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Abstract

This paper presents a theoretical as well as empirical study
on the evolution of cooperation on complex social networks,
following the continuous action iterated prisoner’s dilemma
(CAIPD) model. In particular, convergence to network-wide
agreement is proven for both evolutionary networks with
fixed interaction dynamics, as well as for coevolutionary net-
works where these dynamics change over time. Moreover,
an extension to the CAIPD model is proposed that allows to
model influence on the evolution of cooperation in social net-
works. As such, this work contributes to a better understand-
ing of behavioral change on social networks, and provides a
first step towards their active control.

Introduction
Modelling the evolution of cooperation in social networks
has recently attracted much attention, aiming to understand
how individuals work together and influence each other,
and how society as a whole evolves over time (Nowak and
May 1992; Santos and Pacheco 2005; Ohtsuki et al. 2006;
Lazer et al. 2009; Hofmann, Chakraborty, and Sycara 2011).
Progress made towards understanding how this evolution
comes about has been mostly empirical in nature. Though
compelling, deeper insights are better gained from an ana-
lytical analysis of the problem.

Meanwhile, the control theory community has developed
strong theories for dealing with various types of multi-
agent systems. Although many of these theories were ini-
tially developed for the analysis of artificial networks such
as series of chemical reactors, electrical circuits or robotic
swarms (Rosenbrock 1963; Jadbabaie, Lin, and Morse 2003;
Ren, Beard, and McLain 2005), they can be extended to
the analysis of social networks as well. For instance, Olfati-
Saber (2005) uses properties of the Laplacian matrix, a typi-
cal tool in the control community for analysis of multi-agent
systems, to analyze the information flow in small world net-
works. Additionally, Liu, Slotine, and Barabási (2011) study
controllability, focussing on so-called driving nodes that
need to be controlled in various complex networks. Sum-
mers and Shames (2013) use theory of nonlinear dynamical
systems for modeling and influencing behaviors in specific
social networks.
Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recently a formal model for understanding the evolu-
tion of cooperation in arbitrary social networks has been
proposed by Ranjbar-Sahraei et al. (2014). The authors in-
troduce the continuous action iterated prisoner’s dilemma
(CAIPD) as a general framework for modelling the behavior
of individuals in complex networks. Moreover, they show
that CAIPD is better able to capture the nature of coopera-
tion in arbitrary networks than existing models. Due to its
generalization capabilities and broad spectrum of applica-
tions, this paper adopts CAIPD as the formal framework on
which an in-depth analytical study is conducted.

Aiming at a broader theoretical understanding of the evo-
lution of cooperation, this paper provides a formal analy-
sis of agreement among individuals in complex social net-
works, following the CAIPD model. A set of theorems are
presented and empirically validated, proving convergence to
a final agreement in (co)evolutionary social networks. Ad-
ditionally, the CAIPD model is extended to allow for the
influence on final agreements in such type of networks. In
particular, multi-rate adaptation is discussed. It is shown
both theoretically and empirically that individuals with the
slowest adaptation rates ultimately determine the final agree-
ment. Finally, state-reference tracking is discussed as a spe-
cial case of the proposed control extension, showing how
a varying reference signal can be incorporated to guide the
network to any level of agreement.

Background
Continuous-Action Iterated Prisoner’s Dilemma
CAIPD (Ranjbar-Sahraei et al. 2014) is adopted for describ-
ing the evolution of cooperation in arbitrary complex net-
works. In CAIPD, N individuals are positioned on a ver-
tices vi ∈ V for i = 1, 2, . . . , N of a weighted graph
G = (V,W). The symmetrically weighted N × N adja-
cency matrix W = [wij ], with wij ∈ {0, 1}, describes the
ith to jth individual connections with all wii = 0. One
of the advantages of CAIPD over other models is the con-
tinuous nature in which cooperation and defection levels
are modelled. To this end, Ranjbar-Sahraei et al. introduce
xi ∈ [0, 1] to represent the cooperation level of each indi-
vidual i, where xi = 0 corresponds to pure defection while
xi = 1 represents pure cooperation; an individual pays a
cost cxi while the opponent receives a benefit bxi, with
b > c. This way a defector (i.e., xi = 0) pays no cost and
distributes no benefits. Accordingly, the fitness of individual
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i can be calculated as fi = −deg[vi]cxi + b
∑N
j=1 wijxj ,

