
Regret-Based Multi-Agent Coordination
with Uncertain Task Rewards

Feng Wu
School of Electronics and Computer Science
University of Southampton, United Kingdom

fw6e11@ecs.soton.ac.uk

Nicholas R. Jennings
School of Electronics and Computer Science
University of Southampton, United Kingdom

nrj@ecs.soton.ac.uk

Abstract

Many multi-agent coordination problems can be represented
as DCOPs. Motivated by task allocation in disaster response,
we extend standard DCOP models to consider uncertain task
rewards where the outcome of completing a task depends on
its current state, which is randomly drawn from unknown dis-
tributions. The goal of solving this problem is to find a solu-
tion for all agents that minimizes the overall worst-case loss.
This is a challenging problem for centralized algorithms be-
cause the search space grows exponentially with the number
of agents and is nontrivial for existing algorithms for stan-
dard DCOPs. To address this, we propose a novel decentral-
ized algorithm that incorporates Max-Sum with iterative con-
straint generation to solve the problem by passing messages
among agents. By so doing, our approach scales well and can
solve instances of the task allocation problem with hundreds
of agents and tasks.

Introduction
Distributed constraint optimization problems (DCOPs) are
a popular representation for many multi-agent coordination
problems. In this model, agents are represented as decision
variables and the tasks that they can be assigned to are vari-
able domains. The synergies between the agents’ (joint) as-
signment are specified as constraint values. Now, some tasks
may require a subgroup of the team to work together, ei-
ther because a single agent has insufficient capabilities to
complete the task or the teamwork can substantially improve
performance. In either case, the constraints are the utilities
of the agents’ joint behaviors. Once the DCOP model of
the problem is obtained, we can solve it efficiently using
optimal methods such as ADOPT (Modi et al. 2005) and
DPOP (Petcu and Faltings 2005) or approximate approaches
such as DSA (Zhang et al. 2005), MGM (Maheswaran,
Pearce, and Tambe 2004), or Max-Sum (Farinelli et al. 2008;
Stranders et al. 2009; Rogers et al. 2011).

In DCOPs, the task rewards are often assumed to be com-
pletely known to the agents. However, this can make it dif-
ficult to model problems where the reward for completing a
task depends on the task state, which is usually unobservable
and uncontrollable by the agents. For example, in disaster
response, a group of first responders may be sent out to an

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unknown area to search for survivors. However, the success
of the search tasks (task rewards) will depend on many fac-
tors (task states) such as the local terrain, the weather condi-
tion, and the degree of damage in the search area. Initially,
the responders may have very limited information about the
task states, but must act quickly because time is critical for
saving lives. In such cases, it is desirable to reason about the
uncertainty of the task states (rewards) and assign the tasks
to the agents in such a way that the worst-case loss (com-
pared to the unknown optimal solution) is minimized. The
aim of this is to perform as closely as possible to the op-
timal solution given the uncertain task rewards (caused by
unknown task states).

Over recent years, a significant body of research has dealt
with extending standard DCOPs to models with uncertainty.
A common method is to introduce additional random vari-
ables (uncontrollable by the agents) to the constraint func-
tions (Léauté and Faltings 2011). Another way to reason
about the uncertainty is to randomly select a constraint
function from a predefined function set (Atlas and Decker
2010; Stranders et al. 2011; Nguyen, Yeoh, and Lau 2012).
However, most of the aforementioned approaches require
the probability distributions of the random variables to be
known (Atlas and Decker 2010) or the candidate functions
to have certain properties (e.g., be Gaussian (Stranders et al.
2011) or concave (Nguyen, Yeoh, and Lau 2012)). Unfortu-
nately, these assumptions are not common in our motivating
domain because the agents have no or very limited informa-
tion about the tasks as they start to respond to the crisis. In
distributed settings, there are approaches that also consider
robust optimization under uncertainty (Matsui et al. 2010;
Léauté and Faltings 2011). However, they use a maximin
strategy that could be overly pessimistic (e.g., the respon-
ders will decide to do nothing because all the tasks may fail
in the worst case). Instead, we adopt minimax regret that usu-
ally offers more reasonable solutions in our problems (i.e.,
the responders must try their best even in the worst case). 1

Thus, the key challenge is to find a good solution (as close
to the optimal as possible) given no or partial information
about the associated task states (linked to the rewards).

To this end, we introduce a new model for multi-agent

1More discussion on using minimax regret as a criterion for de-
cision making with utility uncertainty is in (Boutilier et al. 2006).

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1492



coordination with uncertain task rewards and propose an ef-
ficient algorithm for computing the robust solution (mini-
mizing the worst-case loss) of this model. Our model, called
uncertain reward DCOP (UR-DCOP), extends the standard
DCOP to include random variables (task states), one for each
constraint (task). We assume these random variables are in-
dependent from each other (the tasks are independent) and
uncontrollable by the agents (e.g., the weather condition or
unexpected damage). Furthermore, we assume the choice of
these variables are drawn from finite domains with unknown
distributions. For each such variable, we define a belief as a
probability distribution over its domain. Thus, minimizing
the worst-case loss is equivalent to computing the minimax
regret solution in the joint belief space. Intuitively, this pro-
cess can be viewed as a game between the agents and nature
where the agents select a solution to minimize the loss, while
nature chooses a belief in the space to maximize it.

