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Abstract

In the SHIFT BRIBERY problem, we are given an election
(based on preference orders), a preferred candidate p, and
a budget. The goal is to ensure that p wins by shifting p
higher in some voters’ preference orders. However, each
such shift request comes at a price (depending on the
voter and on the extent of the shift) and we must not
exceed the given budget. We study the parameterized
computational complexity of SHIFT BRIBERY with re-
spect to a number of parameters (pertaining to the nature
of the solution sought and the size of the election) and
several classes of price functions. When we parameterize
SHIFT BRIBERY by the number of affected voters, then
for each of our voting rules (Borda, Maximin, Copeland)
the problem is W[2]-hard. If, instead, we parameterize
by the number of positions by which p is shifted in total,
then the problem is fixed-parameter tractable for Borda
and Maximin, and is W[1]-hard for Copeland. If we pa-
rameterize by the budget for the cost of shifting, then the
results depend on the price function class. We also show
that SHIFT BRIBERY tends to be tractable when parame-
terized by the number of voters, but that the results for
the number of candidates are more enigmatic.

1 Introduction
Rank aggregation and winner determination are of key im-
portance in economical and political settings. For instance,
there are product rankings based on comparing prices but
also based on different product tests (performed by various
institutions such as foundations, journals, etc.). A sophisti-
cated way to deal with the various results is to compute a
consensus ranking using preference-based rank aggregation.1
In order to affect the outcome of the rank aggregation one
has to influence the product rankings obtained from different
sources (voters). Clearly, the cost of influencing may differ
from source to source.

In this work, we study the computational complexity of
“bribing” the outcome of the rank aggregation at minimum

Copyright c© 2014, Association for the Advancement of Artificial
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1The German website idealo.de aggregates different product
tests by first translating the test results into a unified rating system
and then taking the “average” of all ratings. It would be very inter-
esting, however, to utilize the rankings themselves instead of the
ratings for the aggregation.

cost. Moreover, replacing “bribery” with “product develop-
ment” it may also be important for producers/sellers to find
out how much they need to invest into their product in or-
der to achieve a better position in the aggregated ranking
or maybe even become the winner. A natural and simple
model in this context, using the formalisms of voting theory,
is SHIFT BRIBERY as introduced by Elkind et al. (2009).
We extend their studies in terms of charting the border of
computational (worst-case) tractability, herein putting par-
ticular emphasis on the voter-specific “shifting prices” (how
expensive is it to shift a candidate by x positions “up”).

In SHIFT BRIBERY, we are given an election, that is, a set
of candidates and a list of voters, each with a linear preference
order over the candidate set.2 Our goal is to ensure that our
preferred candidate p wins. To achieve this, we can approach
each of the voters, one-on-one, and try to convince3 him or
her to rank p higher. Naturally, the effect (the number of
positions by which p is shifted in each voter’s preference
order) depends on the voter’s character and situation and
on the amount of effort we invest into convincing the voter.
This “effort” could, for example, mean the amount of time
spent, the price of preparing promotional materials or, in
the bribery view of the problem, the payment to the voter.
Thus, the computational complexity of the problem depends
on the voting rule used in the election, on various election
parameters such as the number of candidates and voters, and
on the type of price functions describing the efforts needed
to shift p up by a given number of positions in the voters’
preference orders. Our goal is to unravel the nature of these
dependencies.

Elkind et al. (2009) have shown that SHIFT BRIBERY
is polynomial-time solvable for Plurality and k-Approval,
but that it is NP-complete for the Borda, Copelandα, and
Maximin voting rules. In addition, they provided a 2-
approximation algorithm for SHIFT BRIBERY under Borda.
Elkind and Faliszewski (2010) extended this last result to all

2We assume that we have the knowledge of the voters’ prefer-
ence orders (for example, from preelection polls).

