
Using Model-Based Diagnosis to Improve Software Testing

Tom Zamir and Roni Stern and Meir Kalech
tom.zamir.i@gmail.com roni.stern@gmail.com kalech@bgu.ac.il

Department of Information Systems Engineering
Ben Gurion University of the Negev

Be’er Sheva, Israel

Abstract

We propose a combination of AI techniques to improve soft-
ware testing. When a test fails, a model-based diagnosis
(MBD) algorithm is used to propose a set of possible expla-
nations. We call these explanations diagnoses. Then, a plan-
ning algorithm is used to suggest further tests to identify the
correct diagnosis. A tester preforms these tests and reports
their outcome back to the MBD algorithm, which uses this
information to prune incorrect diagnoses. This iterative pro-
cess continues until the correct diagnosis is returned. We call
this testing paradigm Test, Diagnose and Plan (TDP). Several
test planning algorithms are proposed to minimize the num-
ber of TDP iterations, and consequently the number of tests
required until the correct diagnosis is found. Experimental
results show the benefits of using an MDP-based planning al-
gorithms over greedy test planning in three benchmarks.

Introduction
Testing is a fundamental part of the software development
process (Myers et al. 2004). A software testing phase in-
volves finding bugs and fixing them. From the perspective
of the programmer, fixing bugs usually involves two tasks.
First, the root cause of the bug needs to be found, and then
the faulty software components (e.g., functions or classes)
are fixed. Diagnosing the root cause of a software bug is of-
ten a challenging task that involves a trial-and-error process:
several possible diagnoses are suggested by the programmer,
which then performs tests and probes to differentiate the cor-
rect diagnosis. One of the reasons why this trial-and-error
process is challenging is because it is often non-trivial to re-
produce bugs found by a tester.

An ideal solution to this problem would be that the tester,
when observing a bug, will perform additional test steps
to help the programmer find the software component that
caused the bug. However, planning these additional test
steps cannot be done efficiently without being familiar with
the code of the tested software. Often, testing is done by
Quality Assurance (QA) professionals, which are not famil-
iar with the software code that they are testing. This sep-
aration, between those who write the code and those who
test it, is even regarded as a best-practice, allowing unbiased
testing.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this work we propose to enhance the software test-
ing and debugging process described above by combining
Model-Based Diagnosis (MBD) and planning techniques
from the Artificial Intelligence (AI) literature. MBD algo-
rithms have been proposed in the past for the purpose of
diagnosing software bugs (González-Sanchez et al. 2011;
Abreu, Zoeteweij, and van Gemund 2011; Wotawa and Nica
2011; Stumptner and Wotawa 1996). Thus, when a tester
encounters a bug, any of these algorithms can be used to
generate a set of possible diagnoses automatically.

To identify which of these diagnoses is correct, additional
tests need to be performed. We propose several algorithms
for planning these additional tests. These tests may be gen-
erated automatically or selected from a manually created
set of tests, considering the set of possible diagnoses and
choosing tests that will differentiate between them. This
process of testing, diagnosing and planning further testing
is repeated until a single diagnosis is found. Importantly,
unlike previous work on test generation for software, we do
not assume any model of the diagnosed software (Esser and
Struss 2007) or an ability to manipulate internal variables of
the software (Zeller 2002). One could consider this work as
variant of algorithmic debugging (Silva 2011) that combines
software MBD with planning.

The contributions of this paper are threefold. First, we
present a methodology change to the software testing and
debugging process that uses a combination of MBD and
planning techniques. Second, we propose several test plan-
ning algorithms for identifying the correct diagnosis while
minimizing the tests performed by the tester. Third, we eval-
uate these test planning algorithms on three benchmarks.

Background
We use the terms tester and developer to refer to the per-
son that tests and programs the software, respectively. The
purpose of traditional software testing process (referred to
hereafter as simply testing) is to verify that the developed
system functions properly. One can view testing as part of
an information passing process between the tester and the
developer, depicted in the left side of Figure 1. The tester
executes a sequence of tests to test some functionality of the
developed system. Such a sequence of tests is called a test
suite. The tester runs all the tests in a test suite until ei-
ther the test suite is done and all the tests have passed, or

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1135

one of the tests failed. A failing test indicates the existence
of a bug. To fix it, the tester passes information about the
failed test to the developer, often in the form of a “bug re-
port”, and continues to execute other tests. The developer
is then responsible for fixing the bugs found by the tester.
This process is often performed using bug or issue tracking
tools (e.g., HP Quality Center, Bugzilla, and IBM Rational
ClearQuest).