For large UR-DCOPs with hundreds of agents and tasks,
it is intractable for a centralized solver to compute the min-
imax regret solution for all the agents due to the huge joint
belief and solution space. Thus, we turn to decentralized ap-
proaches because they can exploit the interaction structure
and distribute the computation locally to each agent. How-
ever, it is challenging to compute the minimax regret in a
decentralized manner because intuitively all the agents need
to find the worst case (a point in the belief space) before they
can minimize the loss. To address this, we borrow ideas from
iterative constraint generation, first introduced by (Benders
1962) and recently adopted by (Regan and Boutilier 2010;
2011) for solving imprecise MDPs. Similar to their ap-
proaches, we decompose the overall problem into a master
problem and a subproblem that are iteratively solved until
they converge. The main contribution of our work lies in
the development of two variations of Max-Sum to solve the
master and sub-problems by passing messages among the
agents. We adopt Max-Sum due to its performance and sta-
bility on large problems (i.e., hundreds of agents). We prove
that our algorithm is optimal for acyclic factor graphs and
error-bounded for cyclic graphs. In experiments, we show
that our method can scale up to task allocation domains
with hundreds of agents and tasks (intractable for centralized
methods) and can outperform state-of-the-art decentralized
approaches by having much higher values and lower regrets.

The UR-DCOP Model
Formally, a distributed constraint optimization problem
(DCOP) can be defined as a tuple M = 〈I,X ,D,U〉,
where:

• I = {1, · · · , n} is a set of agents indexed by 1, 2, · · · , n;

• X = {x1, · · · , xn} is a set of decision variables where xi
denotes the variable controlled by agent i;

• D = {D1, · · · , Dn} is a set of finite domains for the deci-
sion variables where domainDi is a set of possible values
for decision variable xi;

• U = {U1, · · · , Um} is a set of soft constraints where each
constraint Uj : Dj1 × · · · × Djk → < defines the value
of possible assignments to subsets of decision variables

where Uj(xj1, · · · , xjk) is the value function for vari-
ables xj1, · · · , xjk ∈ X .

The goal of solving a DCOP is to find an assignment x∗ of
values in the domains of all decision variables xi ∈ X that
maximizes the sum of all constraints:

x∗ = argmax
x

m∑
j=1

Uj(xj1, · · · , xjk) (1)

Turning to Max-Sum, this is a decentralized message-
passing optimization approach for solving large DCOPs. To
use Max-Sum, a DCOP needs to be encoded as a special bi-
partite graph, called a factor graph, where vertices represent
variables xi and functions Uj , and edges the dependencies
between them. Specifically, it defines two types of messages
that are exchanged between variables and functions:
• From variable xi to function Uj :

qi→j(xi) = αi→j +
∑

k∈M(i)\j

rk→i(xi) (2)

where M(i) denotes the set of indices of the function
nodes connected to variable xi and αi→j is a scaler cho-
sen such that

∑
xi∈Di

qi→j(xi) = 0.
• From function Uj to variable xi:

rj→i(xi) = max
xj\xi

Uj(xj) +
∑

k∈N(j)\i

qk→j(xk)

 (3)

where N(j) denotes the set of indices of the vari-
able nodes connected to Uj and xj is a variable vector
〈xj1, · · · , xjk〉.

Notice that both qi→j(xi) and rj→i(xi) are scalar functions
of variable xi ∈ Di. Thus, the marginal function of each
variable xi can be calculated by:

zi(xi) =
∑

j∈M(i)

rj→i(xi) ≈ max
x\xi

m∑
j=1

Uj(xj) (4)

after which the assignment of xi can be selected by:

x∗i = argmax
xi∈Di

zi(xi) (5)

From this background, we now turn to the UR-DCOP
model itself. In particular, our work is mainly motivated by
the task allocation problem in disaster response scenarios 2,
where a group of first responders need to be assigned to a set
of tasks in order to maximize saved lives. This problem can
be straightforwardly modeled as a DCOP where: I is a set
of first responders, xi is the task assigned to responder i, Di

is a set of tasks that can be performed by responder i, and Uj
is the reward for the completion of task j. However, in our
domains, the value of Uj depends both on the joint choice
of the agents and on the uncontrollable events such as fires,
hurricanes, floods, or debris flows in the disaster area. These

2Nevertheless, our results are broadly applicable to other do-
mains that can be modeled as a UR-DCOP.

1493



events can be formally abstracted as task states, which are
usually unknown to the first responders, but critical for the
team performance. To model this, we introduce UR-DCOP
— a new representation for multi-agent coordination with
uncertain task rewards.

In more detail, UR-DCOP is an extension of the original
DCOP model with two additional components:
• E = {s1, · · · , sm} is a set of random variables modeling

uncontrollable stochastic events, e.g., fires in a building or
weather in a disaster area, for each constraint Uj ∈ U ;
• S = {S1, · · · , Sm} is a set of finite domains, e.g., levels

of the fire damage or different weather conditions, for
each random variable sj ∈ Sj ;

The value functions are augmented to consider both de-
cision variables and random variables (task states), i.e.,
Uj(sj ;xj1, · · · , xjk). We assume each value function only
associates with one random variable. If multiple random
variables are associated with a value function, without loss
of generality, they can be merged into a single variable. Fur-
thermore, we assume the random variables are not under the
control of the agents and they are independent of the deci-
sion variables. Specifically, their values are independently
drawn from unknown probability distributions.