3What “to convince” means can vary a lot depending on the
application scenario. On the evil side we have bribery, but it can also
mean things like product development or bug elimination or lower
costs for customers. Clearly, different customers may appreciate
different changes, which is modeled by the voter’s individual price
functions.
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R SHIFT BRIBERY

parameter R unit prices convex prices arbitrary prices sortable prices all-or-nothing

#shifts (t) B/M FPT (Thm. 1)
C W[1]-hard (Thm. 2)

#voters-affected (na) B/M/C W[2]-hard (Cor. 1)

budget (B) B/M FPT (Cor. 2) W[2]-hard (Cor. 2)
C W[1]-hard (Cor. 3) W[2]-hard (Cor. 3)

#voters (n) B/M FPT-AS (Thm. 3) FPT (Prop. 2)
C FPT-AS (Thm. 3) / W[1]-hard (Thm. 4) FPT (Prop. 2)

#candidates (m) B/M/C FPT (Dorn and Schlotter 2012) XP (Prop. 3) FPT-AS (Thm. 5)

Table 1: The parameterized complexity of R SHIFT BRIBERY for Borda (B), Maximin (M), and Copelandα (C) (for each
rational number α). Roughly speaking, for a given parameter, a problem is in FPT if an efficient algorithm exists as long as the
parameter is small (or an efficient approximation algorithm in the case of FPT-AS). The problem is W[1]-hard or W[2]-hard if
it is intractable even if the parameter is small. Formal definitions for FPT, W[1], W[2], and XP are provided in Section 2, and in
Section 3 for FPT-AS. Note that when speaking of the FPT-AS result we mean the result for the optimization version of SHIFT
BRIBERY where the goal is to minimize the budget.

scoring protocols and found approximation algorithms for
SHIFT BRIBERY under Copelandα and Maximin. Schlotter et
al. (2011) complemented these results by showing that SHIFT
BRIBERY is easy for the Bucklin and Fallback rules.

Thus, for the case of Borda, Copelandα, and Maximin,
Elkind et al. (2010; 2009) have shown that SHIFT BRIBERY
has high worst-case complexity, but that one can deal with
it using polynomial-time approximation algorithms. How-
ever, to better understand where the intractability of SHIFT
BRIBERY really lies in different special cases, we use another
approach of dealing with computationally hard problems,
namely parameterized complexity analysis and, more specif-
ically, the notion of fixed-parameter tractability and corre-
spondingly developed exact algorithms. For instance, almost
tied elections are tempting targets for campaign management.
An exact algorithm which is efficient in this case may be
more attractive than a general approximation algorithm. In
close-to-tied elections it might suffice, for example, to contact
only a few voters or, perhaps, to shift the preferred candidate
by only a few positions in total. Similarly, it is important
to solve the problem exactly if the campaign manager has
only a small budget at his or her disposal.This is captured by
using various problem parameterizations and performing a
parameterized complexity analysis.

Furthermore, it is natural to expect that the computational
complexity of SHIFT BRIBERY depends on the nature of
the voters’ price functions and, indeed, there is some evi-
dence for this fact: For example, if we assume that shift-
ing p by each single position in each voter’s preference order
has a fixed unit price or, at the very least, if functions de-
scribing the prices are convex, then one can verify that the
2-approximation algorithm of Elkind and Faliszewski (2010)
boils down to a greedy procedure that picks the cheapest
available single-position shifts until it ensures the designated
candidate’s victory (such an implementation would be much
faster than the expensive dynamic-programming algorithm
that they use, but would guarantee a 2-approximate solution
for convex price functions only). On the other hand, the hard-

ness proofs of Elkind et al. (2009) all use a very specific form
of price functions which we call all-or-nothing prices. See
Section 3 for the definitions of the different price functions
that we study.

We combine the above two sets of observations and we
study the parameterized complexity of SHIFT BRIBERY for
Borda, Maximin, and Copelandα, for parameters describing
the number of affected voters, the number of unit shifts, the
budget, the number of candidates, and the number of voters,
under price functions that are either all-or-nothing, sortable,
arbitrary, convex, or have a unit price for each single shift.
The three voting rules that we select are popular in different
kinds of elections apart from political ones. For instance,
Borda is used by the X.Org Foundation to elect its board of
directors, a slightly modified version of Copeland is used to
elect the Board of Trustees for the Wikimedia Foundation.

