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Abstract

Kidney exchange, where candidates with organ failure
trade incompatible but willing donors, is a life-saving
alternative to the deceased donor waitlist, which has
inadequate supply to meet demand. While fielded kid-
ney exchanges see huge benefit from altruistic kidney
donors (who give an organ without a paired needy can-
didate), a significantly higher medical risk to the donor
deters similar altruism with livers. In this paper, we be-
gin by proposing the idea of liver exchange, and show
on demographically accurate data that vetted kidney ex-
change algorithms can be adapted to clear such an ex-
change at the nationwide level. We then explore cross-
organ donation where kidneys and livers can be bartered
for each other. We show theoretically that this multi-
organ exchange provides linearly more transplants than
running separate kidney and liver exchanges; this lin-
ear gain is a product of altruistic kidney donors creating
chains that thread through the liver pool. We support
this result experimentally on demographically accurate
multi-organ exchanges. We conclude with thoughts re-
garding the fielding of a nationwide liver or joint liver-
kidney exchange from a legal and computational point
of view.

Introduction
The transplantation of organs from a deceased donor to a
needy living candidate first occurred nearly sixty years ago,
but only became popular in the 1970s due to the introduc-
tion of immunosuppressants that help prevent the rejection
of foreign organs in a patient’s body. Since then, the major-
ity of transplantation has occurred through a deceased donor
waiting list consisting of needy patients who wait for any
willing donor to die, resulting in the harvesting and subse-
quent transfer of a compatible organ from the donor’s ca-
daver to the living patient. There is a great supply shortage
of cadaveric organs in most societies (including the US), and
the imbalance between supply and demand keeps growing.
As of April 2014, there were 100,019 patients waiting for
a kidney, 15,770 waiting for a liver, and 9,047 for another
organ (e.g., pancreas, joint pancreas-kidney, heart, lung, in-
testine) in the US alone.
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In recent years, live donation of organs has significantly
increased the total number of organ transplants. In live do-
nation, a donor gives one of his two kidneys, one of his
two liver lobes, or a part of an intestine, etc., to the pa-
tient so both the donor and patient can live. The effect of
live donation has been most prominent in kidney donation,
where a recent advance—kidney exchange (Rapaport 1986;
Roth, Sönmez, and Ünver 2004)—has provided renewed
hope to even “hard to match” patients. In kidney exchange,
patients bring willing but incompatible donors to a large
waiting pool. Patients can then swap incompatible donors
with other patients. Matching a candidate to a donor is diffi-
cult for a variety of reasons, including blood (ABO) type, tis-
sue (HLA) type, age, and—due to the limitations of current
medical knowledge—unknown exogenous factors. Never-
theless, kidney exchanges on the regional and national scale
have seen marked success over the last few years.

In this paper, we explore the creation of living donor ex-
changes involving organs other than kidneys. We first pro-
pose liver exchange, which is similar to kidney exchange
in some ways, but remains unexplored.1 The major differ-
ence between kidney and liver exchange rests in the in-
creased risk to live donors, with very high rates of donor
morbidity (24%), “near-miss” events in surgery (1.1%), and
mortality (0.2%) compared to live donor kidney transplan-
tation (Cheah et al. 2013). Fielded kidney exchanges derive
significant value from altruistic donors, who enter the ex-
change without a paired needy candidate and trigger long
“chains” of donations within the pool. With such a high risk
of complication from surgery in liver transplantation, we ex-
pect significantly fewer (or no, if deemed unethical by the
medical community) altruistic donors in liver exchange.

With this in mind, we propose multi-organ exchange,
where candidates in need of either kidneys or livers can swap
donors in the same pool. We show theoretically that this
combination provides linearly more transplants than run-
ning separate kidney and liver exchanges; this linear gain
is a product of altruistic kidney donors creating chains that
thread through the liver pool. We support this result ex-
perimentally on demographically accurate kidney, liver, and

1A notable exception is that in Korea, 16 candidates hand-
swapped willing donors in a single hospital over the course of six
years. All swaps were arranged by hand. This shows the feasibility
of the idea at a small scale (Hwang et al. 2010).
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cross-organ exchanges. We conclude with thoughts regard-
ing the fielding of a nationwide liver or joint liver-kidney
exchange from a legal and computational point of view.

