adding structural
constraint (analogous to the DECLARE assumption) such as
2(

∨
a∈A a) ∧2(

∧
a∈A(a→∧

b∈A,b6=a ¬b)), to specify that
one action must be performed to get to a new situation, and
that a single action at a time can be performed. Then, the
initial situation is described by a propositional formula ϕinit

involving only fluents, while effects can be modelled as:

2(ϕ→ ◦(a→ ψ)) (2)

where a ∈ A, while ψ and ϕ are arbitrary propositional
formulas involving only fluents. Such a formula states that
performing action a under the conditions denoted by ϕ
brings about the conditions denoted by ψ.3 Alternatively,
we can formalize effects through Reiter’s successor state ax-
ioms (Reiter 2001) (which also provide a solution to the frame
problem), as in (Calvanese, De Giacomo, and Vardi 2002;
De Giacomo and Vardi 2013), by translating the (instanti-
ated) successor state axiom F (do(a, s)) ≡ ϕ+(s)∨ (F (s)∧
¬ϕ−(s)) into the LTLf formula:

2(◦a→ (◦F ≡ ϕ+ ∨ F ∧ ¬ϕ−)). (3)

In general, to specify effects we need special LTLf formulas
that talk only about the current state and the next state to
capture how the domain does a transition from the current to
the next state. Such formulas are called transition formula,
and are inductively built as follows:

ϕ ::= φ | ◦φ | ¬ϕ | ϕ1 ∧ ϕ2, where φ is propositional.

For such formulas we can state a notable result: under the
assumption that at every step at least one proposition is true,
every specification based on transition formulas is insensitive
to infiniteness. More precisely:

3A formula like 2(ϕ→ ◦(a→ ϕ)) corresponds to a frame
axiom expressing that ϕ does not change when performing a.

Theorem 7. Let ϕ be an LTLf transition formula and P any
non-empty subset of P . Then all LTLf formulas of the form
2(◦∨a∈P a→ ϕ) are insensitive to infiniteness.

Proof. Suppose not. Then there exists a finite trace πf
and a formula 2(◦∨a∈P P → ϕ) such that πf |=
2(◦∨a∈P P → ϕ), but πf{end}ω 6|= 2(◦∨a∈P P → ϕ).
Hence, πf{end}ω |= 3(◦∨a∈P P ∧ ¬ϕ). That is there ex-
ist a point i in the trace πf{end}ω such that πf{end}ω, i |=◦∨a∈P P ∧ ¬ϕ. Now observe that i can only be in πf
since in the {end}ω part ◦∨a∈P P is false. But then πf 6|=
2(◦∨a∈P P → ϕ) contradicting the assumption.

By applying the above theorem we can immediately show
that (3) and (2) (for the latter, noting that it is equivalent to
2(◦a→ (ϕ→ ◦ψ))) are insensitive to infiniteness.

Also PDDL action effects (McDermott et al. 1998) can be
encoded in LTLf , and show to be insensitive to infiniteness
using the above theorem. Here, however, we focus on PDDL
3.0 trajectory constraints (Gerevini et al. 2009):

(at end φ) ::= last ∧ φ
(always φ) ::= 2φ

(sometime φ) ::=3φ

(within n φ) ::=
∨

0≤i≤n◦ · · ·◦︸ ︷︷ ︸
i

φ

(hold-after n φ) ::=◦ · · ·◦︸ ︷︷ ︸
n+1

3φ

(hold-during n1 n2 φ) ::=◦ · · ·◦︸ ︷︷ ︸
n1

(
∧

0≤i≤n2
◦ · · ·◦︸ ︷︷ ︸

i

φ)

(at-most-once φ) ::= 2(φ→ φW¬φ)
(sometime-after φ1 φ2) ::= 2(φ1→ 3φ2)

(sometime-before φ1 φ2) ::= (¬φ1 ∧ ¬φ2)W(¬φ1 ∧ φ2)

(always-within n φ1 φ2) ::= 2(φ1→
∨

0≤i≤n◦ · · ·◦︸ ︷︷ ︸
i

φ2)

where φ is a propositional formula on fluents, called goal for-
mula. Most trajectory constraints are (variants) of DECLARE
patterns, and we can ask if they are insensitive to infinite-
ness using Theorem 4. Moreover, the following general result
holds. Let a goal formula be guarded when it is equivalent to
(
∨
F∈F F) ∧ φ with φ any propositional formula. Then:

Theorem 8. All trajectory constraints involving only
guarded goal formulas, except from (always ϕ), are in-
sensitive to infiniteness.