We summarize our results in Table 1, and we discuss them
throughout the paper. In short, it turns out that indeed both
the particular parameters used and the nature of the price
functions have strong impact on the computational complex-
ity of SHIFT BRIBERY. Three key technical contributions of
our work are

1. novel FPT approximation schemes exploiting the parame-
ters “number of voters” and “number of candidates” (such
schemes are rare in the literature and of significant practi-
cal interest),

2. a surprising W[1]-hardness for the parameter “number of
voters” when using Copelandα voting, and

3. a partial kernelization (polynomial-time data reduction)
result for the parameter “number of unit shifts”.
The paper is organized as follows. In Section 2 we present

preliminary notions regarding elections and parameterized
complexity theory, and in Section 3 we formally define the
SHIFT BRIBERY problem, together with its parameteriza-
tions and definitions of price functions. Our results are in
Sections 4 (parameterization by solution cost) and 5 (param-
eterization by election size), and we conclude in Section 6.
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2 Preliminaries
Below we provide a brief overview of the notions regarding
elections and parameterized complexity theory.
Elections and Voting Rules. We use the standard, ordinal
model of elections where an election E = (C, V ) consists
of a set C = {c1, . . . , cm} of candidates and a list V =
(v1, . . . , vn) of voters. Each voter v provides a preference
order over C, i. e., a linear order ranking the candidates from
the most preferred one (position 1) to the least preferred one
(position m). For example, if C = {c1, c2, c3} then writing
v : c1 � c2 � c3 indicates that voter v likes c1 best, then c2,
and then c3. For two candidates ci, cj and voter v we write
v : ci � cj to indicate that v prefers ci to cj . Further, we
write �v to denote voter v’s preference order. We often use
multiset notation to speak of a list V . For example, we write
v ∈ V to indicate that some voter v is included in the list V
and write |V | to denote the number of voters in V . Given
an election E, for each two candidates c and d, we define
NE(c, d) to be the number of voters in E who prefer c over d.

A voting rule R is a function that given an election E
outputs a non-empty set ∅ 6= R(E) ⊆ C of the tied winners
of the election. Note that we use the nonunique-winner model,
where each of the tied winners is considered a winner and we
disregard tie-breaking. Furthermore, we implicitly assume
that all voting rules that we consider are anonymous, i.e.,
their outcomes depend only on the numbers of voters with
particular preference orders. We consider Borda, Maximin,
and the Copelandα family of rules. These rules assign points
to every candidate and pick as winners those who get most;
we write scoreE(c) to denote the number of points candidate
c receives in election E—the voting rule will always be clear
from the context.

LetE be an election withm candidates. Under Borda, each
candidate c receives from each voter v as many points as there
are candidates that v ranks lower than c. Formally, the Borda
score of candidate c is scoreE(c) =

∑
d∈C\{c}NE(c, d).

Similarly, the Maximin score of a candidate c is the num-
ber of voters who prefer c to his or her “strongest com-
petitor”, formally, scoreE(c) = mind∈C\{c}NE(c, d). Un-
der Copelandα we organize a head-to-head contest between
each two candidates c and d; if c wins (i.e., if NE(c, d) >
NE(d, c)) then c receives one point, if d wins then d re-
ceives one point, and if they tie (i.e., NE(c, d) = NE(d, c))
then they both receive α points. More precisely, for each
rational number α ∈ [0, 1], Copelandα assigns to each candi-
date c ∈ C score |{d ∈ C \ {c} : NE(c, d) > NE(d, c)}| +
α |{d ∈ C \ {c} : NE(c, d) = NE(d, c)}|. Typical values of
α are 0, 1/2, and 1, but there are cases where other values
are used. All our results for COPELANDα SHIFT BRIBERY
hold for arbitrary rational number α. For brevity’s sake, we
write “Copeland” instead of “Copelandα for arbitrary rational
number α” throughout the remainder of this paper.
Parameterized Complexity. To speak of parameterized
complexity of a given problem, we declare a part of the input
as a so-called parameter (here we consider numerical parame-
ters only, e.g., for SHIFT BRIBERY it could be the number of
candidates or the budget; see the next section). We say that a
problem parameterized by k is fixed-parameter tractable, that

