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Abstract

Realistic multi-agent team applications often feature dynamic
environments with soft deadlines that penalize late execution
of tasks. This puts a premium on quickly allocating tasks
to agents, but finding the optimal allocation is NP-hard due
to temporal and spatial constraints that require tasks to be
executed sequentially by agents.
We propose FMC TA, a novel task allocation algorithm that
allows tasks to be easily sequenced to yield high-quality so-
lutions. FMC TA first finds allocations that are fair (envy-
free), balancing the load and sharing important tasks between
agents, and efficient (Pareto optimal) in a simplified version
of the problem. It computes such allocations in polynomial
or pseudo-polynomial time (centrally or distributedly, respec-
tively) using a Fisher market with agents as buyers and tasks
as goods. It then heuristically schedules the allocations, tak-
ing into account inter-agent constraints on shared tasks.
We empirically compare our algorithm to state-of-the-art in-
complete methods, both centralized and distributed, on law
enforcement problems inspired by real police logs. The re-
sults show a clear advantage for FMC TA both in total utility
and in other measures commonly used by law enforcement
authorities.

Introduction
In law enforcement, police officers conduct routine patrols
and respond to reported incidents (tasks). Each task has an
importance ranging from low (e.g., noise complaint) to high
(e.g., murder) and a workload indicating the amount of work
that must be completed for the incident to be processed.
Multiple officers may work together on especially important
tasks, sharing the workload and improving response quality.
Delays in arriving to the scene of an incident allow perpetra-
tors to escape and situations to escalate. This is reflected by a
soft deadline that decreases the utility derived from perform-
ing a task the later it is started. A task cannot be started until
all assigned officers arrive at the location of the task, and this
depends both on the relative locations of officers and tasks
as well as on the sequence of other tasks that the officers are
scheduled to perform. Finally, because new incidents may
be reported at any time, allocations must react to dynamic
changes with officers sometimes interrupting execution of
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low-priority tasks, even though this negatively impacts the
performance of the interrupted task. We term the problem
of finding allocations that maximize team utility over time
the Law Enforcement Problem (LEP).

In this paper we make three major contributions. First, we
formalize LEP, which, despite its name, is also applicable to
realistic multi-agent applications such as disaster response,
multi-robot, and military teams. These domains share four
properties that make task allocation extremely challenging:
task heterogeneity, cooperative task execution, spatial and
temporal constraints, and a dynamic environment. This
combination of features has not previously been studied.
Cooperative task execution imposes inter-agent constraints
that increase the utility for shared tasks while decreasing the
time a single agent must spend on the task; this comes at the
expense of delaying execution until all agents arrive. Utility
also depends on the order in which tasks are executed due to
spatial-temporal constraints. Although LEP is NP-hard (the
traveling salesman problem is a special case with a single
agent), dynamism and soft deadlines require that solutions
be found quickly before the environment changes or utility
is lost due to agents’ late arrivals to tasks.

Our second contribution is FMC TA, a novel heuristic
that requires worst-case polynomial and pseudo-polynomial
time in centralized and distributed settings, respectively. In-
stead of directly searching the space of execution schedules,
FMC TA first finds an allocation by using a simplified prob-
lem model that ignores spatial-temporal and inter-agent con-
straints. Next, it schedules each agents’ tasks based on the
full problem model. The key challenge is to choose an allo-
cation that can be scheduled to yield a high-quality solution.

FMC TA borrows two concepts from non-cooperative
multi-agent systems, envy-freeness and Pareto optimality, to
do this. An allocation is envy-free if no agent prefers the
allocation of another agent to its own, and is Pareto optimal
if the team utility (i.e., social welfare) cannot be increased
without any agent suffering a decrease in individual util-
ity. Although agents in LEP are cooperative, we hypothesize
that envy-freeness avoids long delays by balancing the task
load among agents, while Pareto optimality helps to allocate
high importance tasks to sets of agents with high capabil-
ity. Thus, allocations with both properties will be able to be
sequenced to yield high-quality solutions.