where deg[vi] denotes the number of neighbors of vi. As-
suming rationality in behaviors, individual i then has an
incentive to adopt its neighbor j’s strategy with strength
pij = wij · sigmoid(β(fj − fi)) with β > 0. A network
with state vector x = [x1, x2, . . . , xN ]T and topology G is
defined as Gx = (G,x); the network Gx can then be re-
garded as a dynamical system, where x evolves according
to some nonlinear mapping ẋ = [h1(x), . . . , hN (x)]T, with
hi(x) denoting the dynamics of the ith individual in Gx.
Precisely, hi (x) = 1

deg[vi]

[∑N
j=1 pij (xj(t)− xi(t))

]
. This

dynamical system can be re-written in a standard form by
introducing the Laplacian of G, L(·) as

ẋ(t) = −L [x(t)]x(t), Lij =

{
− pij/deg[vi], i 6= j∑N

j=1 pij/deg[vi], i = j
(1)

Stochastic Indecomposable and Aperiodic Matrices
This work makes use of lemmas introduced elsewhere,
which are briefly discussed. Firstly, however, Stochastic In-
decomposable and Aperiodic (SIA) matrices, and λ(·) func-
tions, are presented:
Definition 1 (SIA Matrices) A matrix P with all positive
elements is stochastic if all its row sums are +1. P is called
SIA if limn→∞P

n = 1νT, where ν is a column vector.
Definition 2 (λ(·) Function) For a square matrix S,

λ(S) = 1−mini1,i2

{∑
j min (Si1j ,Si2j)

}
.

Having introduced the above, three Lemmas needed for the
proofs provided in this paper are presented:
Lemma 1 (Wolfowitz 1963) Let M = {M1,M2, . . . }
be an infinite set of SIA matrices, where for each finite
positive length sequence of Mi1 ,Mi2 , . . . ,Mij , the ma-
trix product MijMij−1 . . .Mi1 is SIA. If for every W =
Mk1Mk2 . . .MNt+1, where Nt is the number of different
types of all SIA matrices of appropriate sizes, there exists a
constant 0 ≤ d < 1 satisfying λ(W ) ≤ d, then for each infi-
nite sequence of Mi1 ,Mi2 , . . . ,Mij , j →∞ there exists a
column vector ν such that lim

j→∞
MijMij−1

. . .Mi1 = 1νT.

Lemma 2 (Ren, Beard, and McLain 2005) For L as a con-
stant Laplacian matrix associated with a strongly connected
network, the matrix e−Lt,∀t > 0 is a stochastic matrix with
positive diagonal values that limt→∞ e−Lt = 1νT where
ν = [ν1, ν2, . . . , νn]

T ≥ 0 and
∑N
i=1 νi = 1.

Lemma 3 (Jadbabaie, Lin, and Morse 2003) Let
M1,M2, . . . ,Mm be a finite set of non-negative matrices.
Then M1M2 . . .Mm ≥ δ(M1 + M2 + · · · + Mm)
for a δ which can be specified from matrices
Mi, i ∈ {1, 2, . . . ,m}.

Methodology
Three sources of complexity arise in the mathematical anal-
ysis of CAIPD. Firstly,L(.) is time varying due to its nonlin-
ear dependence on the state-variable x(t). Secondly, the sys-
tem is highly state coupled, where many off-diagonal entries

Lij , i 6= j can take on arbitrary non-zero values. Finally, the
analysis of Equation 1 resides in high dimensional spaces,
rendering intuitive predictions difficult. These complexities
are relaxed by considering the structure of L as a key for
analysis, while relaxing its changes with respect to time. The
main goal is then to determine for which network topologies
convergence to an agreement, x → x?1 as t → ∞ with
1 = [1, 1, . . . , 1] ∈ RN , occurs. To ensure the existence of
an agreement, this paper uses the strong connectivity of so-
cial networks in which the graph G associated with Gx has
directed paths from any vi ∈ V to vj ∈ V .