In order to fix the bug, the developer needs to identify
the faulty software component and then fix it. This process,
of finding the faulty software component and fixing it, is
commonly referred to as “debugging”.

The Test, Diagnose and Plan Paradigm

1

Tester

•Run a test suite

•Discover a bug

•File bug report

Developer

•Identify where is the bug

•Fix the bug

Tester

•Run a test suite

•Discover a bug

•File bug report

AI

•Run an AI diagnosis algorithm

•Produce a set of possible diagnoses

•Plan a test to prune false diagnoses

Developer
•Fix the bug

Traditional Process Proposed Process

Figure 1: Traditional software testing vs. TDP.

We propose a new testing paradigm, called Test, Diagnose
and Plan (TDP), for improving the testing and debugging
processes described above by empowering the tester with
tools from the Artificial Intelligence (AI) literature. TDP is
illustrated on the right side of Figure 1. When a test fails, an
MBD algorithm is run to suggest a set of possible diagnoses,
i.e., software components that may contain a bug that caused
the test to fail. If this set of diagnoses contains a single di-
agnosis, it is passed to the developer. Otherwise, a planning
algorithm is used to plan further tests for the tester intended
to narrow the set of diagnoses. The tester performs these
tests and reports the observed output back to the MBD al-
gorithm, which then outputs a new, potentially more refined,
set of diagnoses. This process is repeated until a single diag-
nosis is found and passed to the developer. Other stopping
conditions are also possible and discussed later in the paper.

The great benefit of TDP over the traditional testing and
debugging is that in TDP the developer is given the exact
set of software components that caused the bug. Moreover,
having the tester perform additional tests immediately when
the bug is observed, as is done in TDP, is expected to provide
information which may be difficult to obtain when the bug
is reproduced by the developer. This is because bug reports
may miss important details and the tested software may have
stochastic elements.

Algorithm 1 provides an algorithmic view of TDP and
how diagnosis and test planning are integrated in it. It is
called immediately after a test has failed. First, a set of di-
agnoses is generated from the tests performed so far by the

Algorithm 1: An Algorithmic View of TDP
Input: ObsTests, the tests performed by the tester

until the bug was found.
1 Ω← Compute diagnosis from ObsTests
2 while |Ω| > 1 do
3 NewTest← plan a new test
4 NewObs← Tester performs NewTest
5 ObsTests← ObsTests ∪NewObs
6 Ω← Compute diagnosis from ObsTests
7 end
8 return Ω

tester (line 1). Then, an additional test is proposed, such that
at least one of the diagnoses is checked (line 3). The tester
then performs this test (line 4). After the test is performed,
the diagnosis algorithm is run again, now with the additional
information gained from the new test that was performed
(line 6). If a single diagnosis is found, it is passed to the
developer to fix the faulty software component. Otherwise,
this process continues by planning and executing new tests.

The key components in TDP are the diagnosis algorithm
used to compute diagnoses and the planning algorithm used
to plan tests. We describe next how these components can
be implemented.

Model-Based Diagnosis for Software
The input to classical MBD algorithms is a tuple
〈SD,COMPS,OBS〉, where SD is a formal description
of the diagnosed system’s behavior, COMPS is the set of
components in the system that may be faulty, and OBS
is a set of observations. A diagnosis problem arises when
SD and OBS are inconsistent with the assumption that all
the components in COMPS are healthy. The output of an
MBD algorithm is a set of diagnoses.

Definition 1 (Diagnosis). A set of components ∆ ⊆
COMPS is a diagnosis if by assuming that they are faulty,
then SD is consistent with OBS.

In software, the set of components COMPS can be de-
fined for any level of granularity: a class, a function, a block
etc. Low level granularity will result in a very focused di-
agnosis (e.g., pointing on the exact line of code that was
faulty), but obtaining that diagnosis will require more effort.
Observations (OBS) in software diagnosis are observed ex-
ecutions of tests. Every observed test t is labeled as “passed”
or “failed”, denoted by passed(t) and failed(t), respec-
tively. This labeling is done manually by the tester or auto-
matically in case of automated tests (e.g., failed assertions).