is, is in FPT, if there exists an algorithm that given input I
with parameter k gives a correct solution in time f(k)·|I|O(1),
where f(k) is an arbitrary computable function of k, |I| is
the length of the encoding of I . To describe the running times
of our algorithms, we often use the O∗(·) notation. It is a
variant of the standard O(·) notation where polynomial fac-
tors are omitted. For example, if the algorithm’s running time
is f(k) · |I|O(1), where f is superpolynomial, then we would
say that it is O∗(f(k)).

Parameterized complexity theory also provides a hierarchy
of hardness classes, starting with W[1], such that FPT ⊆
W[1] ⊆ W[2] ⊆ . . . ⊆ XP. For problems where an FPT
algorithm and a hardness proof are elusive, one can at least try
to show an XP algorithm whose running time is polynomial
if one treats the parameter as a constant. As opposed to FPT,
the degree of the polynomial describing the “XP” running
time can depend on the parameter.

We point the reader to Downey and Fellows (2013), Flum
and Grohe (2006), and Niedermeier (2006) for more infor-
mation on parameterized complexity. There is also a survey
on the applications of parameterized complexity theory for
computational social choice (Betzler et al. 2012).

3 Shift Bribery
Given a voting ruleR, inR SHIFT BRIBERY the goal is to
ensure that a certain candidate p (the preferred candidate) is
anR-winner of the election; this is done by shifting p forward
in some of the voters’ preference orders. Each shift may have
a different price, depending on the voter and the length of the
shift. (The problem was defined by Elkind et al. (2009). Here
we follow the notation of Elkind and Faliszewski (2010); see
the introduction for other related work.)

Let E = (C, V ) be some election where p ∈ C is the
preferred candidate. A SHIFT BRIBERY price function πi
for voter vi ∈ V , πi : N → N, gives the price of shifting p
forward in vi’s preference order a given number of positions.
We require that πi(0) = 0 and that πi(`) ≤ πi(` + 1) for
each ` ∈ N. We also assume that if p is ranked on a position r
in the preference order, then πi(`) = πi(` − 1) whenever
` ≥ r. In other words, it costs nothing to keep a voter’s
preference order as is, it never costs less to shift p farther, and
we cannot shift p beyond the top position in the preference
order. For instance, let vi be a voter with preference order
vi : c1 � c2 � p � c3 and let πi be vi’s SHIFT BRIBERY
price function. Then, by paying πi(1) we can change vi’s
preference order to c1 � p � c2 � c3, and by paying πi(2)
we can change it to p � c1 � c2 � c3.

It is clear that we need at most |C| values to completely
describe each SHIFT BRIBERY price function. We write
Π = (π1, . . . , πn) to denote the list of SHIFT BRIBERY price
functions for the voters in V .

A shift action #»s is a vector (s1, . . . , sn) of natural num-
bers, describing how far p should be shifted in each of the
n voters’ preference orders. We define shift(E, #»s ) to be the
election E′ = (C, V ′) identical to E, except that p has been
shifted forward in each voter vi’s preference order by si po-
sitions. If that would mean moving p beyond the top position
in some preference order, we shift p up to the top position

1400



only. We write Π( #»s ) =
∑n
i=1 πi(si) to denote the price of

a given shift action. A shift action s is successful if p is a
winner in the election shift(E, #»s ). The term unit shift refers
to shifting p by one position in one preference order.