This paper provides the first foray into the theory and
computational methods necessary to set the groundwork for
a fielded nationwide liver or multi-organ exchange. It is clear
that such exchanges would be highly beneficial for sustain-
ing life and creating value in society.

Preliminaries
In order to develop a nationwide liver or multi-organ ex-
change, we must first accurately model the realities of such
an exchange and design optimal, scalable clearing algo-
rithms for it. In this section, we describe the creation of a
compatibility graph representing the space of possible swaps
among n candidate-donor pairs, based on traits of the can-
didates and donors. We then describe the clearing problem,
a formalization of the process used to determine an optimal
set of swaps.

Compatibility Graph
We begin by encoding an n-patient organ exchange as a di-
rected graph. Construct one vertex for each incompatible
candidate-donor pair. Add an edge e from one candidate-
donor vertex vi to another vj , if the candidate at vj can
take a liver lobe or kidney from the donor at vi. This pro-
cess creates a compatibility graph for the general concept
of barter exchange, where participants can swap items with
each other. Within the compatibility graph, a cycle c repre-
sents a possible swap, with each vertex in the cycle obtain-
ing the item of the next vertex. A matching is a collection of
disjoint cycles; no vertex can give out more than one item
(e.g., more than one kidney or liver lobe). Cycles ensure that
donors give items if and only if their patients receive organs.

Fielded kidney exchanges also gain great utility through
the use of chains (Rees et al. 2009). An altruistic donor initi-
ates a chain by donating his organ to a patient, whose paired
donor donates her organ to another patient, and so on. Due to
significantly increased medical risk to living donors of other
organs, we do not expect many (or possibly any) altruistic
donors outside of kidney exchanges (Cheah et al. 2013).

The Clearing Problem
The clearing problem is that of finding a maximum-
cardinality matching consisting of disjoint chains and cycles
of length at most some small constant L. The cycle-length
constraint is crucial since all operations in a cycle have to be
performed simultaneously. Were this not the case, a donor
might back out after his incompatible partner has received an
organ. This backing out is legal because, in nearly all coun-
tries including the US, it is illegal to form a binding contract
over the exchange of organs. The availability of operating
rooms, doctors, and staff causes long cycles to be unexe-
cutable. As is the practice in the US-wide kidney exchange
and most other real kidney exchanges, we let L = 3. Chains
need not be limited in length (and typically are not in prac-
tice); were a donor to renege before giving an organ but after
his paired patient had received the organ, then no remaining

pair in the pool has lost its “bargaining chip”—although the
collapse of the chain is not desired.

Denote the set of all (uncapped length) chains and all cy-
cles of length no greater than L by C(L). Let |c| represent
the number of candidate-donor pairs in a cycle or chain c.
Then, given binary indicator variables ∀c ∈ C(L), we must
solve the following integer linear program:

max
∑

c∈C(L)

|c| xc s.t .
∑

c:vi∈c

xc ≤ 1 ∀vi ∈ V

The clearing problem with any fixed L > 2 is NP-
complete (Abraham, Blum, and Sandholm 2007). (The cases
L = 2 with no chains and L = ∞ can be solved in polyno-
mial time.) Significantly better (i.e., higher cardinality) re-
sults are found with L = 3 over L = 2, so solving the
NP-complete version of the problem is necessary in prac-
tice (Roth, Sönmez, and Ünver 2007). The problem, at least
with respect to kidneys, can be solved optimally in practice
at the steady-state nationwide scale using a specialized tree
search algorithm based on the branch-and-price framework
for integer programming (Abraham, Blum, and Sandholm
2007). We will later discuss this algorithm in more detail
as well as enhancements to it for liver exchange and multi-
organ exchange.