Given a random variable sj in UR-DCOPs, the probabil-
ity distribution over domain Sj , denoted by bj ∈ ∆(Sj), is
called a belief of the random variable, and b = 〈b1, · · · , bm〉
is a joint belief of all random variables. Similarly, a joint
assignment of all decision variables is denoted by x =
〈x1, · · · , xn〉 and a partial joint assignment for the value
function Uj is denoted by xj = 〈xj1, · · · , xjk〉. When the
joint belief b is known, solving a UR-DCOP straightfor-
wardly involves finding an assignment of all decision vari-
ables x that maximize the sum of the expected values:

V (b,x) =

m∑
j=1

∑
sj∈Sj

bj(sj)Uj(sj ,xj)︸ ︷︷ ︸
Uj(bj ,xj)

(6)

The key challenge in our problem is that the joint belief
b is unknown. Therefore, we want to find a solution that is
robust (minimizing the worst-case loss) to the uncertainty of
the joint belief. As mentioned earlier, this objective is equiv-
alent to the minimax regret given the belief space B:

Vregret = min
x′

max
b∈B

max
x∗

[V (b,x∗)− V (b,x′)]︸ ︷︷ ︸
R1(x′,b)︸ ︷︷ ︸

R2(x′)

(7)

where x∗ is the optimal solution given belief b. R1(x′,b) is
the regret or loss of solution x relative to b, i.e., the differ-
ence in expected value between x and the optimal solution
x∗ under belief b. R2(x′) is the maximum regret of x with
respect to the feasible belief space. Thus, the value of min-
imax regret, Vregret, minimizes the worst-case loss over all
possible belief points.

As mentioned, first responders usually have very limited
information about the response tasks when the disaster hap-
pens and there is significant uncertainty in the environment.

In such cases, minimax regret minimizes the difference be-
tween the optimal value V (b,x∗) and the actual value
V (b,x) achieved by the current solution x in all possible
beliefs b ∈ B. Thus, it is a good solution for the first re-
sponders given the limited information.

Solving UR-DCOPs
Generally, to compute the minimax regret in Equation 7, we
first need to compute the optimal solution x∗ given a be-
lief point b and the current solution of agents x′. Then, the
whole belief space B is searched to find the worst-case be-
lief b. After that, we need to find the assignment x that min-
imizes the regret. On the one hand, it cannot be solved by
standard DCOP algorithms given the uncertain rewards in
our model. On the other hand, given a number of agents,
it is very challenging for centralized algorithms to compute
the minimax regret because the search space blows up expo-
nentially with the number of agents.

Following the ideas of iterative constraint generation
(ICG), two optimizations are alternatively solved at each it-
eration: the master problem and the subproblem. In more
detail, the master problem solves a relaxation of Equation 7
by considering only a subset of all possible 〈b,x∗〉 pairs G:

minx,δ δ
s.t. ∀〈b,x∗〉 ∈ G, V (b,x∗)− V (b,x) ≤ δ (8)

Initially, this set can be arbitrary (e.g., empty or randomly
generated). By giving G, the master problem tries to mini-
mize the loss for the worst case derived from G.

The subproblem generates the maximally violated con-
straint relative to x, the solution of the current master prob-
lem. More precisely, a new 〈b,x∗〉 pair is found by the sub-
problem. This pair is called a witness point because it indi-
cates that the current x is not the best solution in terms of
the minimax regret. In more detail, a program is solved to
determine the witness 〈b,x∗〉 for the current solution x:

maxb,x∗,δ′ δ′

s.t. V (b,x∗)− V (b,x) ≥ δ′ (9)

If δ′ = δ then the constraint for 〈b,x∗〉 in Equation 9 is sat-
isfied at the current solution x, and indeed all unexpressed
constraints must be satisfied as well. Otherwise, δ′ > δ, im-
plying that the constraint for 〈b,x∗〉 is violated in the current
relaxation. Thus, it is added to G and the master problem is
solved again to compute a new x. This process repeats until
no new witness point can be found by the subproblem and
the master problem terminates with the best solution x.

Based on the ideas of ICG, we propose iterative constraint
generation Max-Sum (ICG-Max-Sum) to solve UR-DCOPs.
Similar to standard Max-Sum, our algorithm starts with en-
coding UR-DCOPs into a factor graph. Then, two Max-Sum
algorithms are iteratively executed to solve the master and
sub-problems. In the master problem, we run a Max-Sum to
compute the current minimax solution x and minimax regret
δ given the witness set G. In the subproblem, we run another
Max-Sum to generate a new witness point 〈b,x∗〉 and the
corresponding minimax regret δ′ given the current solution
x. Then, δ and δ′ are compared by each node in the factor