There are two main approaches for applying MBD to
software diagnosis, each defining SD somewhat differently.
The first approach requires SD to be a logical model of the
correct functionality of every software component (Wotawa
and Nica 2011). This approach allows using logical reason-
ing techniques to infer diagnoses. The main drawbacks of
this approach is that it does not scale well and modeling the
behavior of software component is often infeasible.

1136

An alternative approach to software diagnosis has been
proposed by Abreu et. al. (2011; 2009), based on spectrum-
based fault localization (SFL). In this SFL-based approach,
there is no need for a logical model of the correct functional-
ity of every software component in the system. Instead, the
traces of the observed tests are considered.

Definition 2 (Trace). A trace of a test t, denoted by
trace(t), is the sequence of components involved in execut-
ing t.

Traces of tests can be collected in practice with common
software profilers (e.g., Java’s JVMTI). Recent work showed
how test traces can be collected with low overhead (Perez,
Abreu, and Riboira 2014). Also, many implemented ap-
plicative system log contain some form of this information.

In the SFL-based approach, SD is implicitly defined in
SFL by the assumption that a test will pass if all the compo-
nents in its trace are not faulty. Let h(C) denote the health
predicate for a component C, i.e., h(C) is true if C is not
faulty. Then we can formally define SD in the SFL-based
approach with the following set of Horn clauses:

∀test (
∧

C∈trace(test)

h(C))→ passed(test)

Thus, if a test failed at least one of the components in its
trace is faulty. In fact, a trace of a failed test is a conflict.

Definition 3 (Conflict). A set of components Γ ⊆ COMPS
is a conflict if

∧
C∈Γ

h(C) ∧ SD ∧OBS is inconsistent.

Many MBD algorithms use conflicts to direct the search
towards diagnoses, exploiting the fact that a diagnosis must
be a hitting set of all the conflicts (de Kleer and Williams
1987; Williams and Ragno 2007; Stern et al. 2012). In-
tuitively, since at least one component in every conflict is
faulty, only a hitting set of all conflicts can explain the un-
expected observation (failed test).

Barinel is a recently proposed software MBD algo-
rithm (Abreu, Zoeteweij, and van Gemund 2011) based on
exactly this concept: considering traces of tests with failed
outcome as conflicts and returning their hitting sets as diag-
noses. In addition, Barinel computes a score to every diag-
nosis it returns. This score estimates the likelihood that a
given diagnosis is true. This score considers both failed and
passed tests, assigning lower scores to diagnoses containing
components that are in traces of passed tests. For the exact
computation of this score see Abreu et. al. (2011).

The SFL-based approach to software diagnosis, and
Barinel algorithm in particular, can scale well to large sys-
tems. However, it may output a large set of diagnoses, pro-
viding less guidance to developer tasked to fix the corre-
sponding bug.

Test Planning in TDP
To prune the number of diagnoses, further tests should be
performed. We propose next several algorithms for generat-
ing such additional tests. These algorithms are intended to
be used in the TDP paradigm (Algorithm 1, line 3), where
they are called iteratively until a single diagnosis is found.

As such, we refer to these algorithms as test planning algo-
rithms, emphasizing that the overall goal is to minimize the
number of tests done until the correct diagnosis is found.

The input to all of the test planning algorithms below is
〈OBS,Ω, T 〉: OBS is the set of observed tests, Ω is the set
of diagnoses produced by Barinel, and T is the set of tests
that can be performed by the tester. For every observed test
t ∈ OBS we know trace(t) and whether t passed or failed.
For every diagnosis ω ∈ Ω, we know the score given to it by
Barinel, and denote it by p(ω). These scores are normalized
to one, i.e.,

∑
ω∈Ω p(ω) = 1, and we consider p(ω) to be an

approximation of the probability that ω is true.
While we assume that the set of tests to perform is given,

it is also possible to generate them using test generation al-
gorithms (Fraser and Arcuri 2011; Campos et al. 2013). Our
focus is on how to choose which tests the tester should per-
form and not on how to generate new possible tests. Recall,
that for a human tester performing all the tests in T is costly,
and we would like to find the correct diagnosis by perform-
ing minimal tests from T .

Before a test t is performed, its trace may not be known.
Code analysis and past executions of t can estimate the pos-
sible traces t might have. We simplify this by considering
trace(t) to be known even before t is executed, and leave
the research about the uncertainty of trace(t) to future work.
Next, we present several test planning algorithms to select
the next test.