6 Reasoning in LTLf through NFAs
We can associate with each LTLf formula ϕ an (exponential)
NFA Aϕ that accepts exactly the traces that make ϕ true. Var-
ious techniques for building such NFAs have been proposed
in the literature, but they all require a detour to automata
on infinite traces first. In (Bauer, Leucker, and Schallhart
2007) NFAs are used to check the compliance of an evolving
trace to a formula expressed in LTL. The automaton con-
struction is grounded on the one in (Lichtenstein, Pnueli, and
Zuck 1985), which, by introducing past operators, focuses
on finite traces. The procedure builds an NFA that recognizes
both finite and infinite traces satisfying the formula. Such
an automaton is indeed very similar to a generalized Büchi
automaton (cf. the Büchi automaton construction for LTL
formulas in (Baier, Katoen, and Guldstrand Larsen 2008)).

1031

As explained in (Westergaard 2011), the DECLARE environ-
ment uses the automaton construction in (Giannakopoulou
and Havelund 2001), which applies the traditional Büchi au-
tomaton construction in (Gerth et al. 1995), and then suitably
defines which states have to be considered as final. The lan-
guage, however, does not include the next operator. Inspired
by (Giannakopoulou and Havelund 2001), also the approach
in (Baier and McIlraith 2006) relies on the procedure in
(Gerth et al. 1995) to build the NFA, but it implements the
full LTLf semantics by dealing also with the next operator.

Here, we provide a simple direct algorithm for computing
the NFA corresponding to an LTLf formula. The correctness
of the algorithm is based on the fact that (i) we can associate
with each LTLf formula ϕ a polynomial alternating automa-
ton on words (AFW) Aϕ that accept exactly the traces that
make ϕ true (De Giacomo and Vardi 2013), and (ii) every
AFW can be transformed into an NFA, see, e.g., (De Giacomo
and Vardi 2013). However, to formulate the algorithm we do
not need these notions, but we can work directly on the LTLf
formula. We assume our formula to be in negation normal
form, by exploiting abbreviations and pushing negation inside
as much as possible, leaving it only in front of propositions
(any LTLf formula can be transformed into negation normal
form in linear time). We also assume P to include a special
proposition last which denotes the last element of the trace.
Note that last can be defined as last ≡ •false. Then we de-
fine an auxiliary function δ that takes an LTLf formula ψ (in
negation normal form) and a propositional interpretation Π
for P (including last), returning a positive boolean formula
whose atoms are (quoted) ψ subformulas.

δ("a",Π) = true if a ∈ Π
δ("a",Π) = false if a 6∈ Π
δ("¬a",Π) = false if a ∈ Π
δ("¬a",Π) = true if a 6∈ Π
δ("ϕ1 ∧ ϕ2",Π) = δ("ϕ1",Π) ∧ δ("ϕ2",Π)
δ("ϕ1 ∨ ϕ2",Π) = δ("ϕ1",Π) ∨ δ("ϕ2",Π)

δ("◦ϕ",Π) =

{
"ϕ" if last 6∈ Π

false if last ∈ Π

δ("3ϕ",Π) = δ("ϕ",Π) ∨ δ("◦3ϕ",Π)
δ("ϕ1 U ϕ2",Π) = δ("ϕ2",Π) ∨

(δ("ϕ1",Π) ∧ δ("◦(ϕ1 U ϕ2)",Π))

δ("•ϕ",Π) =

{
"ϕ" if last 6∈ Π

true if last ∈ Π

δ("2ϕ",Π) = δ("ϕ",Π) ∧ δ("•2ϕ",Π)
δ("ϕ1Rϕ2",Π) = δ("ϕ2",Π) ∧ (δ("ϕ1",Π) ∨

δ("•(ϕ1Rϕ2)",Π))

Using function δ we can build the NFA Aϕ of an LTLf formula
ϕ in a forward fashion. States of Aϕ are sets of atoms (recall
that each atom is quoted ϕ subformulas) to be interpreted as
a conjunction; the empty conjunction ∅ stands for true:

1: algorithm LTLf 2NFA()
2: input LTLf formula ϕ
3: output NFA Aϕ = (2P ,S, {s0}, %, {sf})
4: s0 ← {"ϕ"} . single initial state
5: sf ← ∅ . single final state
6: S ← {s0, sf}, %← ∅
7: while (S or % change) do
8: if (q ∈ S and q′ |=