An envy-free, Pareto optimal allocation can be found by
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using the Fisher market clearing (FMC) model. FMC TA
computes an FMC allocation by modeling agents as buy-
ers, tasks as goods, and simplified utilities as preferences.
Individual tasks, especially important ones, may be divided
between multiple agents who share the workload.

FMC TA then schedules the allocation, taking into ac-
count inter-task and inter-agent constraints. The tasks al-
located to each agent are ordered by importance. These se-
quences are then modified based on inter-agent constraints:
because shared tasks cannot be started until all assigned
agents have arrived, agents do not benefit from arriving ear-
lier than the latest agent. Hence, for each agent that is sched-
uled to arrive early to a shared task, we move its next sched-
uled task before the shared task if this does not delay the
execution of the shared task.

Our third contribution is an empirical evaluation of
FMC TA, alternative task allocation algorithms, and general
optimization algorithms in both centralized and distributed
settings. We evaluated the algorithms on realistic problems
based on actual log files provided by the police force in our
home city. FMC TA achieves higher team utility and also
surpasses competitors on other measurements used by real-
world law enforcement authorities to evaluate performance.

Related Work
Market-based task allocation (Jones, Dias, and Stentz 2007)
has been used for dynamically allocating spatially-located
tasks. Each task has an auctioneer, and agents compute the
change in utility for being allocated a task, using either an
optimal or near-optimal ordering, and submit this change as
a bid. The auctioneer greedily and irrevocably allocates the
task to the agent with the highest bid; task sharing is not
permitted. This algorithm can be implemented centrally or
distributedly, with different auctioneers for different tasks.
Another market-based approach uses negotiation to allocate
tasks with hierarchical structures mimicking product supply
chains; however, spatial constraints are not considered and
termination is not guaranteed (Walsh and Wellman 1998).

In the coalition formation with spatial and temporal con-
straints problem (CSFTP), agents form coalitions to jointly
work on tasks with spatial constraints and deadlines. Agents
sharing a task in CSFTP work at non-additive rates, and
the objective is to maximize the number of tasks completed
before hard deadlines. CFSTP was originally solved us-
ing Coalition Formation with Look-Ahead (CFLA) (Ram-
churn et al. 2010a) that applies two heuristics: allocating the
smallest possible coalition and maximizing the number of
other tasks that can be completed before deadline in the next
time step. CFLA’s heuristics are not helpful when tasks can
be performed by individuals (albeit with lower quality than
with groups), deadlines are soft, and tasks have different in-
herent importance. CSFTP was later solved with the dis-
tributed max-sum DCOP algorithm (Ramchurn et al. 2010b;
Macarthur et al. 2011), but the soft deadlines in LEP result in
constraints of high arity that Max-sum requires exponential
time to solve (Farinelli et al. 2008).

General optimization metaheuristics such as simulated
annealing (Reeves 1993) and hill climbing with random
restarts (Poole and Mackworth 2010) have also been used for

task allocation. We found simulated annealing to dominate
other metaheuristics for LEP, consistent with previous task
allocation studies (Schoneveld, de Ronde, and Sloot 1997).

Market clearing models have been studied in economics
for more than a century, starting with the work of Fisher
and Walras from the end of the 19th century. Later work by
Eisenberg and Gale (Gale 1960) proposed a convex program
for solving the Fisher model. The Arrow-Debreu model,
in contrast to Walras’s preliminary work, is a market ex-
change model that guarantees the existence of a solution un-
der some assumptions. More recent work has developed a
polynomial-time centralized algorithm (Devanur et al. 2002)
and a pseudo-polynomial time distributed algorithm (Zhang
2011). Our work is, to the best of our knowledge, the first
attempt to apply a market clearing approach to realistic dy-
namic task allocation problems.

Law Enforcement Problem
In formalizing LEP we first consider the simpler static prob-
lem before turning to the full, dynamic version.

Static Problem
In the static LEP there are n cooperative, homogeneous
agents (police units), a1, . . . , an ∈ A and m tasks
v1, . . . , vm ∈ V situated in a city, with the set of all possible
locations denoted by L. The time it takes to travel between
two locations is given by the function ρ : L×L→ [0,+∞).
With slight abuse of notation we write ρ(a, v) or ρ(v, v′) to
denote the travel times between locations of an agent and a
task or between locations of two tasks, respectively.