1494



Algorithm 1: Iterative Constraint Generation Max-Sum
Input:M: The UR-DCOP Model

1 Create a factor graph based onM
2 Initialize the witness set G ← ∅
3 repeat

// The Master Problem
4 Run Max-Sum on the factor graph with G
5 Compute the current minimax solution x
6 Save each xi ∈ x in variable node i
7 Compute the minimax regret δ

// The Subproblem
8 Run Max-Sum on the factor graph with x
9 Compute the witness point 〈b,x∗〉

10 Compute the minimax regret δ′
// G ← G ∪ {〈b,x∗〉} if δ′ > δ

11 foreach variable node i do
12 if δ′ > δ then
13 Save x∗i ∈ x∗ in variable node i
14 else Terminate variable node i
15 foreach function node j do
16 if δ′ > δ then
17 Save bj ∈ b in function node j
18 else Terminate function node j

19 until all nodes in the graph are terminated.
20 return the current minimax solution x

graph: If δ > δ′, the newly generated witness point 〈b,x∗〉
is added to G; otherwise it terminates and returns the current
minimax solution x. These processes repeat until all nodes
in the factor graph are terminated. Notice that in our algo-
rithm the solutions xi ∈ x and x∗i ∈ x∗ are computed and
stored locally by variable i and belief bj ∈ b is computed
and stored locally by function j. The main procedures are
shown in Algorithm 1.

The Master Problem
The master problem of Equation 8, given the witness set G,
can be equivalently written as:

x = arg min
x′

max
〈b,x∗〉∈G

m∑
j=1

[Uj(bj ,x
∗
j )− Uj(bj ,x′j)]︸ ︷︷ ︸

δ

(10)

Note that the witness set G is known and the choice of
〈bj ,x∗j 〉 can be computed locally by function node j in Max-
Sum because bj is independent from other belief points and
x∗j is only related to the variable nodes it connects. To do
this, we consider the problem of minimizing a vector of re-
gret functions for each witness point in G:

V(x) =
[
Ṽ (x, 〈b,x∗〉1), · · · , Ṽ (x, 〈b,x∗〉|G|)

]
(11)

where Ṽ (x, 〈b,x∗〉g) = V (b,x∗) − V (b,x) and 〈b,x∗〉g
is the gth element in G. Accordingly, instead of qj→i(xi)
and ri→j(xi) being scalar functions of xi, these messages

G1 G2
AC -57 64
AD -96 -162
BC 54 72
BD -4 55
(a) Ṽ (x, 〈b,x∗〉)

AB CD 

G1 G2 

(b) Factor Graph

G1 G2
A -96 -162
B -4 55
C -57 64
D -96 -162

(c) zi(xi, 〈b,x∗〉)

Figure 1: Example of the Master Problem.

now map the domain of xi to a set of regret vectors: ∀xi ∈
Di, qj→i(xi) = [q1, · · · , q|G|], ri→j(xi) = [r1, · · · , r|G|].

To compute these messages, the two key operators re-
quired by Max-Sum (Equations 2 and 3) need to be rede-
fined. In more detail, the operation of adding two messages
is defined by adding each corresponding element in the two
vectors: q1j→i(xi) + q2j→i(xi) = [q11 + q21 , · · · , q1|G| + q2|G|]

and r1i→j(xi) + r2i→j(xi) = [r11 + r21, · · · , r1|G| + r2|G|]. For
Equation 3, we need to minimize the regret of function node
j with respect to its neighboring variables xj as:

rj→i(xi) = Uj(x̃j) +
∑

k∈N(j)\i

qk→j(x̃k) (12)

where Uj(x̃j) = [Ũj(x̃j, 〈bj ,x∗j 〉1), · · · , Ũj(x̃j, 〈bj ,x∗j 〉|G|],
Ũj(x̃j, 〈bj ,x∗j 〉g) = Uj(bj ,x

∗
j )− Uj(bj ,x′j), and

x̃j = arg min
xj\xi

max
〈bj ,x∗j 〉g∈G

[Ũj(xj, 〈bj ,x∗j 〉g)+∑
k∈N(j)\i

qk→j(xk, g)]
(13)

At the end of the message-passing phase, each variable
xi computes its marginal function zi(xi) according to Equa-
tion 4. Obviously, the value of the marginal function is also
a vector: zi(xi) = [z1, · · · , z|G|]. The best assignment of the
variable xi can be computed by:

xi = arg min
x′i∈Di

max
g

zi(x
′
i, g) (14)

where g is an index for the vector. After that, the minimax
regret δ can be computed by propagating values in a (any)
pre-defined tree structure of the factor graph: (1) Each vari-
able node sends its assignment to its neighboring nodes; (2)
On receipt of all the assignments from its neighboring nodes,
each function node computes the regret value and sends the
message to its neighboring nodes; (3) Each node propagates
the regret values until all the regret values are computed
and received by all the nodes. Then, δ can be computed by
adding all the m messages in each node.