Given the above notation, the decision variant ofR SHIFT
BRIBERY is defined as follows.
R SHIFT BRIBERY
Input: An election E = (C, V ), with V =
(v1, . . . , vn), a list Π = (π1, . . . , πn) of SHIFT
BRIBERY price functions for V , a candidate p ∈ C,
and an integer B ∈ N.
Question: Is there a shift action #»s = (s1, . . . , sn)
such that Π( #»s ) ≤ B and p is an R-winner in
shift(E, #»s )?
The optimization variant is defined analogously, but we

do not include B (the budget) in the input and we ask for
a shift action #»s that ensures p’s victory while minimizing
Π( #»s ). For an instance I of the optimization variant of R
SHIFT BRIBERY, we write OPT(I) to denote the cost of an
optimal shift action for I (and we omit I if it is clear from
the context). We sometimes also use “R SHIFT BRIBERY”
when we refer to the optimization variant (and this is clear
from the context).

An FPT-approximation scheme (FPT-AS) with parame-
ter k for R SHIFT BRIBERY is an algorithm that, given an
instance I = (C, V,Π, p) and a number ε > 0, returns a
successful shift action #»s such that Π( #»s ) ≤ (1 + ε)OPT(I).
This algorithm must run in f(k, ε)(|I|)O(1) time where f is
a function depending on k and ε.
Parameters for Shift Bribery. So far, SHIFT BRIBERY
has not been studied from the parameterized point of view.
Dorn and Schlotter (2012) and Schlotter et al. (2011) have,
however, provided parameterized complexity results for
SWAP BRIBERY and for SUPPORT BRIBERY.

We consider two families of parameters, those referring
to the properties of the successful shift action that we seek
and those describing the input election. Regarding the first
group, we study the total number t of unit shifts in the solu-
tion (#shifts), the total number na of voters whose preference
orders are changed (#voters-affected), and the budget B. Re-
garding the second group, we consider the number m of can-
didates (#candidates) and the number n of voters (#voters).
We assume that the values of these parameters are passed
explicitly as part of the input.
Price Functions. We have argued in the introduction that
the price functions used in SHIFT BRIBERY instances may
strongly affect the complexity of the problem. Our study of
the following families of price functions supports this view.

The NP-hardness proofs of Elkind et al. (2009) use, in
essence, what we would call all-or-nothing price functions.
A SHIFT BRIBERY price function π is all-or-nothing if there
is a value c such that π(0) = 0 and for each ` > 0, π(`) = c
(this value c can be different for each voter). All-or-nothing
price functions are a special case of concave functions. We
are also interested in convex price functions; π is convex if for
each `, π(`+1)−π(`) ≤ π(`+2)−π(`+1) (provided that
it is possible to shift the preferred candidate by up to `+ 2
positions in the given preference order). Unit prices, where

π(`) = ` for each ` such that p can be shifted by ` positions
are an extreme example of convex price functions.

Finally, we consider sortable price functions. A list Π =
(π1, π2, . . .) of price functions is called sortable if for each
two voters vi, vj ∈ V with the same preference order (that is
≺i = ≺j) it holds that ∀1 ≤ ` ≤ m− 2: πi(`) > πj(`) →
πi(` + 1) > πj(` + 1). Informally, this means that one
can sort each list V ′ of voters having the same preference
order so that the prices of shifting the preferred candidate by
each ` positions are nondecreasing along the corresponding
sorted order of V ′. Many natural price function families are
sortable. For example, a list of exponential functions of the
form πi(`) = a`i (where each voter vi may have an individual
base ai) or of polynomials of the form πi(`) = ai · `b (where
the exponent b is the same for the voters having the same
preference order but each voter vi may have an individual
coefficient ai) are sortable.

Given an election E = (C, V ), we consider all possible
lists of price functions for the voters in V . Let Πall be the
set of the lists of all kinds of price functions, Πconvex be the
set of the lists of convex price functions, Πunit be the set of
the lists of unit price functions, Π0/1 be the set of the lists
all all-or-nothing price functions, and Πsort be the set of all
sortable lists of price functions. We observe the following
relations between these sets.

Proposition 1. It holds that: (1) Πunit ⊂ Πconvex ⊂ Πall,
(2) Π0/1 ⊂ Πsort ⊂ Πall, and (3) Πunit ⊂ Πsort.