Combining Exchanges Results in Linearly
More Matches

In this section, we show that combining independent liver
and kidney exchanges leads to a linear gain in the aggregate
number of matches. We show this in an adapted version of
a recent random graph model for kidney exchange due to
Ashlagi et al. (2012). They adapt sparse Erdős-Rènyi graphs
to a model of kidney exchange with two classes of candidate:
those with many incoming edges and those with very few
incoming edges (intuitively, “easy-to-match” and “hard-to-
match” candidates). That model mimics the basic structure
of compatibility graphs seen in fielded kidney exchanges.

They build a random directed compatibility graph
D(n, λ, t(n), pL, pH) with n candidate-donor pairs, t(n)
altruistic donors, a fraction λ < 1 of the n candidate-
donor pairs—representing lowly-sensitized, easy-to-match
patients—who have probability pL of an incoming edge
from each vertex in the pool, and a fraction 1 − λ > 0 of
the n candidate-donor pairs—representing highly-sensitized,
hard-to-match patients—who have probability pH of an in-
coming edge from each vertex in the pool. We assume pL >
0 is constant, and pH = c

n for some constant c > 1; thus,
the graph induced by only those 1−λ fraction of (sensitized)
vertices with incoming edge probability pH is sparse.

We assume, for kidney exchange compatibility graphs
DK , t(n) > 0; however, for liver exchange graphs DL,
t(n) = 0 (i.e., there are no altruistic liver donors). Fi-
nally, define the graph join operator D = join(DK , DL)
between a kidney exchange graph DK and liver exchange
graphDL as follows: add directed edges between candidate-
donor pairs in both pools in accordance with each pair’s as-
sociated probability (pL or pH ); do not add edges from the
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t(n) altruistic donors in DK to vertices in DL (since altruis-
tic kidney donors are unwilling to donate a liver).2

In the following theoretical results, we consider cycles
of length at most some constant but chains of any length;
this mimics current practice in kidney exchange, and would
likely mimic that of fielded liver exchange. Thus, an efficient
matching allocates the maximum number of transplants in
cycles of size no more than some constant and chains of
any length. Both results build on the work of Ashlagi et
al. (2012), which considers only a single kidney exchange.

Proposition 1 assumes a linear (in the number of
candidate-donor pairs) number of altruistic donors, while
Proposition 2 works with just a constant number of altruistic
donors. We omit the proof of Proposition 1 due to space, and
contrast both theoretical results at the end of this section.

Proposition 1. Consider β > 0 and γ > 0, kidney compati-
bility graph DK with nK pairs and t(nK) = βnK altruistic
donors, and liver compatibility graph DL with nL = γnK
pairs. Then any efficient matching on D = join(DK , DL)
matches Ω(nK) more pairs than the aggregate of any such
efficient matchings on DK and DL (with probability ap-
proaching 1 as nK approaches∞).

Proposition 2. Consider γ > 0, kidney compatibility graph
DK with nK pairs and constant t > 0 altruistic donors,
and liver compatibility graph DL with nL = γnK pairs.
Then there exists λ′ > 0 such that for all λ < λ′, any ef-
ficient matching on D = join(DK , DL) matches Ω(nK)
more pairs than the aggregate of any such efficient match-
ings on DK and DL (with constant positive probability).

Proof sketch. For small enough λ and large enough c, with
high probability there exists a set SK (of size at least nK/2)
of highly-sensitized pairs inDK that are “too far” away from
lowly-sensitized pairs in DK to be matched in a cycle of
capped length and must be matched in a chain triggered by
an altruist a or not matched at all (Ashlagi et al. 2012). By
similar reasoning, there exists a larger set SK&L of highly-
sensitized pairs in the combined kidney and liver graph (of
size at least (nK + nL)/2 = (1 + γ)nK/2 that must be
matched by an a-initiated chain or not at all.