The analysis performed in this paper deals with two dis-
tinct scenarios with respect to the time varying nature ofL in
the dynamical model of Equation 1. Firstly, L matrix is as-
sumed to be fixed which refers to the situations that individ-
uals’ don’t update their beliefs based on each other’s fitness.
We refer to this as an evolutionary network where just the
strategies evolve in time. Although such model pose a sim-
plification of the original problem, its analysis can shed light
on the dynamical behavior of the original system, where
some of the attained results can be directly extended to the
original problem. Secondly, the theoretical analysis is ex-
tended to the more general case of time varying Laplacian
matrix, where both strategies and fitnesses evolve in time.
We refer to this as a coevolutionary network. Empirical re-
sults confirming the provided theorems are also presented.

In what comes next, experiments are performed on two
sample networks, shown in Figure 1, each consisting ofN =
50 individuals. The scale-free network follows (Barabási
and Albert 1999) and has an average degree of two; the
small world network follows (Watts and Strogatz 1998) and
has average degree 4 and rewiring probability 0.1. Both
networks are initialized with 25 pure cooperators and 25
pure defectors. The benefits that cooperators share and the
costs of cooperation are b = 4 and c = 1, respectively.
The sigmoid function used to calculate the strategy adoption
strength uses β = 1. Due to space constraints, additional
empirical validations on other network sizes can be referred
to in the supplementary material accompanying this paper.

Analysis of Evolutionary Networks
In evolutionary networks, the Laplacian matrix L is time-
invariant. Therefore, CAIPD, in Equation (1), can be written
in the general closed-loop control system form:{

ẋ = Ax+Bu
y = Cx+Du,

(2)

by setting A = 0, B = −IN , C = IN and D = 0 with a
feedback law of u = Ly.

Agreement in Evolutionary Networks
Convergence to the same value (i.e., xi(t) →
xj(t), ∀(i, j) = 1, . . . , N as t→∞) is first proved
for evolutionary networks of form (2). An interpretation of
the exact value of this agreement as a weighted average over
all initial states is also derived. Further, it is shown that this
value can be determined using the left eigenvector of the
zero eigenvalue of the Laplacian matrix
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(a) Scale free network
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(b) Small world network

Figure 1: Sample networks; nodes with light and dark colors represent cooperators and defectors respectively. The size of the
nodes represents their initial fitness value, while the size of the arrow heads are computed based on the corresponding elements
of L matrix at the initial step, indicating the strength of influence between each set of nodes.

Theorem 1 (Evolutionary Agreement) For system (2)
with A = 0, B = −IN , C = IN , D = 0 and u = Ly,
every individual’s state xi, i = 1, 2, . . . , N converges to
an agreement of the form xi(t) → rTx(0), t → ∞, where
r is the trivial left eigenvector of L (i.e., the eigenvector
associated with the zero eigenvalue).

Proof: As shown in (Olfati-Saber and Murray 2004, The-
orems 1 and 2), a Laplacian matrix of a strongly connected
digraph with N nodes, has N − 1 eigenvalues with posi-
tive real parts and a singular trivial eigenvalue λ0 = 0.
The trivial right eigenvector of the Laplacian matrix is
1 = [1, 1, . . . , 1]T ∈ RN and the trivial left eigenvector
r = [r1, r2, . . . , rn]