4 Solution Cost Measures Parameterization
In this section we present our results for parameters measur-
ing the solution cost, i.e., for the number of unit shifts, for
the number of voters affected by at least one shift, and for
the budget. It turns out that parameterization by the number
of unit shifts tends to lower complexity (FPT algorithms for
Borda and Maximin and W[1]-hardness for Copeland) than
parameterization by the number of affected voters (W[2]-
hardness). The case of parameterization by the budget lies
in between, and the complexity depends on each particular
price function family.

Unit Shifts. BORDA SHIFT BRIBERY and MAXIMIN
SHIFT BRIBERY parameterized by the number t of unit shifts
in the solution are in FPT for arbitrary price functions. The
reason is that in these cases it is easy to isolate a small number
of candidates on which one needs to focus. More precisely,
we can shrink the number of candidates as well as the number
of voters to be bounded by functions in t (in effect, achieving
partial kernelization (Betzler et al. 2011)).

Theorem 1. BORDA and MAXIMIN SHIFT BRIBERY pa-
rameterized by the number t of unit shifts is in FPT for
arbitrary price functions. The running time of the algorithm
is O∗((2t(t+ 1)t)t).

For Copeland, we do not get FPT membership, but we
show W[1]-hardness even for unit prices and for all-or-
nothing prices, which implies hardness for each of our price
function families.
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Theorem 2. COPELAND SHIFT BRIBERY parameterized by
the number of unit shifts is W[1]-hard for each price function
family that we consider.

Number of Affected Voters. For the number of affected
voters, SHIFT BRIBERY is W[2]-hard for each of Borda,
Maximin, and Copelandα, for each family of price functions
that we consider: The result for all-or-nothing prices follows
almost directly from the NP-hardness proofs due to Elkind
et al. (2009) (their reductions have to be adapted to work for
SET COVER rather than its specialized variant, X3C, but this
can be done quite easily). To obtain the result for unit prices,
with some effort, it is still possible to carefully modify their
proofs, maintaining their main ideas.

Corollary 1. BORDA, MAXIMIN, and COPELAND SHIFT
BRIBERY parameterized by the number of affected voters are
W[2]-hard for each price function family that we consider.

Budget. When we parameterize SHIFT BRIBERY by the
available budget, the results fall between those from the pre-
vious two paragraphs. In essence, the hardness proofs for
all-or-nothing prices carry over from the number of affected
voters case to the budget case (and this implies hardness
for arbitrary prices and sortable prices), while the results
for the number of unit shifts carry over to the setting with
convex/unit prices.

The hardness results translate because in the construc-
tion for all-or-nothing prices behind Corollary 1, the budget
equals the parameter value “solution size” of the SET COVER
instance from which we reduce. The FPT results parame-
terized by the number of unit shifts translate because for
convex/unit prices the budget is an upper bound on the num-
ber of possible unit shifts.

Corollary 2. BORDA and MAXIMIN SHIFT BRIBERY pa-
rameterized by the budget B are W[2]-hard for arbitrary,
sortable, and all-or-nothing prices, and are in FPT for con-
vex and unit prices with running time O∗((2B(B + 1)B)B).

For COPELAND SHIFT BRIBERY for unit prices, the bud-
get equals the number of unit shifts in the reduction behind
Theorem 2. Altogether, this implies the following corollary.

Corollary 3. COPELAND SHIFT BRIBERY parameterized
by the budget is W[2]-hard for arbitrary, sortable, and all-or-
nothing prices, and is W[1]-hard for convex and unit prices.

5 Election-Size Measures Parameterization
In this section we consider SHIFT BRIBERY parameterized by
either the number of candidates or the number of voters. Elec-
tions with few candidates are natural in politics (for example,
there is typically only a handful of candidates in presidential
elections) and elections with few voters arise naturally in
multiagent systems (for example, Dwork et al. (2001) sug-
gested election-based methods for aggregating results from
several web search engines).

Number of Voters. Let us now consider SHIFT BRIBERY
parameterized by the number of voters. We have not found

FPT algorithms for our rules in this setting, but we did find
a general FPT-approximation scheme.
Theorem 3. Let R be a voting rule for which winner-
determination parameterized by the number n of voters is
in FPT. There is a factor-(1 + ε) approximation algorithm
solving R SHIFT BRIBERY in time O∗(dn/ε + 1en) times
the cost ofR’s winner determination.