Best Diagnosis and Highest Probability
The Best Diagnosis (BD) test planning algorithm chooses
randomly a test t from T whose trace includes a component
that is part of the most likely diagnosis found so far. The
intuition behind BD is to test the most likely diagnosis, po-
tentially proving it to be correct and returning it. Formally,
BD returns a random test from the set

{t ∈ T |∃ω ∈ Ω s.t. ω ∩ trace(t) ∧ p(ω) = max
ω′∈Ω

p(ω′)}

The Highest Probability (HP) test planning algorithm
chooses tests that pass through the component that is most
likely to be faulty. We denote by p(C,Ω) the likelihood that
a component C is faulty based on Ω. p(C,Ω) is calculated
as the sum over the scores of all the diagnoses that contain
C, i.e., p(C,Ω) =

∑
ω∈Ω,C∈ω p(ω). HP returns a random

test from the set

{t ∈ T |∃C ∈ COMPS s.t. C ∈ trace(t)

∧ p(C,Ω) = max
C′∈COMPS

{p(C ′,Ω)|p(C ′,Ω) < 1}}

Components C with p(C,Ω) = 1 are avoided as they are al-
ready known to be faulty. HP is motivated by the assumption
that checking first components that are likely to be faulty
will result in finding the correct diagnosis faster.

As an example of applying BD and HP, consider the ob-
served tests given in Table 1. There are 3 components
C1, C2 and C3 in the system and 4 tests were performed
T1, .., T4. Note that T3 and T4 produce different outcomes
(T3 fails while T4 passes) while they have the same trace.
This occurs in real software, where bugs can cause failure in-
termittently. Running Barinel on these observed tests results

1137

Test C1 C2 C3 Failed?
T1 1 1 0 Yes
T2 0 1 1 Yes
T3 1 0 1 Yes
T4 1 0 1 No

Table 1: An example of Obs

in finding three diagnoses ∆1 = {C1, C2}, ∆2 = {C2, C3},
and ∆3 = {C1, C3}, with p(∆1) = p(∆2) = 0.455 and
p(∆3) = 0.09. Assume that there are 3 possible tests that
can be performed, T5, T6, and T7, each having a trace of
a single component C1, C2, or C3, respectively. The most
likely diagnoses are ∆1 and ∆2 and thus BD would choose
a test from {T5, T6, T7} randomly, as all tests pass through
one of the components in ∆1 or ∆3. By contrast, HP would
choose T6, as p(C2,Ω)=0.91 is the most likely component
to be faulty.

Entropy
A well-studied approach for test generation in the diagno-
sis literature and others is based on information metrics, at-
tempting to identify the test that executing it will provide the
most information about the tested system (Yang, Dang, and
Fischer 2011). Common information metrics used in similar
contexts are information gain and entropy, where the infor-
mation gain of a test t is the difference between the entropy
of the set of diagnoses before performing t and the expected
entropy of the diagnoses after performing t. We suggest to
compute the entropy of Ω with respect to the score of the di-
agnoses, i.e,. Entropy(Ω) =

∑
ω∈Ω−p(ω)·log(p(ω)). See

that if Ω has a diagnosis with score close to one, i.e., a diag-
nosis that is very likely to be correct, results in Entropy(Ω)
that is close to zero, while having many diagnoses with a
similar, low, score yields high entropy.

To calculate the information gain of performing a test t,
we first estimate the probability of t passing w.r.t Ω, denoted
as p(t,Ω), as follows:

p(t,Ω) =
∑
ω∈Ω

p(ω) ·
∏

C∈(ω∩trace(t))

goodness(C)

where goodness(C) is a value computed by Barinel that es-
timates the likelihood of C causing a test passing through it
to fail.

Depending on whether t will pass or fail, the set of diag-
noses Ω will change. Let Ω+(t) and Ω−(t) be the resulting
set of diagnoses assuming that t passes or fails, respectively.
Using p(t,Ω), Ω−(t), and Ω+(t), we compute the informa-
tion gain of performing a test t as follows.

InfoGain(t) = Entropy(Ω)− (p(t,Ω) · Entropy(Ω+(t))

(1− p(t,Ω)) · Entropy(Ω−)(t))

The corresponding test planning algorithm, which we sim-
ply call Entropy, chooses a random test from all tests with
highest InfoGain(·).