T ∈ RN , where rT1 = 1. First, L is
mapped to the Jordan normal form as: J = TlLTr, with
J being an upper triangular matrix having J11 = 0, and
Jii = λj for j = 1, 2, . . . , N − 1 and i = 2, 3, . . . , N .
Further, Tl ∈ RN×N contains the transpose of left eigen-
vectors of L with rT in the first row, and Tr ∈ RN×N
incorporates all right eigenvectors of L with 1 in the first
column. Moreover, TlTr = TrTl = IN . Next, consider the
state transformation x̃ = Tlx, with x̃ = [x̃1, x̃2, . . . , x̃N ]T.
The system in Equation 2 can be represented in terms of
x̃ as: ˙̃x = TlBu = −TlLTrTlx = −J x̃. The solution
can be computed using x̃(t) = e−J tx̃(0). It can be eas-
ily shown that x̃(t) → [x̃1(0), 0, 0 . . . , 0]

T as t → ∞, with
x̃1 = rTx(0). Using the state transformation x = Trx̃ it
can be seen that x(t) → Tr [x̃1(0) 0 0 . . . 0]

T
= rTx(0),

thus concluding the proof. �
Theorem 1 shows that all individuals in an evolution-

ary network eventually agree on the scalar state variable
rTx(0). Therefore, the final agreement is a weighted aver-
age of the initial states:

xi(t)→ r1x1(0) + r2x2(0) + . . . rNxN (0) (3)

for every i, with
∑N
i=1 ri = 1.

Experimental Validation: According to the above theo-
rem, pinpointing the individual(s) with the highest weights

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

individual ID

w
ei

gh
t

(a)

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

time

st
at

e

(b)

5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

individual ID

w
ei

gh
t

(c)

0 500 1000
0

0.2

0.4

0.6

0.8

1

time
st

at
e

(d)

Figure 2: Agreement analysis for evolutionary networks
(a)-(b) scale free network (c)-(d) small world network.

in (3) can help in approximating the final agreement of
the network. For instance, considering the network in Fig-
ure 1(a), the elements of the trivial left eigenvector can be
computed as r1 = 0.01, r2 = 0.68, r4 = 0.01, r14 = 0.30,
and ri ≈ 0 for every i 6= 1, 2, 4, 14. These are illustrated
in Figure 2(a). Using the derived result of Equation (3), the
final agreement is expected to be reached at x? = 0.68.
Clearly, this is verified by Figure 2(b) presenting the evolu-
tion of state trajectories. Figures 2(c) and 2(d) again demon-
strate these results in small world networks. The differences
between the weight distributions are due to the fact that scale
free networks possess a power-law degree distribution.

Based on the above results, next CAIPD is extended to
allow for influencing the behavior of an evolutionary social
network by incorporating modification to its action matrix
model.
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Agreement with Multi-rate State Updates
To allow weighted averaged manipulations, the action ma-
trix B in Equation 2 is modified to Bm = diag(bm,i) ∀i ∈
{1, 2, . . . , N}, where −1 ≤ bm,i < 0, ∀i ∈ 1, 2, . . . , N .
Bm can be regarded as a multi-rate input matrix since as
the absolute values of bm,i increase so does the variational
speed of xi, and vice versa. The following theorem, studies
the agreement behavior of system (2) while using the multi-
rate input matrix Bm. It shows that all individuals eventu-
ally agree, even in the presence of such a multi-rate state up-
date. It further demonstrates that individuals with lower up-
date rates contribute more to the final agreement compared
to those with a high update rate.

Theorem 2 (Evolutionary Multirate Agreement) For
system (2) with A = 0, input matrix Bm = diag(bm,i),
where −1 ≤ bm,i < 0, ∀i ∈ 1, 2, . . . , N , C = IN ,
D = 0 and input vector u = Ly, each individual’s state
xi, for i = 1, 2, . . . , N converges to an agreement:

xi(t)→
1

||rTB−1m ||1
rTB−1m x(0), as t→∞ (4)

where r is the trivial left eigenvector of L and || · ||1 denotes
the L1 norm.