Theorem 3 follows by combining a brute-force search with
price scaling.

For the case of all-or-nothing price functions we can obtain
a very simple FPT algorithm.
Proposition 2. Let R be a voting rule for which winner-
determination parameterized by the number of voters is in
FPT. R SHIFT BRIBERY parameterized by the number of
voters is in FPT for all-or-nothing prices.

In contrast to Proposition 2, fixed-parameter tractability
for other price functions is not obvious. Indeed, for Copeland
we can show W[1]-hardness for unit prices by a quite tech-
nically involved reduction from the W[1]-complete CLIQUE
parameterized by the solution size.
Theorem 4. COPELAND SHIFT BRIBERY parameterized by
the number of voters is W[1]-hard for unit prices.

This result shows that Theorem 3 is essentially tight be-
cause winner determination for Copeland is polynomial time
solvable (and thus in FPT).

Number of Candidates. As opposed to almost all other
(unweighted) election problems ever studied in computa-
tional social choice, for SHIFT BRIBERY (and for bribery
problems in general) the parameterization by the number of
candidates is one of the most notorious ones. In other elec-
tion problems, the natural, standard attack is to give integer
linear program (ILP) formulations and use Lenstra’s algo-
rithm (Lenstra, Jr. 1983). For instance, this has been applied
for winner determination (Bartholdi, Tovey, and Trick 1989),
control (Faliszewski et al. 2007), possible winner (Betzler,
Hemmann, and Niedermeier 2009), and lobbying (Bredereck
et al. 2012) problems. This works because with m candidates
there at most m! different preference orders and we can have
a variable for each of them in the ILP. However, in our setting
this approach fails. The reason is that in bribery problems the
voters are not only described by their preference orders, but
also by their prices. This means that we cannot lump together
a group of voters with the same preference order anymore
and we have to treat each of them individually.

Dorn and Schlotter (2012) have already considered the
complexity of swap bribery parameterized by the number
of candidates. However, their proof implicitly assumes that
each voter has the same price function and, thus, it implies
that SHIFT BRIBERY (parameterized by the number m of
candidates) is in FPT for unit prices, but not necessarily for
the other families of price functions. Whenever the number
of different prices or different price functions is bounded by
some constant or, at least, by some function only depending
on m, Dorn and Schlotter’s approach can be adapted.

For the more general price function families, we were nei-
ther able to find alternative FPT attacks nor to find hardness
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v1 1 1 1 p 3
v2 4 2 1 p 7
v3 3 3 3 p 3
v4 6 4 6 p 0

5 3 5

budget distribution:
(3, 7, 3, 0)

stepwise budget distribution:
(5, 3, 5)

Figure 1: Illustration of the shift action (3, 3, 1, 0) restricted
to a specific voter block, where p ranks fourth in the common
preference order. π1(i) = i, π2(i) = 2i − 1, π3(i) = 3i, and
π4(i) = i2 + i + 4 with i < 4. The voters are sorted de-
scending with their prices. Each row in the matrix represents
one voter. The entry i cells left of p contains the price for
moving p from position 4− i+ 1 to position 4− i. The cell
in row j and column 4 − i is marked gray if we shift p by
i positions in voter j’s preference order. Counting the number
of marked cells row-wise gives the shift action. Summing up
the costs row-wise gives the budget distribution. Summing up
the costs column-wise gives the stepwise budget distribution.

proofs (which, due to the limited number of candidates one
can use and the fact that the voters are unweighted, seem
particularly difficult to design). However, as in the case of
parameterization by the number of voters (Theorem 3), we
can show that there is an FPT-approximation scheme for the
number of candidates when the prices are sortable.
Theorem 5. Let R be a voting rule for which winner-
determination parameterized by the number m of candidates
is in FPT. There is a factor-(1 + 2ε + ε2) approximation
algorithm solvingR SHIFT BRIBERY for sortable prices in
time O∗(MMdln(M/ε)e+1) (where M = m · m!) times the
cost ofR’s winner determination.