We apply a general result on sparse random directed
graphs from Krivelevich, Lubetzky, and Sudakov (2013): as
c increases, a directed path of length approaching |SK | in
SK and |SK&L| in SK&L exists. Then with constant posi-
tive probability there exists an edge from a to one of the ver-
tices in the first half of the directed path in SK (Ashlagi et
al. 2012); thus, the size of this a-initiated chain approaches
at least |SK |/2 ≥ nK/4 and at most |SK | ≤ nK as c in-
creases. Similarly, with a different but still constant positive
probability there exists an edge from a to one of the ver-
tices in the first (γ/2)|SK | vertices of the directed path in
SK&L (recall that, in expectation, 1/(1 + γ) fraction of this
portion of the path are in the original kidney graph DK , and
γ/(1+γ) in expectation are inDL and thus have probability
0 of an incoming edge from a), resulting in a chain of length

2For the sake of clarity, we assume that the pL (resp. pH ) for
DK equals the pL (resp. pH ) forDL. This is without loss of gener-
ality; all that matters is that pL be constant and pH = c

n
for c > 1.

approaching at least (1 + γ/2)|SK | > |SK | in expectation
(as c → ∞). Thus, by combining pools, we see an increase
approaching at least γ/2|SK |, which is Ω(nK). This is a lin-
ear increase in overall efficiency since nL = γnK .

Intuitively, Propositions 1 and 2 show the theoretical effi-
cacy of combining kidney exchange with alternate organ ex-
changes (where altruistic donation is less likely to be popular
or deemed ethically acceptable).3 We will support Proposi-
tion 1 empirically in the coming sections.
On the dense model for organ exchange. Initial re-
search on random graph models for organ exchange adapted
dense (constant probability of an edge existing) Erdős-Rènyi
graphs to kidney exchange (Ashlagi and Roth 2011; Dick-
erson, Procaccia, and Sandholm 2012b). Fielded exchanges
have proven to be sparse in practice—as in the theory
above—and thus actual pools and their optimal matchings
do not align with these dense models (Ashlagi et al. 2012;
Ashlagi, Jaillet, and Manshadi 2013; Dickerson, Procac-
cia, and Sandholm 2013; 2014). Still, we note that the ef-
ficiency results in the dense model with chains (Theorem 1
of Dickerson, Procaccia, and Sandholm (2012b)) can be ap-
plied directly to independent liver exchange and multi-organ
exchange to yield efficient matchings with linear expected
overall gain from combining pools (given a linear number
of altruists) for large enough compatibility graphs.

Generating and Clearing Demographically
Accurate Pools

In this section, we describe our method for generating or-
gan exchange graphs. We then describe the standard kidney
exchange clearing algorithm and, motivated by generated re-
alistic liver and kidney exchange graphs, present a tweak to
this algorithm to decrease liver exchange solution time.

Data Generation
In order to create an at-scale nationwide liver or multi-organ
exchange, we first have to develop a compatibility graph
generator with which we can run simulations. First, we draw
data from reliable sources (here, specific to the US). Second,
this data is fed into a graph creation algorithm that proba-
bilistically determines the existence of compatible and in-
compatible candidate-donor pairs, as well as compatibility
constraints between different candidate-donor pairs. In the
large, with high probability, graphs generated by this algo-
rithm will mimic the demographics that would prevail in a
large-scale fielded exchange in the US. (Plugging different
raw data (e.g., age, weight, blood type distributions) into

3While Proposition 2 may seem like a stronger result due to its
relaxed reliance on a constant number of altruistic kidney donors
(instead of the linear number in Proposition 1), the numerator c in
pH = c/n may be required to be quite large (although still con-
stant), the λ sensitivity constant quite small, and the result also
holds with constant positive probability instead of holding with
probability approaching one. We feel this makes Proposition 1 a
more relevant result overall than Proposition 2 for the composition
(in terms of pool sensitization and number of altruistic donors) of
currently fielded kidney exchanges.
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the generator algorithm would provide realistic generation
of non-US compatibility graphs.)

