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Abstract

A model of the problem of charging and discharging
electrical vehicles as a congestion game is presented. A
generalization of congestion games – feedback conges-
tion games (FCG) – is introduced. The charging of grid-
integrated vehicles, which can also discharge energy
back to the grid, is a natural FCG application. FCGs are
proven to be exact potential games and therefore con-
verge to a pure-strategy Nash equilibrium by an iterated
better-response process. A compact representation and
an algorithm that enable efficient best-response search
are presented. A detailed empirical evaluation assesses
the performance of the iterated best-response process.
The evaluation considers the quality of the resulting so-
lutions and the rate of convergence to a stable state. The
effect of allowing to also discharge batteries using FCG
is compared to scenarios that only include charging and
is found to dramatically improve the predictability of
the achieved solutions as well as the balancing of load.

1 Introduction
Electric Vehicles (EVs) are an important part of the
transition plan to a low carbon economy. New designs,
such as plug-in hybrid vehicles and range-extended elec-
tric vehicles, are part of the expected future automotive
DNA (Mitchell, Borroni-Bird, and Burns 2010). EVs need
to be charged daily. When parked during office hours, EVs
are expected to charge in a well-balanced pattern in order
to avoid overloading the smart grid (Gerding et al. 2011;
Vandael et al. 2011). EVs are expected to be parked a large
fraction of the working day and may be able to charge part
of the time and be used as storage (Kamboj et al. 2010).
Consequently, it has been proposed that EVs could sell part
of the energy stored in their batteries back to the grid. This
concept is termed Vehicle-to-Grid (V2G). In the following,
the term Grid-Integrated Vehicles (GIVs) will be used to de-
scribe EVs that support V2G sessions. Such vehicles may be
used to balance the load on the grid by charging when de-
mand is low and selling power back to the grid (discharging)
when demand is high (Kempton and Tomić 2005b).

The present paper models the problem of charging (and
discharging) EVs as a congestion game (CG) (Rosenthal
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1973). A Congestion game consists of players and resources.
The cost of each resource depends on the number of players
that choose to use it. The overall cost of each player is sim-
ply the sum of the costs of all the resources that the player
selects to use. The connection to the charging of EVs is clear
– each player is an agent representing a single EV and the re-
sources are the time-slots in which the agents are interested
in charging their batteries.

Congestion games are closely related to another important
class of games – potential games (Monderer and Shapley
1996). Particularly, Monderer and Shapley proved that every
congestion game is an exact potential game. In a potential
game there exists a global function (the potential function)
that coincides with the incentives of all the players. More
precisely, the set of pure-strategy Nash equilibria (PNE) in
a potential game is equivalent to the local minima of the po-
tential function. Potential games, inherently including con-
gestion games, become interesting when the potential func-
tion has some desirable global meaning. In such games the
actions of strategic, non-cooperative, players leads to a de-
sirable global outcome.

The increasing popularity of GIVs introduces new op-
portunities to the EV charging/discharging domain. A GIV
parked for long periods of time could sell power back at peak
hours. Moreover, a fleet of cars, with heterogeneous parking
times, could balance its charging loads and avoid charging at
expensive peak hours. Consequently, GIVs create the need
for a new class of games that enable both charging and dis-
charging of the EVs batteries. The original version of con-
gestion games falls short of describing the desired class of
games, since Rosenthal only considered situations in which
players consume resources (Rosenthal 1973). Here, players
may also free up resources by discharging their batteries dur-
ing some time-slots. To deal with this situation, a generaliza-
tion of the congestion game model, that is termed here feed-
back congestion games, is introduced. The proposed gen-
eralization is shown formally to still satisfy the same con-
nection to potential games as the original congestion games.
More precisely, it is proven in Section 3 that every feedback
congestion game is an exact potential game.