An example of the master problem with randomly gen-
erated V is shown in Figure 1. In this example, there
are two variables with the domain {A,B} and {C,D}
respectively and the witness set G is {G1, G2}. Clearly,
the minimax solution is AD and the minimax regret is
−96 since we have min{max{−57, 64}, max{−96,−162},
max{54, 72}, max{−4, 55}} =−96. For our Max-Sum, ac-
cording to Equation 12, the message r1(A) = V(AD) since
AD = arg minAD,AC{max{−57, 64},max{−96,−162}}.
Similarly, we have the messages: r1(B) = V(BD), r1(C)

1495



= V(AC), and r1(D) = V(AD). After the message-
passing phase, the marginal functions z1(A) = V(AD),
z1(B) = V(BD), z2(C) = V(AC), z2(D) = V(AD).
Therefore, the best assignments of each variable are x1
= arg minA,B{max{−96,−162, },max{−4, 55}} = A and
x2 = arg maxC,D{max{−57, 64},max{−96,−162}} =D.
The joint solution is AD and the minimax regret is −96,
which are equal to the minimax solution and regret that we
computed earlier according to the definition.

The Subproblem
The subproblem in Equation 9 given the current solution x
can be written as:

〈b,x∗〉 = arg max
b∈B

max
x′∗

m∑
j=1

[Uj(bj ,x
′∗
j )− Uj(bj ,xj)]︸ ︷︷ ︸

δ′

.

Since each belief bj is independent from each other and
from the decision variables, the calculation of each belief
can be moved inside the utility function, shown as:

〈b,x∗〉 = arg max
x′∗

m∑
j=1

{
max
bj

[Uj(bj ,x
′∗
j )− Uj(bj ,xj)]

}
︸ ︷︷ ︸

δ′

Thus, we can define a new utility function as:

Uj(x
′∗
j ) = max

bj
[Uj(bj ,x

′∗
j )− Uj(bj ,xj)] (15)

and rely on a linear program to compute the utility:

maxbj Uj(bj ,x
′∗
j )− Uj(bj ,xj)

s.t. ∀sj ∈ Sj , bj(sj) ≥ 0∑
sj∈Sj

bj(sj) = 1
(16)

This can be done locally and thereby the subproblem can
be solved by standard DCOP algorithms. For Max-Sum, we
need to implement a linear program (Equation 16) in each
function node to compute the belief bj when Uj(xj) is called
in Equation 3. Once the optimal solution x∗ is found, we can
propagate x and x∗ to the function nodes and apply Equa-
tion 16 for each function node j to compute the belief b.
Similar to the master problem, the minimax regret δ′ can be
computed by value propagation in the factor graph.

Analysis and Discussion
For the computation and communication complexity, the
subproblem uses the standard Max-Sum except that a lin-
ear program is solved each time when the utility function
is called in Equation 3. For the master problem, according
to Equation 13, the computation is exponential only in the
number of variables in the scope of Uj (similar to standard
Max-Sum) but linear in the number of witness points in G.
The messages in the master problem are vectors with the
length of |G| while the messages in the sub-problems are
normal Max-Sum messages. In experiments, we observed G
is usually very small (<10) for the tested problems.

Inherited from Max-Sum, the optimality of our algorithm
depends on the structure of the factor graph. Specifically, for

an acyclic factor graph, it is known that Max-Sum converges
to the optimal solution of the DCOPs (Farinelli et al. 2008).
When the factor graph is cyclic, the straightforward appli-
cation of Max-Sum is not guaranteed to converge optimally.
In this cases, we prune edges of the original graph and gen-
erate a tree graph using the methods in (Rogers et al. 2011)
and then apply our algorithm on the remaining tree graph to
compute the solution. Specifically, we define the weight of
each dependency edge between variable xi and function Uj
in the original factor graph as:

wij = max
sj

max
xj\xi

[max
xi

Uj(sj ,xj)−min
xi

Uj(sj ,xj)] (17)

Given this, we could use the maximum spanning tree algo-
rithm to form a tree structure graph (Rogers et al. 2011).

Theorem 1. For acyclic factor graphs, ICG-Max-Sum guar-
antees to converge to the optimal minimax solution.

Theorem 2. For cyclic graphs, the error introduced by the
minmax solution x̃ of ICG-Max-Sum on the remaining tree
graph is bounded by: Vregret(x̃) − Vregret(x) ≤ ε where
x is the optimal minmax solution on the original graph and
the error bound ε =

∑
j

∑
xi∈xc

j
wij where xc

j is the set of
variable dependencies removed from Uj .

The proofs of Theorems 1 and 2 can be found in the ap-
pendix. Note that for acyclic graphs ε = 0 and x̃ = x is the
optimal solution. For cyclic graphs, the solution computed
by our algorithms is error-bounded with pruning methods.

Empirical Evaluation
We tested the performance of our algorithm on a disaster
scenario (similar to the Fukushima Daiichi nuclear disaster),
in which radioactive explosions created expanding and mov-
ing radioactive clouds that pose a threat to people, food re-
serves, and other key assets around the area. Hence, a group
of first responders are assigned to respond to the crisis. Be-
cause each task may require different teams of the respon-
ders to work together, they must be coordinated before en-
tering the area. However, given the invisibility of radiation
and the very short response time, information about the ra-
dioactive clouds is very limited. Thus, each task is highly
uncertain about its possible outcomes (rewards).