Proof: It can be easily shown that for any negative ma-
trix Bm, the Lm = BmL still has one singular trivial
eigenvalue associated, and its trivial right eigenvector will
be 1. Furthermore, after some manipulations it can be seen
that the normalized trivial left eigenvector of Lm is rm =

1
||rTB−1

m ||1
rTB−1m . Please note that the non-trivial eigenval-

ues and eigenvectors might have changed from the original
system. Following a similar procedure to that of Theorem 1,
it becomes clear that as t→∞, the state of the ith individual
converges to: xi → 1

||rTB−1
m ||1

rTB−1m x(0), thus concluding
the proof. �

According to the above theorem, the final agreement of
evolutionary networks with multi-rate action matrices can
still be seen as a weighted average of the initial states:
x? =

(
r1

αbm,1
x1(0) +

r2
αbm,2

x2(0) + · · ·+ rN
αbm,N

xN (0)
)
,

where α = ||rTB−1m ||1.
This represents an important characteristic of the evolu-

tion of cooperation in social networks. Namely, the less the
update rate bm,i of an arbitrary individual, the more its state
will contribute to the final agreement value. Such a con-
clusion can be used to control the evolutionary behavior of
these networks. For instance, if internally or externally one
can decrease the update rate of an individual (or a group of
individuals), consequently the state value of that individual
(or group) will play a more prominent role in the overall
group’s agreement. Next, we make use of the above results
to study the extreme case in which a network has to be driven
to a stationary stable reference state. Firstly, the following
action matrix: Br = diag(br,i) for i = 1, 2, . . . , N is intro-
duced, with:

br,i =

{
−1 if i 6= ref.
0 if i = ref. , i = 1, 2, . . . , N (5)

with “ref.” being the number of the reference individual.
The following theorem, shows that eventually all individual
states will converge to xref..

Theorem 3 (Evolutionary State-Reference Agreement)
For system (2) with A = 0, B = Br as in (5),
C = IN , D = 0 and u = Ly every individual’s
state xi, i = 1, 2, . . . , N converges to an agreement
xi(t)→ xref. as t→∞.

Proof: Here, the network is not strongly connected since
the associated digraph to Lr = BrL is not strongly con-
nected. However, one directed spanning tree containing all
the nodes of the graph with vref. as its root, exists. In (Ren
and Beard 2005, Corollary 1), it is shown that presence of
such a spanning tree is enough for the Laplacian matrix to
have a singular trivial eigenvalue and positive real parts for
the other eigenvalues. Furthermore, it can be easily seen that
the trivial right eigenvector of Lr is 1 and that the trivial
left eigenvector of Lr is rr = [rr,1, rr,2, . . . , rr,N ]T with
rr,i = 1 if i = ref. and rr,i = 0 if i 6= ref. Following a pro-
cedure similar to the proof of Theorem 1, it can be shown
that as t→∞, the ith individual state xi(t)→ xref.(t). �

Intuitively, the above results show that as an individual, i,
insists on retaining its state and refuses to switch its initial
value, eventually all others will arrive at an agreement with
that ith individual.

Experimental Validation: Theorems 2 and 3 are empiri-
cally demonstrated in two control experiments. In the first,
the update rate of a cooperator is decreased. According to
Theorem 2, as the cooperator’s update rate decreases, its
contribution to the final agreement increases. This fact is
illustrated in Figures 3(a)-3(d). In the second experiment,
Theorem 3 was tested, where one defector was chosen as
the reference individual. Results illustrated in Figures 3(e)
and 3(f) confirm the conclusions of Theorem 3 by showing
that all individuals eventually converge to pure defection.