This is not the first time that a real-world problem mo-
tivates a generalization of congestion games. Liu, Ahmad,
and Wu (2009) define congestion games with resource reuse
(CG-RR), which include an interference set for each player.
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Consequently, the cost of each user is a function of the num-
ber of interfering players. By using the CG-RR generaliza-
tion, the authors were able to model the problem of resource
competition in wireless communication.

A closely related research (Ibars, Navarro, and Giupponi
2010) models a distributed demand-side management sys-
tem using traditional congestion games that do not allow
selling power back to the grid. This research is similar to our
proposed method in its applicability to the smart grid. How-
ever, distributed demand side management is mainly consid-
ered for residual areas; in such areas, by using our proposed
generalization one can take advantages of micro-storage de-
vices (Vytelingum et al. 2010; Voice et al. 2011).

Several game-theoretic approaches that rely on some cen-
tral authority were recently proposed for the EV charging
domain. In the vehicle-to-aggregator interaction game (Wu,
Mohsenian-Rad, and Huang 2012) the aggregator controls
the prices for the nearest time-slot in a V2G setting in a
manner that enables achieving an optimal outcome for the
grid in a distributed fashion. A different approach uses iter-
ative Boolean games to solve a simpler version of the charg-
ing problem (Levit, Grinshpoun, and Meisels 2013). There,
a principal manipulates the players into reaching a PNE in a
dichotomous manner, i.e., without involving prices and dis-
charging. Although these approaches are decentralized, they
heavily rely on the involvement of a central entity, which is
not the case in the proposed method of the present paper.

An empirical evaluation of the performance of conges-
tion games and their respective feedback congestion games
is presented. That is, the effect of allowing to also discharge
batteries is compared to situations which include charging
only scenarios. Both alternatives are also compared to a
naı̈ve approach in which each GIV starts charging at the mo-
ment it is connected to the grid. The evaluation considers the
quality of the resulting solutions and the number of rounds
until convergence. The experimentation of large problems
was possible by using a compact representation and a novel
algorithm that enable efficient best-response search.

The plan of the paper is as follows. The GIV charging
problem is introduced in Section 2. Potential and congestion
games, as well as the feedback congestion games generaliza-
tion, are formally described in Section 3. The representation
of the GIV charging problem as a feedback congestion game
is presented in Section 4. A compact representation of the
problem and an algorithm for finding the best response are
introduced in Section 5. An extensive empirical evaluation
of the proposed games is in Section 6. Section 7 outlines our
conclusions and future work directions.

2 The GIV Charging Problem
Electric vehicles received a lot of attention in the recent
years. Generally, EVs are associated with their positive ef-
fects over the environment and especially low carbon emis-
sions and noise reduction (Kemp et al. 2010). However,
their widespread use is also expected to place considerable
strains on existing electricity distribution networks. More-
over, many EVs are expected to be charged during the same
time phase (between the times that the majority of the pop-
ulation is driving to work and the time they are driving

back home, for example). This pattern may lead to large
peaks, such that will have to be tackled by extending the
grid infrastructure which in turn will reduce or even dismiss
the positive effects on the environment (Stein et al. 2012;
Sovacool and Hirsh 2009).

One solution for the EVs charging problem is to try to
schedule the charging of EVs in a way that will reduce
the peaks and balance the load. This scheduling however
will have to take into consideration the fact that differ-
ent consumers (EVs) may have different time constraints
and willingness to pay. Grid-Integrated Vehicles are a spe-
cial kind of EVs that support Vehicle-to-Grid sessions. In
a V2G session a vehicle may sell power, stored in its
battery, back into the grid (Kempton and Letendre 1997;
Kempton and Tomić 2005a). Since most vehicles are parked
over 90% of the time (Kamboj et al. 2010), some GIVs that
have rather loose time constraints can sell energy stored in
their battery back to the grid and in this way help to serve
the charging needs of other, more tightly time-constrained,
GIVs. Doing so in a smart way can be beneficial both to the
GIVs owners and to the electrical grid operators. The GIV
owners are being paid for helping distribute the load; this
payment can then reduce the cost of the GIV charge.