There are two kinds of tasks: patrols of neighborhoods
and events that require a police response. Each task v has
an importance I(v) > 0; patrols are generally less impor-
tant than events. Events also have a workload w(v) speci-
fying how much work (in time units, e.g., securing a crime
scene, taking statements) must be performed to complete the
task. Patrols have no workload but are ongoing tasks that are
never completed. Agents derive positive utility at a constant
rate while patrolling.

Multiple agents can share a single event (e.g., officers in-
terviewing different witnesses). All agents sharing a task
must be present before task execution can begin, and the
amount of time an agent must spend on the task is equal to
its allocated fraction of the workload; these portions may
be of different sizes. The team utility of q agents working
simultaneously on task v is denoted by the non-negative ca-
pability function, Cap(v, q). This can represent minimum
required or maximum allowed numbers of agents (by set-
ting capability to 0 for fewer or more agents, respectively),
as well as changes in execution quality due to synergies or
coordination costs.

An allocation of tasks to agents is denoted by the n ×m
matrix X where entry xij is the fraction of task vj that is
assigned to ai. Agents can only perform a single task at a
time so the tasks allocated to agent ai must be ordered into a
schedule σi = (vsi1 , t

i
1, t

i ′
1 ), . . . , (vsiMi

, tiMi
, ti ′Mi

) which is a

sequence ofMi triples of the form (vsik , t
i
k, t

i ′
k ), where vsik is

the task performed from time tik to ti ′k . The spatial-temporal
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constraints require that the time spent on each task must
equal ai’s assigned share of the workload and that agents
must have sufficient time to move between tasks because
they can only perform tasks at their current location:

ti ′k − tik = xisikw(vsik) 1 ≤ k ≤Mi (1)

tk+1 − t′k ≥ ρ(vsik , vsik+1
) 1 ≤ k ≤Mi (2)

Inter-agent constraints from task sharing require that all
agents start a task at the same time: for all v ∈ V there
exists τv such that for all ai ∈ A, v = vsiki

=⇒ τv = tki .
The utility of performing task v starting at time t depends

on the capability of the agents performing the task and the
soft deadline function δ(v, t) : V ×[0,+∞)→ (0, 1], which
is monotonically non-increasing in t. Using the delay until
a task is started is informed by real-world law enforcement
settings, where conditions tend to worsen (e.g.,. perpetrators
escape, confrontations escalate) until police officers arrive.
In consultation with the police, we use an exponentially-
decaying soft deadline function for events, δ(v, t) = βγt,
where β ∈ (0, 1] and γ ≥ 0 are constants. For a patrol v
there is no deadline so δ(v, t) = 1.

Let qv be the number of agents assigned non-zero portions
of v, and sort those portions in non-decreasing order yv1 ≤
yv2 ≤ · · · ≤ yvqv . Then after time τv + yvk · w(v) there are
only qv − k agents still working on v. Thus the total utility
of completing v is

U(v) = δ(v, τv)

qv∑
k=1

yvkCap(v, qv − k + 1)

and the total team utility is U(V ) =
∑
v∈V U(v).

Dynamic Problem
In the dynamic problem, tasks arise over time. We denote
the arrival time of a task v by α(v). Tasks can only be as-
signed after arrival. The soft deadline decreases the value of
tasks after their arrival, so δ(v, tv) = βγ(tv−α(v)).

Because task arrival is unpredictable, the dynamic prob-
lem is represented as a sequence of static problems each in-
stantiated when a new task arrives. When a new task arrives,
the current task (if any) being performed by ai is denoted
CT i. Agents can interrupt the performance of their current
task. For example, an officer handling a (low importance)
loitering complaint when a (high importance) murder is re-
ported may be ordered to stop what he is doing and attend to
the murder. Agents do not return to interrupted tasks.