Agreement in Coevolutionary Networks
Here, coevolutionary networks with varying Laplacian are
studied. Firstly, the concept of a dwell time τ (Jadbabaie,
Lin, and Morse 2003) is used to re-write the dynamics of
CAIPD as:

ẋ(t) = −Lkx(t), (6)

where Lk = L [x(kτ)] for kτ < t < (k + 1)τ and
k = 1, 2, . . . . Clearly, as τ → 0, the system in Equation 6
collapses to (1). On the other hand, as τ →∞, evolutionary
networks, discussed in the previous section, can be derived
as special cases. For any other τ , a coevolutionary network,
studied here, is attained. Using the theory of matrix differ-
ential equations, the solution of (6) has the general form of:

x(t) = lim
j→∞

eLjτeLj−1τ . . . eL0τx(0) (7)

where x(0) represents the initial network’s configuration.
Before studying the stability of (7), however, the following
proposition reflects that strong node connectivity in Lk, for
any k, remains intact under e−Lkτ .
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Figure 3: (a)-(b) scale-free network with multirate update
bm,2 = −0.5 and bm,i = −1 for every i 6= 2 (c)-(d)
small world network with multirate update bm,34 = −0.1
and bm,i = −1 for every i 6= 34 (e) scale-free network with
state-reference agreement ref. = 14 (f) small world network
with state-reference agreement ref. = 50.

Proposition 1 If Lk is associated with a strongly connected
network (i.e. there is a directional path between any two
nodes), then e−Lkτ is strongly connected for every τ ∈ R.

Proof: The matrix Lk is associated with a strongly con-
nected network. Accordingly, it can be written as Lk =
M − dIn, where d = max{|Lkii |}, with Lkii being the
diagonal entries of Lk. Therefore, e−Lkτ = e(M−dIn)τ =
e−dIτeMτ ≥ δM for some δ > 0. This shows that any
two nodes with a direct link in M and Lk (i.e., −Lkij =
Mij > 0 and −Lkji = Mji > 0) have a direct link in
e−Lkτ . Therefore, e−Lkτ is associated with a strongly con-
nected network, thus concluding the proof. �

Following the previous proposition and making use of
Lemmas 2 and 3, a theorem showing that x(t) asymptoti-
cally converges to an agreement (i.e. xi(t)→ xj(t),∀i, j =
1, 2, . . . , N ) is next presented and proven.

Theorem 4 (Coevolutionary Agreement) For system (2)
with A = 0, B = −IN ,C = IN , D = 0 and u = Lky,
where kτ < t < (k+1)τ and τ is the dwell time, every indi-
vidual’s state xi, i = 1, 2, . . . , N converges to an agreement
as xi(t)→ xj(t), t→∞ for every i, j.
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Figure 4: Agreement in coevolutionary scale free network
with different dwell times (a)-(b) τ = 20 (c)-(d) τ = 0.01.

Proof: According to Lemma 2, eLkτ converges to 1νT for
all k, with

∑N
i=1 νi = 1. Further, it can be verified that

lim
n→∞

(
eLkτ

)n
= 1νT. Therefore, the matrix eLkτ is an SIA.

Using Lemma 3 and Proposition 1, it is clear that the state-
transition matrix Ψ = eLmτeLm−1τ . . . eL0τ represents a
strongly connected network. Furthermore, Ψ is stochastic,
therefore, according to Lemma 2, such a matrix is SIA.

Note that according to (Ren, Beard, and Kingston 2005,
Proof of Theorem 3.2) and the fact that the Laplacian ma-
trices Lk for every k share the same spanning trees through
the coevolution, the condition required for convergence of a
sequence of an infinite number of SIA matrices in Lemma 1
(i.e., λ(.) ≤ d, 0 ≤ d < 1) holds. Therefore, it can be proven
that lim

j→∞
eLjτeLj−1τ . . . eL0τ = 1νT, with ν being a col-

umn vector summing to one. Hence

x(t) = lim
j→∞

eLjτeLj−1τ . . . eL0τx(0) = 1νTx(0) = x?1,

(8)
where x? ∈ R denotes the agreement point, thus concluding
the proof. �

Theorem 4 shows that the time varying Laplacian matrix,
represented by the dynamical system of Equation (1) con-
verges to an agreement: xi(t) → x? as t → ∞ for every i,
with x? being a weighted average of xi, i = 1, 2, . . . , N .