Problem Setup We developed a simulator for the above
scenario, in which tasks with any 4 types of targets (i.e.,
food, animal, victim, and fuel) were randomly generated on
a 2D grid map. A target in this context is a person or as-
set that locates in the disaster area and needs to be saved
by the responders. There were 4 types of responders (i.e.,
transporter, soldier, medic, and firefighter). However, our al-
gorithms can be applied to problems with arbitrary numbers
of target and responder types. In our settings, each task re-
quires a team of responders with different skills (e.g., the
task for saving a victim may require a firefighter to put out
the fire and a medic to do first aid). Hence we randomized
the requirements of each target type and kept them fixed for
each instance. Given this, a factor graph was defined with
variable nodes for the responders and function nodes for the

1496



Table 1: Runtime Results of ICG vs. ICG-Max-Sum
#Agents #Tasks #States ICG ICG-Max-Sum

3 6 20 0.671s 2.219s
5 10 20 1.114s 4.783s

10 20 20 >2h 19.272s
100 200 20 >12h 628.7s

tasks. Here, a task was linked to a responder if she owned the
skill required by the task. Since the radioactive clouds were
invisible to the responders when allocating their tasks, we
defined a set of states Sj for each task j. These states cap-
tured the possible situations that might happen during task
execution. For instance, the road may be blocked, the tar-
get may have already been contaminated, or the responders
may be killed during the process. For each state sj ∈ Sj ,
we specified a utility Uj(sj ,xj) for the responders doing the
task in a given state (e.g., if a resource has already been con-
taminated, there is little value in the responders saving it).

In the experiments, we ensured that there were more tasks
than responders so that not all tasks can be performed at the
same time since all tasks need at least one responder. Thus,
the responders must make a good choice to maximize the
overall team performance. Without loss of generality, we set
the number of tasks to be twice the number of agents. How-
ever, this ratio can be arbitrary as long as there are more
tasks than agents. For each instance, we defined a Markov
chain for the states of each task with the transition matrix
randomly initialized. When testing a solution for its true per-
formance in the domain, we first randomly selected an initial
state for every task and computed the value, following up
with a state transition for all tasks according to the Markov
chains. We repeated the process for 100 runs and reported
the average values. Note that the task states were only used
to evaluate a solution after it has been computed but hidden
to the algorithms. The algorithms must compute a solution
without knowing the task states or their distributions.

Experimental Results To date, none of the existing
DCOPs solvers can solve our model so a directed compari-
son is not possible. Therefore, to test the scalability and so-
lution quality of our algorithm, we compared it with two
baselines: a centralized method based on ICG (Equations 8
and 9) and a decentralized method based on DSA (Zhang et
al. 2005). Specifically, the two operators maxx∗ and minx′

are alternatively solved by DSA and a linear program is used
to solve the operator maxb∈B in Equation 7. We ran our ex-
periments on a machine with a 2.66GHZ Intel Core 2 Duo
and 4GB memory. All the algorithms were implemented in
Java 1.6, and the linear programs are solved by CPLEX 12.4.

In more details, Table 1 shows the runtime of centralized
ICG and ICG-Max-Sum. We can see from the table that the
runtime of centralized ICG increases dramatically with the
problem size and ran out of time (>2h) for problems with
more than 10 agents, while ICG-Max-Sum only took few
seconds to solve the same problems. As we can see from the
table, large UR-DCOPs with many agents and tasks are in-
tractable for centralized ICG. Intuitively, the reason for the

Table 2: Value Results of DSA vs. ICG-Max-Sum
#Agents #Tasks #States DSA ICG-Max-Sum

10 20 20 2117.57 5294.23
20 40 20 2556.95 6413.41
50 100 20 3939.11 7414.50
100 200 20 11461.69 23796.97
200 400 20 26243.01 46805.38

Table 3: Regret Results of DSA vs. ICG-Max-Sum

#Agents #Tasks #States DSA ICG-Max-Sum
2 4 20 65.42 55.14
3 6 20 941.12 10.37
5 10 20 1574.42 7.97
7 14 20 1766.38 13.22

stability of ICG-Max-Sum is that it can exploit the inter-
action structures of the task allocation problems (i.e., tasks
only usually require a few agents to coordinate). Table 2
shows the average true values V (s,x) achieved by the so-
lutions of DSA and ICG-Max-Sum respectively given the
hidden task states. This is a useful measurement because
it accounts for the real performance of the responders in
the environment. From the table, we can see that the solu-
tions of ICG-Max-Sum produced much higher values than
the ones of DSA for all tested instances. For large prob-
lems, the performance of DSA dropped very quickly as the
errors in the maxx∗ and minx′ steps increased given more
agents and tasks. Table 3 shows the true loss (i.e., the regret)
Vregret(x) = V (s,x∗)− V (s,x) achieved by the solutions
of DSA and ICG-Max-Sum respectively given the hidden
task states of the problem instance where x∗ is the optimal
solution for s. Because it is intractable to compute the opti-
mal solution x∗ for large problems (e.g., the solution space
for the instance with 200 agents and 400 tasks is 400200),
we only report the results for small instances. From the ta-
ble, we can see that the actual regrets of ICG-Max-Sum are
much lower than DSA especially for larger problems.