Task interruption incurs a penalty, π(vj ,∆w), which de-
pends on the task vj and the amount of work ∆w completed
when the task is interrupted. In consultation with the po-
lice, we assume that the penalty for an event vj decreases
exponentially with ∆w to a minimum value:

π(vj ,∆w) = max{I(vj)c
w(vj)−∆w, φ · I(vj)},

where c ∈ [0, 1) and φ > 0 are constants and φI(vj) is the
minimum penalty. This is consistent with real police settings
where the first few minutes are commonly critical and costly
to interrupt. There is no penalty for interrupting a patrol, so
π(vj ,∆w) = 0 in that case.

Letting U ′(v) = δ(v, τv)
∑qv
k=1 Cap(v, qv − k + 1)yvk,

the utility of performing v in the dynamic problem is thus

U(v) = U ′(v)−
∑

ai:vs1 6=CT i

π(CTi,∆w)

FMC-Based Task Allocation
A Fisher market contains n buyers, each endowed with an
amount of money, and m goods. An n × m matrix R rep-
resents the preferences of buyers over products. A market-
clearing solution is a price vector p specifying a price pj for
each good j that allows each buyer i to spend all her money
on goods that maximize bang-per-buck (rij/pj) while all
goods in the market are sold. An FMC allocation is an n×m
matrix X where each entry 0 ≤ xij ≤ 1 is the fraction of
good j allocated to buyer i given the market-clearing prices
p. FMC allocations are Pareto optimal and also envy-free
when monetary endowments are equal (Reijnierse and Pot-
ters 1998).

Centralized Algorithm
FMC TA represents agents and tasks as buyers and goods,
respectively, and endows each agent with an equal amount
of money.1 R is constructed by optimistically ignoring the
inter-task ordering constraints and assuming the maximum
value for the capability function. Specifically, we set entry
rij at time t to be the utility of ai immediately moving to vj
and performing it with the optimal number of other agents:

rij = δ(vj , t+ρ(ai, vj)) max
q
{Cap(vj , q)} − π(CT i,∆w)

(3)

where the penalty is omitted if CT i = vj .
We find market-clearing prices using the polynomial-time

algorithm of Devanur et al. (2002), then produce the alloca-
tion matrixX as described by Reijnierse and Potters (1998).

It is clear that R is not expressive enough to represent the
complex team utility function in the formal LEP definition.
However, in the simplified problem represented by R, the
properties of the FMC allocation ensure that we achieve an
efficient allocation that is balanced over the agents. Our ex-
periments demonstrate that this results in higher team utility
than directly maximizing the utility represented by R.

In the second stage of FMC TA we schedule the allocated
tasks for each agent to reflect the spatio-temporal inter-task
and inter-agent constraints. We construct an ordering of
tasks allocated to each agent ai by greedily prioritizing tasks
with higher maximum capability, as these will tend to lead to
higher utility. Ties are broken in favor of older tasks, impos-
ing a unique ordering across agents that prevents deadlock
while also reducing task starvation, an important concern in
law enforcement. Once the initial order is selected, we com-
pute the initial schedule σi by setting tik and ti′k to satisfy
Equations (1) and (2) at equality. This takes O(m logm)
time to sort tasks and compute initial schedules.

We then update the start times to reflect the inter-agent
constraints that shared task execution requires all agents to

1The use of money is purely an internal mechanism of the allo-
cation algorithm.
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be present. This delays shared tasks and any subsequent
tasks, as reflected by the equations:

τj = max{tik | sik = j ∧ xij > 0} (4)

tik = max{tik−1 + ρ(vsik−1
, vsik), τsik}, (5)

which can be solved by monotonically iterating through the
sorted times in the initial schedules in O(m logm) time.

We next see if the order of tasks in the individual sched-
ules can be optimized by moving tasks delayed by shared
tasks earlier in the order without further delaying shared
tasks. For a shared task vsik with k > 1 and non-shared task
vsik+1

with k > 1, the non-shared task is moved before the
shared task if τsik−1

+ ρ(vsik−1
, vsik+1

) + xisik+1
w(vsik+1

) +

ρ(vsik+1
, vsik) ≤ τsik . If k = 1 (the shared task is first) at

time t, the non-shared task is moved if t + xisi2w(vsi2) +

2ρ(ai, vsi2) ≤ τsi1 . If the schedules are changed, the start
times are again updated using Equations (4) and (5). Each
task is considered once, requiring O(m) time.