Experimental Validation: Figures 4 and 5 illustrate the
evolution of the sample networks of Figure 1 for two dif-
ferent dwell times. Furthermore, the elements of ν in Equa-
tion 8 are also shown. Clearly, Theorem 4 is validated since
an agreement can be asymptotically reached. Moreover, it
can be seen that systems of exactly the same initial con-
figurations but different dwell times can have unequal final
agreements.

Although no closed form solution can be derived for the
multi-rate agreement of coevolutionary networks, next a the-
orem for state-reference agreement showing that an individ-
ual with a fixed state inevitably determines the final agree-
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Figure 5: Agreement in coevolutionary small world network
with different dwell times (a)-(b) τ = 20 (c)-(d) τ = 0.01.

ment value is presented and proved.

Theorem 5 (Coevolutionary State-Reference Agreement)
For system (2) with A = 0, B = Br as in (5), C = IN ,
D = 0 andu = Lky, where kτ < t < (k+1)τ and τ being
the dwell time, every individual’s state xi, i = 1, 2, . . . , N
converges to an agreement as xi(t)→ xref., t→∞.

Proof: Equation (2) is rewritten as:

ẋ = BrLkx (9)

The solution of (9) can be expressed as

x(t) = lim
j→∞

eBrLjτeBrLj−1τ . . . eBrL0τx(0)

According to the structure ofBr, it can be easily checked
that xref.(t) = xref.(0), ∀t > 0 (the power series can be used
to see that in the overall state-transition matrix of (2) all el-
ements in the row corresponding to the reference individual
are zero except the diagonal value which is one). Further-
more, as described in the proof of Theorem 5 the network
associated with system (9) contains a spanning tree through
the coevolution, and each Lk matrix has one singular trivial
eigenvalue and positive real parts for the nontrivial eigenval-
ues. Therefore, following a similar procedure to that proving
Theorem 4, it can be shown that all state variables coverage
to a final agreement as: xref.(t) = xref.(0) for ∀t > 0. �

Experimental Validation: In Figures 6(a) and 6(c) one
defector is chosen as the reference, and it can be seen that
all the individuals of the coevolutionary network eventually
agree on pure defection. This verifies the results of Theo-
rem 5.

To reflect upon the potential extension of the introduced
framework, a tracking scenario is designed. A cooperator i
is chosen as the reference state. However, its strategy varies,
say according to xi(t) = 1

2 + 1
2 sin(

t
1500 ). It is clear from

Figures 6(b) and 6(d) that the whole network follows the
reference state throughout the coevolution. The phase-shift
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Figure 6: State-reference agreement in coevolutionary net-
works (a) scale-free network with ref.= 14 (b) scale-free
network with ref.=2 and x2(t) smoothly changing between
cooperation and defection (c) small world network with
ref.= 34 (d) small world network with ref.=50 and x50(t)
smoothly changing between cooperation and defection.

observed for the small world network can be explained by
the absence of hubs, causing the behavior to spread slowly.

Conclusion
This work has thoroughly analyzed and extended the CAIPD
model, thereby gaining a broader understanding of the evo-
lution of cooperation on complex social networks. Distin-
guishing between evolutionary networks, in which the in-
teraction dynamics are fixed, and the more general case of
coevolutionary networks with time-varying dynamics, three
main contributions can be listed. Firstly, convergence to
agreement in evolutionary networks has been proven (The-
orem 1). Moreover, it has been proven that this final agree-
ment is a weighted average of the initial state, and that these
weights can be computed explicitly using the trivial left
eigenvector of the Laplacian matrix associated with the net-
work in the very first iteration. Secondly, these proofs have
been extended to the more general case of coevolutionary
networks (Theorem 4). Thirdly, an extension to CAIPD has
been proposed that allows to model influence of the evolu-
tion of social networks towards states of specific individu-
als. It has been proven that individuals with lower adapta-
tion rates contribute most to the final agreement. Moreover,
all proofs have been validated empirically for both scale-free
and small world networks.

These results provide a first step towards active control
of complex social networks, by studying how certain indi-
viduals may influence the convergence and final agreement
reached in the network.
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