We generate kidney exchange compatibility graphs in ac-
cordance with Saidman et al. (2006); however, the compati-
bility of a potential liver donor with a candidate differs from
that of a potential kidney donor in three critical ways. While
a donor and candidate must be blood type (ABO) compati-
ble, (a) they need not be HLA-compatible,4 (b) the age of the
donor and candidate makes a significant difference in trans-
plant success (Egawa et al. 2004), and (c) the donor must be
heavier than the candidate (or else the donor’s liver, which
must be cut in two before transplantation, will not be large
enough to support the donor and candidate).

Graph generation is performed as follows. For each can-
didate and donor, we draw a gender (from the 2010 US Cen-
sus Report5); conditioned on gender, we then draw candidate
blood types from the OPTN (Organ Procurement and Trans-
plantation Network6) distribution and donor blood types
from the overall US population.7 We sample ages (depen-
dent on gender) for candidates from the OPTN pool and for
the donors from the 2010 US Census at a granularity level
of one year. Then, given the age and gender (generated sep-
arately from OPTN data for candidate and US Census data
for donors, as described earlier), we sample from a fine-
grained table of weights released by the Center for Disease
Control (McDowell et al. 2008). For candidates requiring a
kidney, HLA is sampled from the OPTN databases. During
edge generation, we include an exogenous “incompatibility
factor” f ∈ [0, 1] that randomly determines an edge failure
even in the case of a compatibility success. This factor is
common in the kidney literature (Ashlagi et al. 2011), and
is used to account for incompleteness of medical knowledge
and temporal fluctuations in candidate-donor compatibility.

The Clearing Algorithm
We now briefly discuss a scalable optimal kidney exchange
clearing algorithm (Abraham, Blum, and Sandholm 2007),
which is used in the US-wide kidney exchange; we adapt
that algorithm for our liver and multi-organ exchange ex-
periments based on characteristics of the graphs generated
using the algorithm described above. At a high level, given a
compatibility graph G = (V,E), the algorithm enumerates
all chains and cycles of length at most L and chooses the
optimal disjoint set of these cycles and chains according to
the objective function of maximizing match cardinality.

In reality the number of cycles is prohibitively large (cu-
bic in |E| for L = 3, and exponential in |E| for un-
bounded chains) to write down in memory. Therefore, solv-
ing this problem hinges on a technique called branch-and-
price (Barnhart et al. 1998), a method for incrementally gen-

4In kidney exchange, tissue type (HLA antibodies and anti-
gens) are an important determinant of compatibility. A candidate
and donor sharing antigen encodings on the same locus are more
likely to result in a rejected kidney. Due to the use of suppressant
drugs, this is a negligible factor in liver transplantation.

5
http://www.census.gov/compendia/statab/cats/population.html

6
http://optn.transplant.hrsa.gov/data/

7
http://bloodcenter.stanford.edu/about blood/blood types.html

erating only a small part of the model during tree search,
yet guaranteeing optimality by proving that all the promis-
ing variables have been incorporated into the model. The
actual solver uses several additional techniques to make kid-
ney exchange clearing scalable for memory and time (Abra-
ham, Blum, and Sandholm 2007). It uses empirically and
theoretically motivated heuristics to seed the initial cycle
(i.e., variable) set used on the model, and then incremen-
tally brings cycles into the model depending on their shadow
price, a quantitative estimate of a cycle’s utility given the
current model. Optimality is proven when no cycles can pos-
sibly increase the objective. The algorithm also uses specific
branching heuristics and primal heuristics to construct fea-
sible initial integral solutions at each branch. If these inte-
gral solutions match the (restricted, possibly fractional) LP
solution, then the subtree can be pruned and optimality po-
tentially proven.
A Liver-Specific Cycle Seeding Heuristic. The selection of
the initial seed columns—representing individual cycles—is
a heuristic process. The prior algorithm uses the cycles from
two heuristically-generated feasible solutions (very few such
cycles) and hundreds of thousands of randomly selected cy-
cles from C(L). Since enumerating C(L) in its entirety is
a costly ordeal, their sampling relies on a series of random
walks. Starting at a randomly chosen vertex, a random walk
takes steps to new vertices. At each step, if an edge exists
leading back to the initial vertex, the corresponding cycle is
added to the set of seed cycles and a new start vertex is cho-
sen. This results in a randomized, but not uniformly random,
sampling of all cycles.