FMC TA thus runs in worst-case polynomial time to com-
pute FMC allocations and schedule tasks centrally.

Distributed Algorithm
In the distributed setting each agent knows only about tasks
within a certain threshold distance D and its own prefer-
ences for those tasks. We form a Fisher market where rij is
set according to Equation (3) if ρ(ai, vj) ≤ D and 0 other-
wise. Knowledge of R is distributed among the agents, each
of whom only knows its non-zero entries. For each task there
is a seller who computes the allocation for that task.

To compute a market clearing solution we use the dis-
tributed proportional response algorithm (Zhang 2011).
Agents iteratively submit bids to sellers of the tasks within
their threshold and are in turn awarded provisional alloca-
tions, which they use to modify their bids in the next round.
This process converges in pseudo-polynomial time to an ε-
approximate market-clearing solution and allocation.

Agents compute their initial schedules in the same way
as in the centralized approach, then update start times for
shared tasks. For each task vj = vsik allocated to it, agent
ai maintains an estimated start time τ ij , initialized to tik. If
vj is a shared task, agent ai then communicates (τ ij , j) to all
other agents ai′ who are sharing the task.

Upon receiving a (τ, j) message (where j = sik), ai com-
putes the change in time θ = τ − τ ij . If θ > 0 then for all
k′ ≥ k, ai adds θ to tik′ and τ ik′ , and transmits the new values
(τ ik′ , s

i
k′) to all agents sharing vsi

k′
.

This process terminates in polynomial time with τv =

τ iv = τ i
′

v for all ai, ai′ ∈ A, v ∈ V and Equations (4) and (5)
satisfied. Because there are no deadlocks, at least one time
tik will become permanently fixed in each cycle, and so the
number of communication cycles is bounded by the total
number of tasks in the schedules. Each schedule can contain
at most m tasks and there are n schedules, so the number of
communication cycles is bounded by mn.

Running time of distributed FMC TA is dominated by the
pseudo-polynomial time to compute the FMC allocation.

Experimental Evaluation
We compare FMC TA to state-of-the-art incomplete algo-
rithms, both centralized and distributed. These approaches
consider only discrete allocations. Thus, we selected in ad-
vance the maximum number q of agents that can share a task
and considered only allocations in which xij = z/q, where
z ∈ {0, 1, . . . , q}. For comparison we applied these restric-
tions to FMC TA by rounding the allocation matrix X .

The algorithms were tested on independently generated
random problems based on real police logs; all results pre-
sented are averages of 20 simulated shifts.

The city is represented by a rectangular region of the Eu-
clidean plane of size 6× 6 kilometers, divided into 9 neigh-
borhoods of size 2×2, each with a patrol task. We simulated
8-hour shifts as in real police departments, with 9 agents pa-
trolling (one in each neighborhood) at the beginning of each
shift. The number of tasks arriving (i.e., the load) could
vary between shifts. Tasks arrived at a fixed rate and were
distributed uniformly at random in the city.

There were four types of events of decreasing importance
I(v) = 2400, 1600, 1200, 800 from type 1 to type 4, respec-
tively. Patrols had I(v) = 500. Event types were selected
randomly according to the distribution of real event types
provided by law enforcement authorities in our home city:
30%, 40%, 15%, 15% of events were of type 1 to 4, respec-
tively. Based on estimates provided by the police, the work-
loads were drawn from exponential distributions with means
58, 55, 45, 37 for events of type 1 to 4, respectively.

We assumed Cap improved quality of task execution for
each agent up to a maximum number of agents Qv:

Cap(v, q) = min{ q
Qv

I(v), I(v)}

where Qv = 3, 2, 1, 1 for tasks of type 1 to 4, respectively.
The discount function used was δ(v, t) = 0.9t for all v.