∧
("ψ"∈q) δ("ψ",Π)) then

9: S ← S ∪ {q′} . update set of states

10: %← % ∪ {(q,Π, q′)} . update transition relationwhere q′ is a set of quoted subformulas of ϕ that denotes a
minimal interpretation such that q′ |= ∧

("ψ"∈q) δ("ψ",Π).
(Note: we do not need to get all q such that q′ |=∧

("ψ"∈q) δ("ψ",Π), but only the minimal ones.) Notice that
trivially we have (∅, a, ∅) ∈ % for every a ∈ Σ.

The algorithm LTLf 2NFA terminates in at most exponential
number of steps, and generates a set of states S whose size is
at most exponential in the size of the formula ϕ.
Theorem 9. Let ϕ be an LTLf formula and Aϕ the NFA
constructed as above. Then π |= ϕ iff π ∈ L(Aϕ) for every
finite trace π.
Proof (sketch). Given a specific formula ϕ, δ grounded on the
subformulas of ϕ becomes the transition function of the AFW,
with initial state "ϕ" and no final states, corresponding to ϕ
(De Giacomo and Vardi 2013). Then LTLf 2NFA essentially
transforms the AFW into a NFA.

Notice that above we have assumed to have a special
proposition last ∈ P . If we want to remove such an as-
sumption, we can easily transform the obtained automaton
Aϕ = (2P ,S, {"ϕ"}, %, {∅}) into the new automaton

A′ϕ = (2P−{last},S ∪ {ended}, {"ϕ"}, %′, {∅, ended})
where: (q,Π′, q′) ∈ %′ iff (q,Π′, q′) ∈ %, or (q,Π′ ∪
{last}, true) ∈ % and q′ = ended.

It is easy to see that the NFA obtained can be built on-the-fly
while checking for nonemptiness, hence we have:
Theorem 10. Satisfiability of an LTLf formula can be
checked in PSPACE by nonemptiness of Aϕ (or A′ϕ).

Considering that validity and logical implications can be
linearly reduced to satisfiability in LTLf (see Theorem 1),
we can conclude the proposed construction is optimal wrt
computational complexity for reasoning on LTLf .

We conclude this section by observing that using the ob-
tained NFA (or in fact any correct NFA for LTLf in the litera-
ture, e.g., (Baier and McIlraith 2006)), one can easily check
when the NFA obtained via the approach in (Edelkamp 2006;
Gerevini et al. 2009) mentioned in the introduction, i.e., using
directly the Büchi automaton for the formula, but by substi-
tuting the Büchi acceptance condition with the NFA one, is
indeed correct, by simply checking language equivalence.

7 Conclusions
While the blurring between infinite and finite traces has been
of help as a jump start, we should now sharpen our focus
on LTL on finite traces (LTLf). This paper does it in two
ways: by showing notable cases where the blurring does
not harm (witnessed by insensitivity to infiniteness); and by
proposing a direct route to develop algorithms for finite traces
(as witnessed by the algorithm LTLf 2NFA). Along the latter
line, we note that LTLf 2NFA can easily be extended to deal
with the more powerful LDLf (De Giacomo and Vardi 2013).
In future work, we plan to investigate runtime monitoring
(Bauer, Leucker, and Schallhart 2007) by using LTLf and
LDLf monitors.

Acknowledgments. This research has been partially supported
by the EU project Optique (FP7-IP-318338), and by the Sapienza
Award 2013 “SPIRITLETS: SPIRITLET–based Smart spaces”.