Conclusions
We have presented the ICG-Max-Sum algorithm to find ro-
bust solutions for UR-DCOPs. Specifically, we assume the
distributions of the task states are unknown and we use min-
imax regret to evaluate the worst-case loss. Building on the
ideas of iterative constraint generation, we proposed a de-
centralized algorithm that can compute the minimax regret
and solution using Max-Sum. Similar to Max-Sum, it can
exploit the interaction structures among agents and scale up
to problems with large number of agents. We proved that
ICG-Max-Sum is optimal for acyclic graphs and the regret is
error-bounded for cyclic graphs. Then, we empirically eval-
uated the performance of our algorithms on our motivating
task allocation domains in a disaster response scenario. The
experimental results confirm that ICG-Max-Sum has bet-
ter scalability than centralized ICG and outperformed DSA
— the state-of-the-art decentralized method — with much
higher values and lower regrets in the tested domain. In the

1497



future, we plan to extend our work to more complex domains
where the tasks are not completely independent.

Appendix
Lemma 1. The master problems in ICG-Max-Sum will con-
verge to the optimal solution for acyclic factor graphs.

Proof. The messages (vectors) in the master problems rep-
resent the regret values of all the witness points in |G|. The
sum operator adds up all the regret components for each wit-
ness point, Uj(bj ,x∗j ) − Uj(bj ,xj), sent from its neighbor-
ing nodes. The max operator selects the current minimax
solution x̃j and sends out the corresponding regret values.
Specifically, this operator is over matrices [mij ] with the
row i indexed by witness points and column j by assign-
ments. It compares two matrices and outputs the one with
the smaller minj maxi[mij ] value. This operator is associa-
tive and commutative with an identity element (matrix) [∞]
(i.e., the algebra is a commutative semi-ring). Thus, since
Max-Sum is a GDL algorithm (Aji and McEliece 2000), the
results hold for acyclic factor graphs.

Lemma 2. The subproblems in ICG-Max-Sum will converge
to the optimal solution for acyclic factor graphs.

Proof. The subproblems are standard DCOPs given the util-
ity function (Equation 15) that can be computed locally by
each function node. Thus, Max-Sum will converge to the op-
timal solution for acyclic factor graphs.

Proof of Theorem 1
Proof. According to Lemmas 1 and 2, the master problems
and subproblems are optimal for acyclic factor graphs. Thus,
this theorem can be proved by showing that the subprob-
lem will enumerate all 〈b,x∗〉 pairs if x is not the mini-
max optimal solution. This is equivalent to proving that in
the subproblem, δ′ > δ is always true and the new witness
〈b,x∗〉 6∈ G if x 6= x̄ where x̄ is the minimax optimal solu-
tion. Suppose δ′ = δ and x 6= x̄, then we have

δ′ = max〈b,x∗〉[V (b,x∗)− V (b,x)]
> minx′ max〈b,x∗〉[V (b,x∗)− V (b,x′)]
= max〈b,x∗〉[V (b,x∗)− V (b, x̄)] =⇒

δ = max〈b,x∗〉∈G [V (b,x∗)− V (b,x)] = δ′

> max〈b,x∗〉[V (b,x∗)− V (b, x̄)].

(18)

Because G is only a subset of the whole space, we have

max
〈b,x∗〉∈G

[V (b,x∗)−V (b,x)] > max
〈b,x∗〉∈G

[V (b,x∗)−V (b, x̄)].

Then, the current solution x computed by the mas-
ter problem is x = arg minx′ [max〈b,x∗〉∈G [V (b,x∗) −
V (b,x′)]] = x̄. This is contradictory to the assumption
x 6= x̄. Furthermore, in the subproblem, the newly gen-
erated witness point must not be in G, otherwise δ′ = δ
due to the same x and 〈b,x∗〉 being in both problems be-
cause we have δ′ = max〈b,x∗〉[V (b,x∗) − V (b,x)] =
max〈b,x∗〉∈G [V (b,x∗)− V (b,x)] = δ.

The algorithm will converge to the minimax optimal so-
lution x̄ once all witness points 〈b,x∗〉 are enumerated and
added to G by the subproblems. Thus, the results hold.

Lemma 3. For cyclic graphs, the error in values between
the solution x̃ computed on the remaining tree graph and
the optimal solution x∗ on the original graph is bounded
by: ∑

j

Uj(sj ,x
∗
j )︸ ︷︷ ︸

optimal value

−
∑
j

min
xc
j

Uj(sj , x̃j)︸ ︷︷ ︸
approximate value

≤ ε (19)

where xc
j represents the set of dependent variables that are

originally connected to function Uj but have been removed
in the tree graph and the error ε =

∑
j εj(x

c
j ) where the

maximum impact of a set of removed dependencies xc
j is:

εj(x
c
j )=


max
xj\xc

j

[max
xc
j

Uj(sj ,xj)−min
xc
j

Uj(sj ,xj)] if xc
j 6= ∅

0 otherwise

Proof. We can define new utility functions as ∀j, Fj(xj) =
Uj(sj ,xj) for the factor graph and then the lemma holds
according to Theorem 1 in (Rogers et al. 2011).