Evaluation of Centralized Algorithms
We compared centralized FMC TA to three state-of-the-art
incomplete algorithms. Simulated annealing (SA) (Reeves
1993) optimized allocations that were scheduled using the
same heuristic as FMC TA. SA was rerun after each dy-
namic event, using the previous allocation as the start-
ing allocation for the subsequent run. Market-based task
allocation (MBTA) (Jones, Dias, and Stentz 2007) used
exponential-time complete search to optimal schedules.
CFLA+ is a version of the CFLA task allocation algo-
rithm (Ramchurn et al. 2010a) adapted for LEPs. In the
look-ahead phase, CFLA+ computes the maximum utility
for pairs of tasks taking into account soft deadlines.

We also tested a baseline approach identical to FMC TA
except that it calculates allocations using a linear program
(LP) that directly maximizes the utility represented by R.
Differences in solution quality between FMC TA and LP
thus reflect the effects of envy-freeness and Pareto optimal-
ity in the simplified problem. Note that LP does not share
tasks because its constraint matrix is totally unimodular.

Figure 1 presents the utility achieved over time for loads
of 60 events. Agents accumulate utility at a steady rate us-
ing all algorithms and a partial F -test confirmed that agents
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Figure 1: Accumulated team utility, 60 events per shift.
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Figure 2: Accumulated team utility for varying loads.

using FMC TA accrue utility significantly faster than with
the other approaches. LP does worst of all, confirming that
directly trying to maximize utility in the simplified problem
is insufficient for achieving high utility in the full problem.

FMC TA also dominates the other approaches for loads
varying from 20 to 80, as seen in Figure 2. SA generally
does well as expected of a metaheuristic directly optimiz-
ing the team utility objective. Although they are specialized
task allocation algorithms, CFLA+ and MBTA were not de-
signed for the challenging combination of properties of LEP
and hence do less well. MBTA does poorly for low loads,
possibly because it does not share tasks; it was designed for
oversubscribed domains where the benefits of quickly reach-
ing any task outweigh possible benefits of cooperation.

Team utility decreases for all algorithms when the load
goes from 60 to 80. In FMC TA, SA, and LP, this is primar-
ily due to using task age in the scheduling heuristic to avoid
starvation. While highly important to police, it means that
under very high loads the system can become backlogged,
with greater delay before tasks begin execution (Figure 3).
MBTA faces a different problem: because it does not real-
locate tasks, under high loads agents remain committed to
tasks that they are no longer suited for, resulting in lengthier
delays. Higher loads also mean higher dynamism, resulting
in a higher rate of interruption (Figure 4) and corresponding
increase in interruption penalties.

One may ask if interruptions are ever desirable, especially
since the optimal orderings found by MBTA do not include
them. However, this is a consequence of MBTA’s inflexi-
ble allocation mechanism; a task can only be allocated once.
CFLA+ allows dynamic reallocation but its one-step looka-
head also precludes interruption. Explicitly disallowing in-
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Figure 3: Average execution delay for varying loads.
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terruption under FMC TA resulted in poorer performance.
Rapid response to incidents is highly valued by police de-

partments in its own right, especially for more important
events. Agents using FMC TA result in the lowest overall
execution delay over all event types (Figure 3), and are es-
pecially responsive to high importance tasks, as shown in
Figure 5 for shifts with load of 60. In contrast, SA has much
higher delay for low importance tasks, while delays under
MBTA are roughly equal for all task types.

FMC TA achieves low delays by sharing most tasks. Co-
operative execution also directly results in higher utility
through the capability function, but this is only possible for
the 70% of type 1 or 2 tasks; FMC TA shares a far greater
percentage of tasks, as shown in Table 1. Sharing tasks al-
low agents to divide the workload and thus begin working on
subsequent tasks more quickly. SA also benefits from this,
but shares more tasks at high loads than FMC TA. This is
detrimental as the greater number of important tasks make
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Load

Algorithm 20 40 60 80

FMC TA 100 99.9 95.0 88.9
SA 99.9 99.8 98.3 97.4

Table 1: Percentage of tasks that are shared.
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Figure 6: Team utility for varying threshold distances on
shifts with 60 events.

the cost of waiting for two agents to move to the location
of a shared task comparatively more expensive. The other
algorithms do not share tasks.