Test Planning as an MDP
The test planning algorithms proposed above are myopic, in
the sense that they do not perform any long-term planning

of the testing process .1 Next, we propose a non-myopic test
planning algorithm that chooses tests by explicitly reason-
ing about their possible outcomes and subsequent testing.
Specifically, we model test planning as a Markov Decision
Process (MDP).

MDP Modeling An MDP is composed of states (includ-
ing an initial state and possibly a set of terminal states), ac-
tions, a transition function, and a reward function. For test
planning, a state is a set of observed tests (including traces
and outcomes). The initial state is the set of initial tests al-
ready performed by tester (Obs). Before describing the rest
of the MDP, observe that running Barinel on the observed
tests of a state s returns the set of diagnoses that will be
found if s is reached. We call this set of diagnoses the diag-
noses of s, denoted by Ω(s).

The actions in the MDP correspond to the set of tests T .
The outcome of an action is either pass(t) or fail(t). Thus,
the state transition function corresponds to the probability
that a planned test t will pass given the observed tests in state
s, estimated by p(t,Ω(s)) (as described for the Entropy test
planning algorithm). A state with |Ω(s)| = 1 is a state where
Barinel produces a single diagnosis. In such cases TDP halts
and that diagnosis is passed to the developer. Thus, such
states are terminal states. Our MDP is a shortest path MDP,
where we seek the shortest sequence of tests to reach a ter-
minal state. Hence, we set the reward function R(s, a) to be
minus one for every non-terminal state s.

Reaching a state where Ω contains a single diagnosis
can be impossible or very time consuming. We consider a
weaker requirement – performing tests until there is a di-
agnosis that is very likely to be true according to its score.
Formally, we define pmax(s) = maxω∈Ω p(ω) and every
state s with pmax(s) higher than a threshold B is regarded
as a terminal states. In our experiments we set B to be 0.9.

Solving the MDP A solution to an MDP is a policy map-
ping states to actions. An MDP solver seeks the policy that
maximizes the expected reward that will be gained when ex-
ecuting that policy. In our case, an MDP solver seeks the
policy that minimizes the expected number of tests until the
correct diagnosis is found. There are many algorithms for
solving MDPs such as Value Iteration, Policy Iteration (Rus-
sell and Norvig 2010), and Real-Time Dynamic Program-
ming (Barto, Bradtke, and Singh 1995). An optimal solution
to our MDP would result in an optimal test plan.

The number of states in this MDP is doubly exponential
in the number of available tests (a state for every possible set
of tests and their outcome). As a result, the corresponding
MDP is too large to be solved optimally by current opti-
mal MDP solvers, as they usually require time at least linear
in the number of states. Thus, we used a suboptimal MDP
solver based on Sparse Sampling (SpS) (Kearns, Mansour,
and Ng 2002), a well known MDP solver specifically de-
signed for large state space. In SpS, the expected reward of
performing an action a at a state s is evaluated by sampling
C possible outcomes of performing a and recursively esti-

1One might argue that Entropy is semi-myopic, as it considers
the outcome of a test to compute the entropy after it is executed.

1138

mating the expected reward of these outcomes until reach-
ing a predefined depth H . C and H are parameters of the
algorithm called width and depth, respectively. SpS requires
a generative model to define how to sample the outcomes
of performing an action, i.e., the states reached by perform-
ing a at state s. In our case, the generative model simply
samples the outcome of the considered test.

To improve efficiency, we modified SpS in two ways:
Using a default policy. In SpS, in every state s every pos-
sible action is sampled C times. Since the number of tests,
and correspondingly actions, may be large, we only sampled
all the tests in the initial state, and sampled a single test in
subsequent states. This can be viewed as a default policy,
a concept successfully used in UCT (Kocsis and Szepesvári
2006) and other sampling-based algorithms (Nguyen, Lee,
and Leong 2012). In our experiments we used all the pro-
posed heuristics (HP, BD, and Entropy) as well as simple
random test selection as default heuristics.
Values of leaf states. In SpS, every sample halts when it
either reaches a terminal state or reaches depth H . We ex-
perimented with two methods for setting the value of leaf
states so as to estimate the amount of further testing re-
quired to reach a terminal state. The first method we exper-
imented with estimated the value of a leaf state by perform-
ing a rollouts: choosing further tests to perform according to
the default policy and selecting test outcomes randomly un-
til reaching a terminal state, and propagating backwards the
cost of reaching that terminal state. That cost is the value
of the corresponding leaf state. While effective, the rollout
method is computationally intensive, and we were only able
to apply it to the smallest benchmark we used (the vending
machine program described later). For larger benchmarks,
we used instead a linear interpolation prediction of the ex-
pected cost of finding a state with pmax ≥ B, starting from
a leaf state s. For an initial state sinit this is computed by
− H·(B−pmax(s))

pmax(s)−pmax(sinit)
.