Proof of Theorem 2
Proof. According to Theorem 1, the minmax solution com-
puted by ICG-Max-Sum is optimal for the remaining tree
graph. Thus, this theorem can be proved by showing the er-
ror introduced by removing edges is bounded comparing to
the optimal minmax regret on the original graph. This is in-
dependent from the process of ICG and Max-Sum. Let the
regret of x̃ (i.e., the minmax solution computed by ICG-
Max-Sum on the tree graph) on the original graph be:

Vregret(x̃) ≡ max
b

max
x∗

[V (b,x∗)− V (b, x̃)] (20)

and the regret of x (i.e., the overall optimal minimax solu-
tion) on the original graph be:

Vregret(x) ≡ max
b

max
x∗

[V (b,x∗)− V (b,x)] (21)

According to Lemma 3, we have:

V (b,x)− V (b, x̃) ≤ ε (22)

where V (b,x) =
∑
j Uj(bj,xj) is the optimal value given

b and V (b, x̃) =
∑
j minxc

j
Uj(bj, x̃j) is the value of x̃ on

the original graph given b with xc
j the set of dependency

edges connected to Uj that have been removed in the tree
graph. Note that b is the overall worst-case belief of the
problem, which is independent from the choice of the agents
as the task states are uncontrollable by the agents in our set-
tings. Then, we have the following inequations:

Vregret(x) = max
b

max
x∗

[V (b,x∗)− V (b,x)]

≥ max
b

max
x∗
{V (b,x∗)− [V (b, x̃) + ε]}

= max
b

max
x∗

[V (b,x∗)− V (b, x̃)]− ε

= Vregret(x̃)− ε

(23)

Thus, the theorem holds because we have:

Vregret(x̃)− Vregret(x) ≤ ε (24)

1498



Acknowledgments
We thank all the anonymous reviewers for their helpful com-
ments and suggestions. This work was supported by the OR-
CHID project (http://www.orchid.ac.uk).

References
Aji, S. M., and McEliece, R. J. 2000. The generalized
distributive law. IEEE Transactions on Information Theory
46(2):325–343.
Atlas, J., and Decker, K. 2010. Coordination for uncer-
tain outcomes using distributed neighbor exchange. In Pro-
ceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, 1047–1054.
Benders, J. F. 1962. Partitioning procedures for solving
mixed-variables programming problems. Numerische Math-
ematik 4:238–252.
Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans, D.
2006. Constraint-based optimization and utility elicitation
using the minimax decision criterion. Artificial Intelligence
170(8):686–713.
Farinelli, A.; Rogers, A.; Petcu, A.; and Jennings, N. R.
2008. Decentralised coordination of low-power embedded
devices using the max-sum algorithm. In Proceedings of
the 7th International Conference on Autonomous Agents and
Multiagent Systems, 639–646.
Léauté, T., and Faltings, B. 2011. Distributed constraint
optimization under stochastic uncertainty. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence, 68–73.
Maheswaran, R.; Pearce, J.; and Tambe, M. 2004. Dis-
tributed algorithms for dcop: A graphical-game-based ap-
proach. 432–439.
Matsui, T.; Matsuo, H.; Silaghi, M.; Hirayama, K.; Yokoo,
M.; and Baba, S. 2010. A quantified distributed constraint
optimization problem. In Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, 1023–1030.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yoko, M. 2005.
ADOPT: Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence 161(1–
2):149–180.
Nguyen, D. T.; Yeoh, W.; and Lau, H. C. 2012. Stochastic
dominance in stochastic DCOPs for risk-sensitive applica-
tions. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems, 257–264.
Petcu, A., and Faltings, B. 2005. DPOP: A scalable method
for multiagent constraint optimization. In Proceedings of
the 19th International Joint Conference on Artificial Intelli-
gence, 266–271.
Regan, K., and Boutilier, C. 2010. Robust policy compu-
tation in reward-uncertain MDPs using nondominated poli-
cies. In Proceedings of the 24th AAAI Conference on Artifi-
cial Intelligence, 1127–1133.
Regan, K., and Boutilier, C. 2011. Eliciting additive reward
functions for markov decision processes. In Proceedings of
the 22nd international joint conference on Artificial Intelli-
gence, 2159–2164.

Rogers, A.; Farinelli, A.; Stranders, R.; and Jennings, N. R.
2011. Bounded approximate decentralised coordination via
the Max-Sum algorithm. Artificial Intelligence 175(2):730–
759.
Stranders, R.; Farinelli, A.; Rogers, A.; and Jennings, N. R.
2009. Decentralised coordination of mobile sensors using
the max-sum algorithm. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence, volume 9,
299–304.
Stranders, R.; Fave, F. M. D.; Rogers, A.; and Jennings,
N. R. 2011. U-GDL: A decentralised algorithm for DCOPs
with uncertainty. Technical report, University of Southamp-
ton.
Tambe, M. 2012. Security and game theory: algorithms,
deployed systems, lessons learned. Cambridge University
Press.
Wu, F.; Jennings, N. R.; and Chen, X. 2012. Sample-based
policy iteration for constrained DEC-POMDPs. In Proceed-
ings of the 20th European Conference on Artificial Intelli-
gence, 858–863.
Zhang, W.; Wang, G.; Xing, Z.; and Wittenburg, L. 2005.
Distributed stochastic search and distributed breakout: prop-
erties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence
161(1):55–87.

1499