Formally, the GIV charging problem takes the form
of the tuple < V, T, {lt}t∈T , {Sv}v∈V >, where
V = {1, 2, . . . , n} is a set of vehicles (GIVs) and T is a set
of time-slots. For each time-slot t ∈ T one defines lt to be
the initial load on the power grid that exists as background
to the problem (e.g., by residential homes or industry). For
each v ∈ V , Sv ⊆ {charge, do-nothing, discharge}|T | is a
set of assignments of actions (a strategy) for the different
time-slots. Each assignment sv ∈ Sv encodes a valid com-
bination of time-slots during which the GIV is available for
charge/discharge and that coincides with its owners prefer-
ences. Given this input, the goal is to find a schedule (or a
strategy profile) S = {s1, s2, . . . , sn}, such that it balances
the loads inflicted by the charging operations combined with
the initial background load {lt}t∈T .

3 Potential and Congestion Games
The class of potential games is characterized as games that
admit a potential function on the joint strategy space, such
that the gradient of the potential function is the gradient
of the constituents’ private utility function (Monderer and
Shapley 1996). A potential function has a natural interpre-
tation as representing opportunities for improvement to a
player that deviates from any given strategy profile (Chap-
man, Rogers, and Jennings 2008). A potential game with
I = {1, 2, . . . , n} players and a set of the available strate-
gies for these players {Si}i∈I has several unique properties.

1. The game has at least one PNE.

2. The local optima of the potential function are PNEs of the
game.

3. Given a strategy profile S = {s1, s2, . . . , sn} which is
a selection of strategies for each player in the game, an
improvement step of player i is a change of its strategy
from si to s′i, such that the utility ui : Si → R of
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player i increases. In potential games, sequences of im-
provement steps do not run into cycles. Such sequences
of improvement steps reach a PNE after a finite number
of steps (Monderer and Shapley 1996). This is sometimes
termed an iterated better-response process or the finite im-
provement property.

Definition 1 (exact potential game). A game is an exact
potential game if there exists a function Φ : S → R such
that for each player i and for any two strategies si, s′i ∈ Si

the following holds

ui(si, s−i)− ui(s
′
i, s−i) = Φ(si, s−i)− Φ(s′i, s−i) (1)

where s−i = S \ {si} denotes the set of the selected strate-
gies of every player except i.

The class of congestion games models scenarios in which
players use congestible resources (Rosenthal 1973). The
congestion level of resources is a function of the number of
players that use them. Our definition of the classical conges-
tion game as given below, is slightly different yet equivalent
to the definition of Rosenthal (1973).

Definition 2 (congestion game). A congestion game is a
tuple < I, T, {Si}i∈I , {ct}t∈T >, where I = {1, 2, . . . , n}
is a set of players, T is a set of congestible resources, Si ⊆
2|T | is the strategy space of player i, and ct : N → R is
a cost function associated with resource t ∈ T (Rosenthal
1973). The utility of a player for selecting a strategy si is
assumed to be proportional to

ui(si, s−i) = −1 ·
∑
t∈T

si[t] · ct(dt + 1) (2)

where si[t] is 1 if the player consumes resource t when ap-
plying strategy si and 0 otherwise. dt denotes the congestion
over resource t as can be deduced from s−i, and formally
dt =

∑
s∈s−i

s[t].

It was proven that every congestion game in an exact po-
tential game (Rosenthal 1973), since the following potential
function always holds:

Φ(S) = −1 ·
∑
t∈T

dt∑
x=1

ct(x) (3)

Feedback Congestion Games (FCGs)
Let us consider an extended definition of the classical con-
gestion game (as described by Rosenthal). The extension is
termed feedback congestion game (FCG) and is defined to
be a game similar to the classical congestion game with the
exception that the players play the role of both producer and
consumer. This means that each player is able to produce
some resources and consume other resources.