There are many variants of SpS and other MDP solvers
that can be used, as well as other ways to estimate the re-
ward of leaf states. The focus of this work is not to propose
a general purpose MDP solver, but to present an effective
MDP solver that, as we demonstrate in the experimental re-
sults section, results in an effective test planning algorithm.

Experimental Results
To evaluate TDP and the proposed heuristics we performed
experiments on three benchmarks. In every experiment we
run all the proposed test planning algorithms as part of TDP.
An experiment was halted when one of the following con-
ditions was met: 1) a diagnosis with probability higher than
0.9 was found, and 2) if all tests have been executed. The
second condition exists because there are cases where it is
not possible to identify a single diagnosis with probability
higher than 0.9. In such a case, no further testing will help,
and the set of diagnoses will be passed to the developer.
Vending Machine Experiments
The first benchmark we used, inspired by the “vending ma-
chine” benchmark (Campos et al. 2013; Burger and Zeller
2011; Orso et al. 2006), is a simple implementation of a

0

1

2

3

4

5

6

7

BD HP Rnd. Entropy BD HP Rnd. Entropy

Double Fault Single Fault

A
vg

. #
 t

es
ts

Greedy
MDP

Figure 2: Vending machine results.

vending machine logic having 19 components and 240 lines
of code. We injected potential bugs in four components and
hand crafted 15 possible tests (T). We partition the results
to single and double fault instances, where one or two po-
tential bugs were activated, respectively. For every choice
of activated bugs we run 100 instances, where each instance
chose randomly 7 out of the 15 possible test to serve as the
observed tests that were initially performed by the tester be-
fore invoking TDP.

Figure 2 shows the average number of tests (y-axis) for
every test planning algorithm. The darker blue lines corre-
spond to an MDP test planning algorithm, using HP, BD,
Entropy or random (denoted “Rnd.”) as a default policy.
As can be seen, for both single and double fault instances,
the number of tests required until TDP halted was substan-
tially smaller when using the MDP tests planning algorithm.
In addition, the MDP results were robust over the evaluated
default policies, showing similar performance for all the dif-
ferent default policies.

In the single fault cases, all non-MDP test planning al-
gorithm (the light blue bars) show very similar results, ex-
cept for BD performing substantially worse. The bad per-
formance of BD is understandable, as it does not distinguish
between the components in the best diagnosis. The benefit
of Entropy over HP, BD, and random is only observable in
the double fault instances, where Entropy required less tests
on average (5 vs. ≈6). Note that the average number of tests
required for the double faults instance was, in general, much
larger for all test planning algorithm, demonstrating that the
double fault instances are harder to solve. These results sug-
gest that Entropy’s benefit over even simple random testing
is needed for the harder instances. Also note that in these
cases, the benefit of MDP over Entropy is not large.

Experiments on Randomly Generated Programs
In the benchmark above the possible tests and bugs were
hand crafted to simulate reasonable bugs and tests. As a re-
sult, the size of the diagnosed program was relatively small.
To perform experiments on larger programs, we generated
synthetic programs, bugs, and tests, as follows.

First, we generated random graphs with 300 nodes, where
every two nodes are connected by an edge with probabil-
ity of 1.3%. From every graph G = (V,E) we generated
a program such that every node v ∈ V corresponded to a
function, and an edge (v1, v2) ∈ E correspond to a function
call, i.e,. function v1 calls v2. The neighbors of every node
v are ordered and grouped into one to four groups (number

1139

MDP Entropy HP
Prob. 10 20 10 20 10 20

0.5 20.1 24.9 56.2 107.0 71.3 130.8
0.6 23.8 25.6 57.8 111.0 71.8 132.7
0.7 25.8 26.8 65.1 111.9 74.3 133.9
0.8 26.0 32.2 69.9 115.3 77.6 135.3
0.9 26.9 33.0 73.0 143.9 79.0 136.4

Table 2: TDP costs for the randomly generated graphs.
Prob. MDP Entropy HP

0.5 5.08 50.75 66.75
0.6 6.45 53.85 70.14
0.7 6.45 53.85 70.14
0.8 6.45 53.85 70.14
0.9 6.45 55.69 70.41

Table 3: TDP costs for the NUnit call graph.

of groups is random between 1 and 4). The ordering corre-
spond to the order of execution, and the grouping correspond
to conditional choices of execution.