Proof idea. We first give an algorithm that given a target
budget B′ either computes a successful shift action with cost
at most (1 + ε)B′, or declares that a successful shift action
with cost at most B′ does not exist. It consists of two parts:

1. FPT part: Exhaustively search for a distribution of a large
chunk of the budget among the voters, that leads to an
almost successful shift action.

2. Approximation part: Spend several copies of the remaining
(small) part of the budget to complete the shift action.

To find a successful shift action, one only has to know the dis-
tribution of the budget among the voters. Unfortunately, the
number of vectors describing the distribution of the budget
among the voters is not bounded by a function of m. Thus,
the key idea is to have a more compact view on how the
budget is used. We make the following observations.

First, instead of asking how much of the budget is used to
bribe each voter, we can ask how much of the budget is used
to convince each voter to shift p one step from the original
position, how much of the budget is used to convince him to
shift p one step further, and so on. (So far, this increases the
amount of information needed, but see the next point.)

Second, we can group the voters with identical preferences
into voter blocks and sort them within the blocks according to

their price functions. This operation is well-defined because
price functions are sortable. W.l.o.g., within each voter block,
we never spend more units of the budget on a more expensive
voter than on a less expensive one.

Hence, to describe a shift action, it suffices—for each block
and each position i—to indicate the amount of budget spent
on shifting p from position i to position i− 1 in this block.
Thus, we ask for a distribution of the budget B′ into at most
M := m! ·m slots. We call this stepwise budget distribution.
Its relation to the ordinary budget distribution and to the shift
action is illustrated in Figure 1.

The FPT part of our algorithm is based on the pigeonhole
principle: If there is a successful shift action of cost at most,
say, B∗, then at least one slot in the stepwise budget has at
least B∗/M units of the budget. In more detail, the FPT
part works as follows. We start with B∗ := B′ and branch
over the slot in the stepwise budget distribution which gets
B∗/M and set B∗ := B∗(1− 1/M). After Mdln(Mε )e+ 1)
iterations, an extant budget of B∗ ≤ ε/M ·B′ is left. In the
approximation part, we spend this final part of the budget
on each slot separately (i.e., we add B∗ to each slot in the
stepwise budget).

One can show that there is one branching path in the FPT
part where each slot of the stepwise budget distribution gets at
most as much as in some optimal solution. Moreover, at most
εB′/M of the budget is left and hence each slot needs at most
εB′/M to reach the value of an optimal solution. Thus, the
final approximated budget distribution leads to a successful
shift action with costs at most (1 + ε)B′. Let B be the cost
of some optimal solution. We run this algorithm O(logB)
times for an increasing sequence of budget bounds B′. The
total cost B′ satisfies B ≤ B′ < (1 + ε)B.

Adopting some of the ideas of the above proof, we obtain
the following for SHIFT BRIBERY with arbitrary prices.
Proposition 3. Let R be a voting rule whose winner-
determination procedure is in XP when parameterized by the
number m of candidates.R SHIFT BRIBERY parameterized
bym is in XP for each price function family that we consider.
The algorithm runs in timeO∗((nm)m!) times the cost ofR’s
winner determination.

6 Conclusions
We have studied the parameterized complexity of SHIFT
BRIBERY under the voting rules Borda, Copeland, and Max-
imin, for several natural parameters (either describing the
nature of the solution or the size of the election) and for
several families of price functions (arbitrary, convex, unit,
sortable, and all-or-nothing). Our results confirmed the be-
lief that the computational complexity depends on all three
factors: the voting rule, the parameter, and the type of price
function used.

Our work leads to some questions, of which the most press-
ing one asks about the exact complexity of SHIFT BRIBERY
parameterized by the number of candidates; we only have XP
and FPT-approximation schemes here (Table 1). Typically,
this is the easiest parameter to deal with in election problems
but since here voters have possibly different prices, it is one
of the most challenging ones to work with.
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