A clear motivation for feedback congestion games is that
they naturally model the GIV charging problem; an EV can
choose to charge at one time-slot and to discharge at another.
It can do so in order to reduce the total cost of its charging
session and as a side effect it can also help balance the over-
all load.

Definition 3 (Feedback Congestion Game). A feedback
congestion game is a tuple < I, T, {Si}i∈I , {ct}t∈T >,
where I = {1, 2, . . . , n} is a set of producer/consumer
players (henceforth termed agents); T is a set of con-
gestible resources; each agent i ∈ I has a set of strategies
Si ⊆ {−1, 0, 1}|T |, each strategy si ∈ Si is an assignment
of resources usage – 0 means no use, 1 means consume, and
-1 means produce; and ct : N→ R is a cost function associ-
ated with resource t ∈ T . The utility agent i has for selecting
strategy si is assumed to be proportional to

ui(si, s−i) = −1 ·
∑
t∈T

si[t] · ct(dt +
si[t] + 1

2
) (4)

Theorem 1. A feedback congestion game is an exact poten-
tial game.

Proof. In order to show that a feedback congestion game
is an exact potential game one needs to provide a potential
function Φ : S → R that satisfies the condition of Equa-
tion 1. We will show that the potential function

Φ(si, s−i) = −1 ·
∑
t∈T

dt+si[t]∑
x=1

ct(x) (5)

achieves this objective.
Consider an agent i ∈ I and two arbitrary strategies

si, s
′
i ∈ Si. In order to prove that Equation 5 is an exact

potential function one must show that

∀t ∈ T , si[t] · ct(dt +
si[t] + 1

2
)− s′i[t] · ct(dt +

s′i[t] + 1

2
)

=

dt+si[t]∑
x=1

ct(x) −
dt+s′i[t]∑

x=1

ct(x)

(6)

In order to prove the correctness of Equation 6 one must
consider all possible cases. The same outcome results when
switching between the values of si[t] and s′i[t] (only the sign
may flip). In what follows we use the term without loss of
generality (w.l.o.g.) to refer to such cases.

Case 1. si[t] = s′i[t]. This is the trivial case, since both sides
of the equation are identically 0.

Case 2. w.l.o.g., si[t] = 1, s′i[t] = −1. Inserting these
values into Equation 6 results in the expression:

ct(dt + 1) + ct(dt) =

dt+1∑
x=1

ct(x) −
dt−1∑
x=1

ct(x)

This equality holds because it is an identity. It simply uses
the elimination of similar elements from the right-hand side
of the equation, resulting in its left-hand side.

Case 3. w.l.o.g., si[t] = 0, s′i[t] = −1. Inserting these val-
ues into both sides of Equation 6 simplifies it to:

ct(dt) =

dt∑
x=1

ct(x) −
dt−1∑
x=1

ct(x)

The equality holds with the same justification as in Case 2.
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Case 4. w.l.o.g., si[t] = 0, s′i[t] = 1. Inserting these values
into both sides of Equation 6 simplifies it to:

−ct(dt + 1) =

dt∑
x=1

ct(x) −
dt+1∑
x=1

ct(x)

Again, the resulting equality is trivially true for the same
reason as in the previous cases.

The fact that Equation 6 holds proves that Equation 5 is
indeed an exact potential function. This proves that every
feedback congestion game is an exact potential game.

4 Modeling GIV Charging as FCG
Modeling the GIV charging problem as an FCG is straight-
forward. Let < V, T, {lt}, {Sv} > be an instance of the GIV
charging problem. Every vehicle v ∈ V can be represented
as an agent i ∈ I . The set of resources T in the FCG is
the set of time-slots. Finally, the set of available strategies
{Si} represents the set of available GIV actions {Sv}. In or-
der to support the initial background load one can add sev-
eral “pseudo-agents”, each with a single strategy, so that to-
gether they will impose the congestion defined in {lt}t∈T .
This modeling has several advantages:

1. Distributed iterated better-response playing is guaranteed
to converge to a PNE.

2. In order to compute its utility, an agent only needs to
know the congestion over the time-slots. The agent does
not need to know any additional information about any
other agent. This results in a compact representation of
the game and preservation of the privacy of agents.