We define a different sampling method for the cycle
seeding problem. Our generated liver compatibility graphs
tended to have many more vertices with low out-degree than
the corresponding kidney exchange graphs. These candi-
dates are difficult to match. With this in mind, we conduct a
biased random walk sampling in the same spirit as the prior
algorithm, except weighting the selection of the randomized
start vertex inversely proportional to its out-degree. This bi-
ased sampling of the set of all cycles motivates the solver to
branch on hard-to-match candidate-donor pairs. This can be
done efficiently through an initial sorting of the vertices by
out-degree, a process whose one-time O(|V | log |V |) run-
time is overshadowed by the NP-hard clearing problem.

Experimental Results
We now provide computational results for a hypothetical na-
tionwide liver or multi-organ exchange, using the realistic
data generated above. First, we describe timing and match-
ing results in the static case, where the algorithm sees the
problem in its entirety up front. Second, we describe results
for the dynamic case, where candidate-donor pairs arrive
in the pool over time and are either matched or die wait-
ing. We show results at sizes mirroring an estimated steady-
state size of a US-wide liver exchange. Finally, we explore
the possibility of a multi-organ exchange, where both liver-
and kidney-needing candidates can swap donors in the same
pool. This results in more lives being saved than were the
nation to run separate liver and kidney exchanges.
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Static Liver Exchange Experiments
In the static case, the generator outputs a single graph and
the optimization engine solves the clearing problem on this
graph exactly once. Figure 1 shows timing results on liver
exchange graphs of various sizes |V | and exogenous incom-
patibility rates f . Intuitively, when f is low (or zero), the op-
timizer must consider many more edges than when f is high,
resulting in longer runtimes for denser graphs. As expected,
the computation time increases drastically with graph size.
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Figure 1: Match runtime (left) and percentage of candidates
matched (right), varying incompatibility rate f and graph
size |V |.

Figure 1 also shows the percentage of candidates matched
(the number of candidates matched by the algorithm divided
by the total number of candidates in the pool) as a function
of compatibility graph size |V | and exogenous incompati-
bility rate f . Intuitively, when f is held low, the percent-
age of candidates matched is higher than when the incom-
patibility rate is high. Of interest is the match behavior as
|V | increases. Regardless of f , the percentage of candidates
matched increases with the size of the underlying compati-
bility graph. This behavior is similar to that seen in kidney
exchange and motivates the need for a large (i.e., nation-
wide) liver exchange.
Addressing the needs of society. The estimated steady-
state monthly size of the nationwide kidney exchange is
10,000 candidate-donor pairs (Abraham, Blum, and Sand-
holm 2007). The rate of live liver donation is 1/8th of the rate
of live kidney donation (5% of all liver transplants involve
live donors, compared to 40% for kidneys (Brown 2008)),
although this number would hopefully increase due to the
publicity of a successful exchange—we will conservatively
estimate a factor of 1/2 as many live liver donors as kidney
donors in steady-state. With 100,019 candidates currently
waiting for a kidney and 15,770 candidates waiting for a
liver in the US—and half as many live donors available—the
steady-state for a US-wide liver exchange can be estimated
at approximately half of 15,770 / 100,019 ≈ 8% of 10,000,
or roughly 800 candidates. So, our clearing algorithm should
be able to handle batch runs of a nationwide liver exchange.