We generated 100 such synthetic programs, each gener-
ated from a different graph that was randomly generated as
described above. For each of these synthetic programs we
chose randomly 10 functions and injected a bug in them.
One of the nodes in the graph was selected to be the entry
point of the program, and paths in the graph starting from the
entry point corresponded to tests. The set of possible tests
T was chosen to be the shortest paths from the entry point
to each of nodes in the graph. For each of the 100 prob-
lem instances, we chose 15 tests randomly to serve as the
initially observed tests. We also generated similar instances
with 20 injected bugs. To manage the experiment runtimes,
we halted TDP for cases where more than 160 TDP itera-
tions were needed.

For each of the problem instances, we run TDP with each
of the proposed test planning methods. We omit the results
of random test selection and BD as both performed worse
than HP, Entropy, and MDP. Following MDP’s observed ro-
bustness over the different default policies, we show only the
results for MDP with the random default policy. In contrast
to the small vending machine benchmark above, here tests
vary significantly in the size of their trace. As our purpose is
to save tester effort in finding the correct diagnosis, we as-
sumed here that the cost of performing a test is proportional
to the number of components in its trace.

Table 2 shows the average cost required to find a diag-
nosis having a score higher than X , for X = 0.5, ..., 0.9.
The columns headed by 10 and 20 represent results for in-
stances with 10 and 20 bugs, respectively. Similar to the
vending machine benchmark, here too the results show that
diagnosing instances with more bugs is more costly for all
algorithms, and that the MDP-based algorithm performed
significantly better than all other algorithms.

Experiments on Open Source Software
In the next set of experiments we extracted the call graph
from an open source project called NUnit (www.nunit.org).
NUnit is a well-known testing framework for the .NET pro-
gramming languages (e.g, C#), which is an adaptation of JU-

nit, a well-known testing framework for Java. Using built-in
tools in MS Visual Studio, we extracted a call graph from the
source code of the NUnit “core” project, version 2.4. The re-
sulting graph had 302 nodes. Cycles were removed from the
resulting graph and a random number of nodes were set to
be faulty. This random number was chosen from the val-
ues {10, 15, 20, 25, 30}. As in the previous benchmark, the
available tests (T) were the shortest paths in the graph to
every component, and the initial observed tests were 15 ran-
domly selected tests.

Table 3 shows the average cost of finding a diagnosis hav-
ing score higher than X for X = 0.5, .., 0.9 using the pro-
posed test planning algorithms. Every number in the table
is an average over 110 tests. The same trends discussed in
the random graph experiment were also observed here. En-
tropy and HP show substantially worse results than MDP.
Note that in general the cost of finding a diagnosis of a given
score was smaller in the NUnit graph than in the randomly
generated graphs, even though they were roughly the same
size (≈300 nodes). We conjuncture that this is attributed to
the topology of the NUnit call graph, which is more tree-like
than the generated random graphs.

In general, in all three benchmarks MDP outperformed all
other methods significantly, emphasizing the benefit of non-
myopic planning in TDP. Naturally, the MDP method is the
most computationally intensive method. The runtime of the
other test planning algorithms were negligible in all our ex-
periments, while the runtime of the MDP method was kept
manageable via the use of SpS. Importantly, the purpose of a
test planning algorithm is not to reduce computational com-
plexity but to minimize the number of tests performed by a
human tester. Thus, experimenting with more efficient state-
of-the-art MDP solvers is beyond the scope of this paper.

Conclusion and Future Work
In this paper we proposed the TDP testing paradigm, where
the tester, enhanced with AI techniques, identifies for the de-
veloper the faulty software component that caused the bug.
TDP is built from two components: an MBD algorithm and
a test planning algorithm. The MBD algorithm suggests a
set of diagnoses and the test planning algorithm plans fur-
ther tests to provide information for identifying the correct
diagnosis. For the MBD part of TDP, we propose to use
Barinel (Abreu, Zoeteweij, and van Gemund 2011), which
is an SFL-based MBD algorithm that can scale to large sys-
tems without using any modeling of the diagnosed software.
For the test planning part of TDP, we proposed the BD, HP,
Entropy and MDP-based test planning algorithms. Evalua-
tion on three domains suggest that the MDP-based test plan-
ning algorithm performs substantially better than all other
test planning algorithms.