Evaluation of Distributed Algorithms
We compared the distributed version of FMC TA to
DMBTA (a distributed version of MBTA) as well as general-
purpose algorithms solving a distributed constraint opti-
mization problem (DCOP) formulation of LEP. Each agent
in all algorithms only knew of tasks in its local environment,
i.e., tasks within the threshold distance of the agent.

In the DCOP, each agent ai holds a sequence of variables
zi1 , ..., zik , where k is the maximum number of fractions of
tasks an agent can be allocated. The domain of each variable
is the set of tasks within the threshold distance, and a patrol
task. The order of the variables represents the order in which
the agent will perform these tasks, i.e., ai will first perform
the fraction of task assigned to variable zi1 , then the fraction
of task assigned to zi2 etc. Utilities were represented by
a constraint between all variables for each task. There are
also constraints limiting each agent to one patrol task, which
must be scheduled after all events.

Results for three DCOP algorithms are presented: the
Distributed Stochastic Algorithm (DSA) (Zhang et al. 2005),
Distributed Simulated Annealing (DSAN) (Arshad and
Silaghi 2004), and MGM-2 (Maheswaran et al. 2004). These
algorithms are known to produce high quality results while
(in contrast to algorithms like Max-sum and DALO) their
running time does not increase exponentially with the num-
ber of agents involved in each constraint. This is ex-
tremely important because in LEP, constraints generally in-
volve many agents. The comparison algorithms are local-
search algorithms that iteratively improve a selected assign-
ment. The agents running each algorithm select their pre-
vious allocation as their initial assignment following a dy-
namic event. Following each dynamic event, the agents per-
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Figure 7: Average execution delay for varying threshold dis-
tances, for shifts with 60 events.

formed 400 iterations of the DCOP algorithm before decid-
ing on the allocation.

Figure 6 presents the team utility for threshold distances
from 2 km to 8 km for shifts with load of 60. By com-
paring with Figure 2, it is clear that the distributed algo-
rithms find high quality solutions, but that FMC TA dom-
inates, achieving higher utility under almost all thresholds
(the difference between FMC TA and DMBTA for the 2-
km-threshold is not statistically significant). The utility un-
der FMC TA plateaus after a threshold of 5 km, finding so-
lutions of statistically equal quality to that of the centralized
algorithm. In contrast, DMBTA, which does relatively well
for low thresholds, does poorly at higher thresholds.

FMC TA also finds solutions with the lowest average
task execution delay, as shown in Figure 7 (FMC TA and
DMBTA are statistically equal with the threshold of 6 km).
FMC TA was especially successful in prioritizing important
tasks to minimize execution delay, while the delays for tasks
of all types were roughly equal in schedules found by the
other algorithms (figure omitted for lack of space).

Conclusion and Future Work
Our experimental results show that FMC TA effectively and
efficiently allocates and schedules tasks for agents in the
complex, dynamic settings characteristic of law enforce-
ment, which is common in other multi-agent applications.
The comparison with LP demonstrates that the two-stage
allocate-schedule approach is not solely responsible for the
high quality of its solutions. Instead, it is the combination
of fairness and efficiency of the allocations in the restricted
problem that result in allocations that share important tasks,
enabling synergistic cooperation that leads to higher quality
task execution while driving down delays.

Despite this success, our results also pointed to a po-
tential shortcoming: utility decreased in settings with high
dynamism and many tasks. This effect was not limited
to FMC TA but afflicted many other, unrelated algorithms.
This may stem from our assumption that the future is unpre-
dictable; while this is a very general approach, it precludes
reasoning about what dynamic changes may occur in the fu-
ture. Learning a model of the dynamics has been success-
fully applied in market-based task allocation before (Jones,
Dias, and Stentz 2007), and incorporating such reasoning
into FMC TA is an area of future research.
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