Dynamic Liver Exchange Experiments
In the dynamic case, a variable number of candidates enter
and leave the pool over a period of multiple time units. While
the fielded nationwide kidney exchange currently operates
under the static paradigm described earlier, recent work in
the kidney exchange community has shown that optimiz-
ing in the dynamic setting leads to both more realistic and

higher cardinality matchings over time (Awasthi and Sand-
holm 2009; Ünver 2010; Dickerson, Procaccia, and Sand-
holm 2012a).

We start with a pool of |V | = 800 candidates assumed to
be highly sensitized patients who built up in the system over
time. These are matched myopically. Given a matched cycle
by the algorithm, we then simulate that transplant actually
succeeding in real life via an exogenous parameter set to
f = 0.7. If any edge in a cycle fails, that entire cycle fails,
and all candidates are returned to the pool (with the failed
edge removed). We simulate candidates leaving the pool (ei-
ther through finding a transplant or dying). On expectation
|Vnew | = 226 new candidates arrive in the pool per month,
and the algorithm continues. We test over 24 months.
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Figure 2: Number of candidates matched per time period in
a dynamic setting over T = 24 months, with an expected
lifetime per candidate of 10 years (left) or 1–2 years (right).

Figure 2 shows the number of candidates matched at each
time period. This is the number of candidates matched by
the algorithm, but before the virtual failures are taken into
account. On the left, 12% of candidates will be alive after
10 years, corresponding to the expected lifetime of a kidney
patient on dialysis waiting for a kidney (USRDS 2007). On
the right, the probability of a candidate dying is set to an ex-
pected life of 1–2 years. This mimics the urgency of needing
a liver transplant. While dialysis can be used to keep a pa-
tient with failed kidneys alive, no such treatment exists for
livers. This corresponds to a drop in the number of candi-
dates matched, due to the decreased number of candidates
in the pool at each time period. (Note that a large number
of candidates are matched per month in the beginning when
the exchange goes live because there is a large pool that has
accumulated. Soon thereafter a steady state is reached.)

Dynamic Bi-Organ Exchange Experiments
In this section, we expand beyond simulating a dynamic
liver exchange to the novel concept of multi-organ exchange.
In the long run, one could imagine exchanges of multiple
different kinds of organs. However, to our knowledge, only
kidneys and livers have ever been swapped (and only sepa-
rately). Therefore, in this section we will focus on kidneys
and livers. We show that combining an independent nation-
wide liver exchange with a nationwide kidney exchange into
a joint kidney-liver exchange results in a statistically sig-
nificant increase in the number of organ transplants, which
aligns with Proposition 1.

We simulate a demographically accurate bi-organ ex-
change featuring candidates in need of either a kidney or
a liver who can swap donors in a combined candidate-donor
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pool. Approximately 85% of the candidates in the simulated
pool need kidneys, while the other 15% need livers, as de-
termined by the most recent OPTN waitlist data. We mimic
the experiments in the previous section, with a starting pool
size of |V | = 800 candidates who are highly sensitized and
are assumed to have built up in the pool over time; we also
include 100 altruistic kidney donors who enter the combined
pool at an expected constant rate. We use the same exoge-
nous transplant incompatibility parameter (f = 0.7) as in
the previous section, and simulate candidate-donor pairs en-
tering and exiting the pool in a similar fashion. To generate
the candidates, we draw from the two different US distri-
butions based on whether the candidate needs a kidney or a
liver. Naturally, donors are drawn from the same US distri-
bution in the two cases. We test over 24 months.
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Figure 3: Number of matches in independent liver and kid-
ney exchanges and a combined multi-organ exchange, per
time period, in a dynamic setting over T = 24 months.

Figure 3 shows the number of candidates matched each
month in the combined bi-organ exchange, as well as the
aggregate number of candidates matched while keeping
both liver- and kidney-needing candidates in separate pools.
Clearly evident is the loss of life resulting from keeping both
the liver and kidney pools independent, with the bi-organ ex-
change matching nearly 40 more candidates per month when
compared to the two independent exchanges.