1032

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artif. Intell.
116(1-2):123–191.
Baier, J. A., and McIlraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
Proc. of the 21th AAAI Conf. on Artificial Intelligence (AAAI),
788–795.
Baier, C.; Katoen, J.-P.; and Guldstrand Larsen, K. 2008.
Principles of Model Checking. The MIT Press.
Bauer, A., and Haslum, P. 2010. LTL goal specifications
revisited. In Proc. of the 19th Eu. Conf. on Artificial Intelli-
gence (ECAI), 881–886. IOS Press.
Bauer, A.; Leucker, M.; and Schallhart, C. 2007. The good,
the bad, and the ugly, but how ugly is ugly? In Proc. of the
7th Int. Ws. on Runtime Verification (RV), 126–138.
Calvanese, D.; De Giacomo, G.; and Vardi, M. Y. 2002. Rea-
soning about actions and planning in LTL action theories.
In Proc. of the 8th Int. Conf. on the Principles of Knowl-
edge Representation and Reasoning (KR), 593–602. Morgan
Kaufmann.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In Proc. of
the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI).
IJCAI/AAAI.
Dwyer, M. B.; Avrunin, G. S.; and Corbett, J. C. 1999.
Patterns in property specifications for finite-state verification.
In Proc. of the 1999 Int. Conf. on Software Engineering
(ICSE), 411–420. ACM Press.
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. In Proc. of the 16th Int. Conf. on Automated
Planning and Scheduling (ICAPS), 374–377. AAAI.
Gabbay, D.; Pnueli, A.; Shelah, S.; and Stavi, J. 1980. On
the temporal analysis of fairness. In Proc. of the 7th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POLP), 163–173.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Dimopou-
los, Y. 2009. Deterministic planning in the fifth international
planning competition: Pddl3 and experimental evaluation of
the planners. Artificial Intelligence 173(5-6):619–668.
Gerth, R.; Peled, D.; Vardi, M. Y.; and Wolper, P. 1995.
Simple on-the-fly automatic verification of linear temporal
logic. In Proc. of the 15th IFIP Int. Symp. on Protocol
Specification, Testing and Verification (PSTV), 3–18. IFIP.
Giannakopoulou, D., and Havelund, K. 2001. Automata-
based verification of temporal properties on running pro-
grams. In Proc. of the 16th IEEE Int. Conf. on Automated
Software Engineering (ASE), 412–416. IEEE Computer So-
ciety.
Holzmann, G. J. 1995. Tutorial: Proving properties of con-
current system with spin. In Proc. of the 6th Int. Conf. on
Concurrency Theory (CONCUR), LNCS, 453–455. Springer.
Lichtenstein, O.; Pnueli, A.; and Zuck, L. D. 1985. The glory
of the past. In Logic of Programs, 196–218.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl – the
planning domain definition language – version 1.2. Technical
report, TR-98-003, Yale Center for Computational Vision
and Contro.
Montali, M.; Pesic, M.; van der Aalst, W. M. P.; Chesani, F.;
Mello, P.; and Storari, S. 2010. Declarative specification and
verification of service choreographies. ACM Transactions on
the Web 4(1).
Montali, M. 2010. Specification and Verification of Declar-
ative Open Interaction Models: a Logic-Based Approach,
volume 56 of LNBIP. Springer.
Pesic, M., and van der Aalst, W. M. P. 2006. A declarative ap-
proach for flexible business processes management. In Proc.
of the BPM 2006 Workshops, LNCS, 169–180. Springer.
Pesic, M.; Schonenberg, H.; and van der Aalst, W. M. P.
2007. Declare: Full support for loosely-structured processes.
In Proc. of the 11th IEEE Int. Enterprise Distributed Ob-
ject Computing Conf. (EDOC), 287–300. IEEE Computer
Society.
Pesic, M. 2008. Constraint-Based Workflow Management
Systems: Shifting Controls to Users. Ph.D. Dissertation, Beta
Research School for Operations Management and Logistics,
Eindhoven.
Pnueli, A. 1977. The temporal logic of programs. In Proc.
of the 18th Ann. Symp. on Foundations of Computer Science
(FOCS), 46–57. IEEE Computer Society.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Rozier, K. Y., and Vardi, M. Y. 2007. LTL satisfiability
checking. In Proc. of SPIN - Model Checking Software,
LNCS, 149–167. Springer.
Sun, Y.; Xu, W.; and Su, J. 2012. Declarative choreogra-
phies for artifacts. In Proc. of the 10th Int. Conf. on Service-
Oriented Computing (ICSOC), LNCS, 420–434. Springer.
van der Aalst, W. M. P., and Pesic, M. 2006. Decserflow:
Towards a truly declarative service flow language. In Proc.
of the 3rd Ws. on Web Services and Formal Methods (WS-
FM2006), LNCS, 1–23. Springer.
Vardi, M. Y. 1996. An automata-theoretic approach to linear
temporal logic. In Logics for Concurrency: Structure versus
Automata, LNCS. Springer. 238–266.
Westergaard, M. 2011. Better algorithms for analyzing and
enacting declarative workflow languages using LTL. In Proc.
of the 9th Int. Conf. on Business Process Management (BPM),
LNCS, 83–98. Springer.

1033