This paper presents only the first building block of this
vision: automated diagnosis and automated test planning.
In future work we plan to perform an empirical evaluation
on real data, which will be gathered from the source con-
trol managements and bug tracking tools of a real software
project in collaboration with existing software companies.
We are now pursuing such collaboration.

1140

Acknowledgments
We thank the Kamin program and the Israeli Science Foun-
dation grant number 182/13 for partially funding this re-
search.

References
Abreu, R.; Zoeteweij, P.; and van Gemund, A. J. C. 2009.
Spectrum-based multiple fault localization. In Automated
Software Engineering (ASE), 88–99. IEEE.
Abreu, R.; Zoeteweij, P.; and van Gemund, A. J. C. 2011.
Simultaneous debugging of software faults. Journal of Sys-
tems and Software 84(4):573–586.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72:81 – 138.
Burger, M., and Zeller, A. 2011. Minimizing reproduction of
software failures. In International Symposium on Software
Testing and Analysis, 221–231. ACM.
Campos, J.; Abreu, R.; Fraser, G.; and d’Amorim, M.
2013. Entropy-based test generation for improved fault
localization. In Automated Software Engineering (ASE),
IEEE/ACM, 257–267.
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Artif. Intell. 32(1):97–130.
Esser, M., and Struss, P. 2007. Fault-model-based test gen-
eration for embedded software. In Proceedings of the 20th
international joint conference on Artifical intelligence, IJ-
CAI’07, 342–347.
Fraser, G., and Arcuri, A. 2011. Evosuite: automatic test
suite generation for object-oriented software. In SIGSOFT
FSE, 416–419.
González-Sanchez, A.; Abreu, R.; Groß, H.-G.; and van
Gemund, A. J. C. 2011. An empirical study on the usage
of testability information to fault localization in software. In
SAC, 1398–1403.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large markov
decision processes. Machine Learning 49(2-3):193–208.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Myers, G.; Badgett, T.; Thomas, T.; and Sandler, C. 2004.
The Art of Software Testing. Business Data Processing: a
Wiley Series. John Wiley & Sons.
Nguyen, T.-H. D.; Lee, W.-S.; and Leong, T.-Y. 2012.
Bootstrapping monte carlo tree search with an imperfect
heuristic. In Machine Learning and Knowledge Discovery
in Databases. Springer. 164–179.
Orso, A.; Joshi, S.; Burger, M.; and Zeller, A. 2006. Iso-
lating relevant component interactions with jinsi. In Pro-
ceedings of the 2006 international workshop on Dynamic
systems analysis, 3–10. ACM.
Perez, A.; Abreu, R.; and Riboira, A. 2014. A dynamic code
coverage approach to maximize fault localization efficiency.
Journal of Systems and Software.

Russell, S. J., and Norvig, P. 2010. Artificial Intelligence -
A Modern Approach (3. internat. ed.). Pearson Education.
Silva, J. 2011. A survey on algorithmic debugging strate-
gies. Adv. Eng. Softw. 42(11):976–991.
Stern, R.; Kalech, M.; Feldman, A.; and Provan, G. M.
2012. Exploring the duality in conflict-directed model-based
diagnosis. In AAAI.
Stumptner, M., and Wotawa, F. 1996. A model-based ap-
proach to software debugging. In the Seventh International
Workshop on Principles of Diagnosis (DX), 214–223.
Williams, B. C., and Ragno, R. J. 2007. Conflict-directed
A* and its role in model-based embedded systems. Discrete
Appl. Math. 155(12):1562–1595.
Wotawa, F., and Nica, M. 2011. Program debugging using
constraints – is it feasible? Quality Software, International
Conference on 0:236–243.
Yang, L.; Dang, Z.; and Fischer, T. R. 2011. Informa-
tion gain of black-box testing. Formal aspects of computing
23(4):513–539.
Zeller, A. 2002. Isolating cause-effect chains from computer
programs. In SIGSOFT FSE, 1–10.

1141