When we compare the total number of matches made over
the entire period simulated above, the difference in lives
saved between two independent pools and the combined bi-
organ pool is more stark. In our experiments, the combined
bi-organ pool produced 16.8% more matches than the sum
of the two independent organ pools. An independent sam-
ples t-test revealed that the difference between the aggregate
number of lives saved using independent, simultaneous liver
and kidney exchanges and using a combined multi-organ ex-
change was significant, t(46) = 31.37, p� 0.0001.

Conclusions and Future Work
We explored the possibility of extending large-scale organ
exchange to include liver lobes, either in conjunction with or
independently of presently fielded kidney exchange. On de-
mographically accurate data, vetted kidney exchange clear-
ing algorithms (with a small tweak) can also clear liver ex-
changes at a projected US nationwide size. We explored the

prospect of multi-organ exchange, where candidates needing
either a liver or kidney can swap willing donors in the same
pool. We showed that such a combination matches linearly
more candidates than maintaining two separate exchanges;
this linear gain is a product of altruistic kidney donors cre-
ating chains that thread through the liver pool. This result
is supported experimentally on demographically accurate
multi-organ exchanges with high statistical significance.

This paper is intended as a first foray into automated liver
and multi-organ exchange. As such, there is much room
for future research (much of which is applicable to other
organ exchange and even to barter exchanges beyond or-
gans), and is motivated by experiences fielding the nation-
wide kidney exchange. One direction of future work is to
take on the slow and politics-laden task of founding a liver
exchange, or including livers in currently fielded kidney ex-
changes. Another is to develop scalable computational meth-
ods for the dynamic problem. Even for kidneys, the best
current techniques are for simplified models (Ünver 2010;
Ashlagi, Jaillet, and Manshadi 2013; Anshelevich et al.
2013) or face computational challenges (Awasthi and Sand-
holm 2009; Dickerson, Procaccia, and Sandholm 2012a).

Even for the static problem, scalability problems tend
to get worse with the inclusion of a recent innovation
in kidney exchange—donation chains started by altruistic
donors. The cycle length cap L no longer applies to chains
since they do not require simultaneous execution. Recent
work explores this innovation, and hits computational lim-
its experimentally with long chains (Ashlagi et al. 2012;
2011; Dickerson, Procaccia, and Sandholm 2012a; 2012b;
Gentry and Segev 2011; Gentry et al. 2009). We do not ex-
pect altruistic donors in liver exchange due to increased risk
for the donor compared to kidney donation, complicating
the ethical considerations of even allowing altruistic donors
in the pool (Woodle et al. 2010). However, that remains to
be seen. In any case, one could include chains started by
kidney-donating altruists into a bi-organ exchange—if the
scalability challenges of chains can be adequately addressed.

Finally, this paper (and most papers on kidney exchange)
deals with optimizing algorithmic organ matches; in real-
ity, most algorithmic matches in fielded kidney exchanges
do not result in an actual transplant. We expect this would
be the case in liver and multi-organ exchange as well, al-
though the exact failure rates for liver and multi-organ ex-
changes would be different than the observed failure rates in
currently fielded kidney exchanges due to the medical and
logistical differences in the organs and the transplant pro-
cesses. Making organ exchange failure-aware is a critical
step toward improving yield; recent work explores this no-
tion (Blum et al. 2013; Dickerson, Procaccia, and Sandholm
2013) to both theoretically and empirically maximize the ex-
pected number of actual transplants (possibly with respect to
some fairness constraints (Dickerson, Procaccia, and Sand-
holm 2014) that could try to balance factors including the in-
creased risk of liver versus kidney donation) stemming from
an algorithmic match.

Regardless, the urgent societal need for liver exchange is
there today, and we hope to be able to address it through a
dedicated or combined liver- or multi-organ exchange.
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