3. Since each turn in the better-response process improves
the value of the potential function, one can execute this
process as a distributed anytime hill-climbing algorithm.

Given the above transformation, one can design appro-
priate pricing schemes. Pricing schemes are designed to
achieve global objectives which are inherent to issues of de-
mand side management and the smart grid. Important ex-
amples are load balancing and peak reduction. The relevant
pricing scheme for achieving load balancing is based on
Shannon’s entropy (Shannon 1948). For achieving peak re-
duction, one can use a lexicographic-order pricing scheme.
More details on these pricing schemes are excluded due to
page limitation.

5 Representation and Runtime
In formal formats for specifying a game (Neumann and Mor-
genstern 1944; Kuhn, Arrow, and Tucker 1953) utility func-
tions are represented explicitly by listing the values for each
agent and for each combination of actions. The number of
utility values that must be specified (i.e., the number of pos-
sible combinations of actions) is exponential in the number
of players. The actions available to the agents can be repre-
sented by a set of variables and their respective domains in
an Asymmetric Distributed Constraints Optimization Prob-
lem (Grinshpoun et al. 2013). This makes the utility func-
tions exponential both in the number of agents and in the

number of variables controlled by the agents. For a large
number of agents, as is the case in the GIV charging prob-
lem, the explicit representation is impractical. First, it needs
exponential space. Second, computing a best-response strat-
egy requires accessing all the utility values at least once, and
hence would take exponential time.

While the above explicit representation yields exponential
complexity, a property of real-life charging scenarios comes
to our aid. Vehicle owners usually could not care less regard-
ing some specific time-slots; rather, they want their EV to be
charged within some time interval in which the vehicle is
parked. This comprehension leads to a natural and remark-
ably compact representation.

Scalability of Representation
Each agent (GIV) i ∈ I in the GIV charging problem has
a set of strategies that encode a valid combination of time-
slots during which agent i is able to charge/discharge; these
strategies coincide with the vehicles owner’s preferences.
We assume that agent i is able to charge/discharge within
a time interval (ai, di), where ai represents the arrival time
and di the departure time. The vehicle’s owner expects that
during this time interval the GIV will charge qi energy units.
This expectation enables to present the set of strategies Si of
agent i as a tuple < ai, di, qi >. One may also notice that in
the iterated best-response process an agent does not need to
know the strategies chosen by other agents (i.e., s−i) in order
to calculate ui(si, s−i), but only the congestion of time-slots
in the interval (ai, di). These properties make the size of the
FCG representation size-scalable in the number of agents,
which is an important property in this domain. Moreover,
the proposed method for finding a PNE inherently preserves
the privacy of agents’ preferences.

Finding Best Response
Running an iterated best (or better) response process re-
quires numerous calculations of the best response for each
agent. The naı̈ve search process for the best response iter-
ates over all the strategies available for the agent, and selects
the one that yields the maximal utility. Following the prob-
lem definition in Section 2, each agent i which is “active”
in time interval (ai, di) has at most 3ti strategies, where
ti = di − ai. Iterating over all these strategies yields expo-
nential run-time. For this setting, Algorithm 1 finds a best-
response strategy in time O(ti · log(ti)), reducing the run-
time of the best-response process.

The algorithm receives as input the agents’ preferences
and the current congestions d. The algorithm first sorts d
with respect to the costs and then finds the first qi minimal-
cost time-slots to charge in. Next, the algorithm tries to find
pairs of time-slots, such that charging in one and discharging
in the other yields a profit. The agent has to verify that the
battery is not already fully charged when charging, and that
it has enough power in the battery when discharging.

Proposition 2. The run-time of Algorithm 1 is O(ti·log(ti)).

Proposition 3. Algorithm 1 finds a best-response strategy.

The proofs are omitted due to page limitation.
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Algorithm 1 FindBestResponse (ai, di, qi, d)
1: Let tcharge ⊆ T be the set of time-slots in (ai, di) or-

dered with respect to the cost of (congestion + 1)
2: Let tdischarge ⊆ T be the set of time-slots in (ai, di)

ordered with respect to the congestion cost
3: s← 0T

4: for min(qi, ti) times do
5: find time-slot t ∈ tcharge with lowest cost s.t. s[t] = 0
6: s[t]← 1
7: while ∃t ∈ tcharge, t

′ ∈ tdischarge s.t.
c(d[t′]) > c(d[t] + 1) and s[t] = 0 and s[t′] = 0 do

8: s[t]← 1
9: s[t′]← −1

10: return s

6 Experimental Evaluation
In the following evaluation we generated a random set of
GIV charging problems. These problems were then trans-
lated to both congestion games (by ignoring strategies that
include discharging) and feedback congestion games. We
tested the effectiveness of the iterated best-response process
for both CG and FCG, as well as for a fixed pricing scheme.
For CG and FCG we used an entropy-based pricing scheme.

Problem Generation
The problems used in this evaluation were randomly gener-
ated according to the following process. First, the number
of agents V and time-slots T were given to each experi-
ment as parameters. Next, a background power load was ran-
domly selected for each time-slot from the range [0, |V |/2].
Then, the EVs preferences were generated by randomly se-
lecting the arrival and departure times (in the range [0, |T |]),
as well as the amount of energy units that each EV needs to
charge. This amount was defined by a natural number ran-
domly selected from the range [0, 100]. All selections were
made with uniform distribution. Note that since EVs prefer-
ences are intervals, in the extreme time-slots (at the begin-
ning and at the end), the resulting demand is not uniform.
Finally, the congestion game and corresponding feedback
congestion game that represent the generated GIV charging
problem were constructed according to the transformation
described in Section 4.

Solution Quality
The first experiment is designed to test the quality of the so-
lutions achieved by using iterated best-response for both the
congestion and feedback congestion games that correspond
to the generated GIV charging problems. We also included
in the experiment the results of a fixed pricing scheme in
which the price for each time-slot is the same and it is not
affected by the congestion over the time-slot; this pricing
scheme corresponds to the naı̈ve approach in which each
GIV starts charging at the moment it is connected to the grid.

The motivation for this experiment stems from the fact
that CG/FCG may include many different PNEs; while an
iterated best-response process is guaranteed to find one of
them, the quality of the found PNE may be far from optimal.

We present the results of 200 randomly generated problems,
each with 500 agents and 200 time-slots. Figures 1, 2, and
3 show the average congestion over the time-slots that re-
sulted from solving the generated problems using the fixed
pricing scheme, CG, and FCG, respectively. Presenting only
the mean values is not particularly informative in this con-
text, since random values tend to average nicely. Thus, the
standard deviation is also shown.
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Figure 1: Congestion over time-slots – Background vs.
Fixed pricing scheme

Figure 1 clearly shows that the demand when using the
fixed pricing scheme is highly unpredictable, in the sense
that the variance between problem instances corresponds to
the variance of the background load. This is not a desirable
property for both the electricity company and the consumers.
The electricity company needs to plan the power generation
in advance, whereas the consumers benefit from predictable
electricity costs. Note that the average over all experiments
maintains the locations of the background load peaks.
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Figure 2: Congestion over time-slots – Background vs. CG

The CG results in Figure 2 show some improvement in
their predictability (e.g., lower variance). Nevertheless, even
in the average case CG was not able to flatten the demand,
as the background load peaks still appear to some extent.

Considerable improvement is achieved when using FCG,
as can be clearly seen in Figure 3. In the time-slots that have
high GIV availability (roughly between time-slots 70 and
170), the average demand is virtually flattened. Moreover,
the demand in this region is highly predictable, demonstrat-
ing a small variance.

Load Balancing
The second experiment is designed to measure the effect that
the amount of consumers has on the resulting demand. The
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Figure 3: Congestion over time-slots – Background vs. FCG

objective is to achieve a balanced load among the time-slots,
thus we measure the standard deviation of the resulting con-
gestion over all the time-slots.

For this experiment we considered problems of different
sizes, in which the number of consumers is taken from the
set {100, 200, . . . , 1000}. The number of time-slots remains
fixed (200) for all problems. For each problem size we gen-
erated 200 random instances. The values presented in Fig-
ure 4 are the averages for each problem size of the resulting
standard deviations.
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Figure 4: Load balancing between time-slots

It is clear that the results of the fixed pricing scheme are
not affected by the number of consumers. This is expected,
since the fixed pricing scheme basically amplifies the back-
ground load. In Contrast, when the number of consumers
increases, both CG and FCG are able to produce much more
balanced solutions. The ability of FCG to utilize V2G en-
ables it to achieve considerably more balanced solutions
than those achieved by CG.

Scalability and Player Ordering
To verify the scalability of the proposed solution we exam-
ine the number of turns until the players converge to a PNE.
In each turn exactly one player is allowed to change its strat-
egy or remain with its former strategy. For a problem with
n consumers, the process is considered converged after n
consecutive turns with no strategy changes.

Different player orderings may potentially affect the num-
ber of turns until convergence. The basic ordering, which
was also used in the preceding experiments, is “Round-
robin”, in which the same (random) ordering is used in each
round. Another player ordering that we consider is “Expen-
sive first”, in which the order changes each round accord-
ing to the agents’ costs in the previous round. “Expensive”

agents use congested time-slots, therefore lowering their
costs may lead to faster convergence.

Figure 5 presents the number of rounds until convergence
for CG and FCG when using each of the two player order-
ings (same settings).
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Figure 5: Rounds until convergence

For the “Round-robin” ordering CG is shown to converge
faster than FCG. This result is not surprising since in FCG
each player has more strategies, which leads to a larger so-
lution space. As expected, the “Expensive first” ordering re-
sulted in considerably faster convergence for FCG.

From the graph it is clear that the proposed solution scales
well, although one must keep in mind that as the problem
size grows, so does the number of turns in each round.

In most cases the different orderings converged to the
same PNE. On the rare occasions that they converged to dif-
ferent PNEs, the changes in solution quality were marginal.

7 Conclusions
The problem of V2G-enabled EV charging and discharg-
ing is modeled as a congestion game. In order to incorpo-
rate the discharge operation, a generalized model of conges-
tion games is proposed. The resulting feedback congestion
games (FCGs) were proven to be exact potential games, as
is the case with standard congestion games. Being a poten-
tial game, FCGs converge to a PNE by an iterated better-
response process. This property along with an extremely
compact representation that is presented, enable efficient
better-response search for a PNE.

An extensive experimental evaluation demonstrates that
the proposed model and its compact representation yield a
highly effective and scalable process. The experiments also
revealed that enabling the discharging operation (by using
FCGs) results in considerably better outcomes in terms of
their predictability as well as in the balance of loads that are
imposed on the different time-slots.

In the present work, the best-response process is com-
pletely sequential. In future work it would be interesting
to devise an algorithm in which all the agents act concur-
rently. Another interesting direction is to adjust the proposed
scheme in order to enable an online mechanism, in which
agents can come and go at any time (Gerding et al. 2011;
Robu et al. 2011; Stein et al. 2012). Finally, the V2G-
charging/discharging domain is an interesting playground
for semi-cooperative agents, which may lead to more effec-
tive schemes.
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