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Abstract

We formulate an approach to multiagent metareasoning that
uses organizational design to focus each agent’s reasoning
on the aspects of its local problem that let it make the most
worthwhile contributions to joint behavior. By employing the
decentralized Markov decision process framework, we char-
acterize an organizational design problem that explicitly con-
siders the quantitative impact that a design has on both the
quality of the agents’ behaviors and their reasoning costs. We
describe an automated organizational design process that can
approximately solve our organizational design problem via
incremental search, and present techniques that efficiently es-
timate the incremental impact of a candidate organizational
influence. Our empirical evaluation confirms that our process
generates organizational designs that impart a desired metar-
easoning regime upon the agents.

1 Introduction
When autonomous agents operate in large, complex, and
time-critical problem domains, the amount of computation
time needed to make provably optimal decisions can exceed
the time available before action must be taken. Research into
metareasoning—reasoning about reasoning—studies mecha-
nisms that agents can use to make principled decisions about
whether the improvements to decisions from additional rea-
soning are expected to outweigh the costs of delaying en-
acting decisions. (See Cox and Raja (2011) for a thorough
discussion of work in this area.) Metareasoning becomes
even more complicated in multiagent settings, since the ben-
efits of additional reasoning might depend on the reasoning
and behaviors of other agents (Raja and Lesser 2007). For
example, if one agent assumes responsibility for (reasoning
about) performing a task, then there might be no additional
benefit for other agents to also reason about that task. Thus,
research into multiagent metareasoning has been formulated
as a metacoordination problem, where agents individually
make metareasoning decisions but coordinate those decisions
to strike a good collective balance between their expected
joint performance and reasoning costs (Raja and Lesser 2007;
Alexander et al. 2007).

In this paper, we investigate an alternative approach to
solve the multiagent metareasoning problem through organi-
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zational design, where a good multiagent organization should
both guide agents into coordinated behaviors, and also guide
them into coordinated reasoning about their individual deci-
sion problems. Of course, this approach simplifies the multi-
agent metareasoning problem that the agents face by compli-
cating the organizational design problem to find a design that
not only leads to coordinated behavior in the world, but also
coordinated utilization of the agents’ distributed reasoning
resources. In the first contribution of this paper (Section 3),
we leverage the decentralized Markov decision process (Dec-
MDP) formalism to characterize an organizational design
problem that explicitly considers the quantitative impact that
an organizational design has on both the expected perfor-
mance of the agents’ behaviors as well as the reasoning de-
mands placed on the agents.

In Section 4, we make our second contribution by formu-
lating an automated organizational design process (ODP) to
solve our organizational design problem. Unsurprisingly, we
find that creating an optimal organizational design is com-
putationally intractable, and thus we develop techniques to
improve the ODP’s computational efficiency at the expense
of optimality guarantees. Namely, we describe methods for
efficiently estimating the incremental impact of an individ-
ual organizational influence, and illustrate how an ODP can
embed these calculations within an incremental search of the
organizational influence space. In Section 5, we empirically
evaluate our organizational design algorithm, and find that
our ODP finds good organizational designs that impart a tar-
get metareasoning regime upon the agents. We end the paper
(Sections 6 and 7) by discussing how our work relates to
other research and briefly summarizing our results. We next
(Section 2) more formally describe our agents’ reasoning
framework and a simplified firefighting domain that we use
for illustration and experimentation throughout this paper.

2 Problem Domain
We assume a multiagent system consisting of n fully-
cooperative decision-theoretic agents, where each agent i
begins with its own local decision-theoretic model,Mi, that
captures its local view of the true, global decision-theoretic
environment model,M∗. For this paper, we assume theMis
compose a locally-fully observable Dec-MDP (Becker et al.
2004), and thusMi = 〈Si, αi, Ai, Pi, Ri, Ti〉 which speci-
fies agent i’s local state space (Si), initial state distribution
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Figure 1: Example initial state in the firefighting grid world.
Ai is the position of agent i, and I = x indicates a fire in that
cell with intensity x. Darker shading indicates higher delay.

(αi), action space (Ai), transition function (Pi), reward func-
tion (Ri), and finite time horizon (Ti). The various agents’
Mis need not be independent, and there may be overlap-
ping information (e.g., state factors) among the agents. Each
agent can use its Mi to calculate an optimal local policy
π∗i : Si ×Ai 7→ [0, 1] via any of the standard policy creation
techniques (Puterman 1994). The joint policy is defined as
π = 〈π∗1 , · · · , π∗n〉, which may or may not be jointly optimal
depending on how the agents coordinate the construction of
their local policies. The Q-value, Qπ(s, a), is the expected
cumulative reward of executing joint action a in global state
s and then following joint policy π.

To illustrate a problem of this type, we reuse a simpli-
fied firefighting scenario (Sleight and Durfee 2013), where
firefighting agents and fires to be fought are in a simulated
grid world. The global state consists of: a system time; the
locations of the agents; the fire intensity, Ic ∈ Z+, for each
cell c; and a delay, δc ∈ [0, 1], for each cell c. Figure 1 shows
an initial global state for a two-agent problem, where the
locations of agents A1 and A2 are shown, along with the
intensities of fires in the two cells with Ic > 0, and darker
shaded cells have higher delay. An agent does not observe
the position of the other agent, but otherwise can observe the
global state. Each agent has 6 local actions: a NOOP action
that only increments system time (as do all other actions); 4
possible movement actions (N, S, E, W) that move the agent
one cell in the specified direction (into cell c) with probability
1− δc, and otherwise behaves like a NOOP; and a fight-fire
(FF) action that decrements by 1 the intensity of the agent’s
current cell (to a minimum of 0) and otherwise behaves like
a NOOP. Joint actions are defined as the combination of
the agents’ local actions. Movement actions are independent
(agents can occupy the same location), but FF actions are not:
the intensity of a cell only decreases by 1 even if multiple
agents simultaneously fight a fire. The local reward for each
agent in each state is the negative sum of fire intensities in
that state, and agents plan for a fixed time horizon.

We also assume a temporally-extended environment,
where the agents will solve a sequence of distinct problem
episodes, and the environment returns to a fixed, recogniz-
able state between episodes. For example, in the firefighting
domain, in each episode the agents fight a set of fires and
between episodes return to a state with no fires and where
agents are back at their initial positions. Though the episodes
are distinct, the benefit of a long-term organizational design
relies on an ODP’s ability to identify and codify repeated
patterns of reasoning and interactions within and across the

episodes. For example, though fires usually are located in
different cells each episode, an ODP might find patterns over
which regions each agent should typically be responsible
for and codify those patterns as organizational influences.
This type of episodic behavior is prevalent in a wide range
of domains such as emergency response, distributed sensor
networks, supply chain management, and most traditional
long-term organizations (e.g., a university or business).

3 Metareasoning Via Organizational Design
The idea that organizational designs can impact agents’ rea-
soning and behaviors is well-established. For example, social
laws (Shoham and Tennenholtz 1995) affect the reasoning
that agents perform as well as the behaviors they execute.
To our knowledge, however, no prior work has explicitly
leveraged this capability within an ODP to intentionally
impart a specific, desired metareasoning regime upon the
agents, i.e., a specific tradeoff between the agents’ reason-
ing costs and performance of their behaviors. In this section,
we formulate an organizational design problem that quanti-
tatively incorporates both the expected performance of the
agents’ behaviors as well as their expected reasoning costs to
achieve those behaviors. In contrast to typical metareasoning
approaches which try to dynamically assess the predicted ben-
efit of additional reasoning (Hansen and Zilberstein 2001b),
the fundamental idea of our approach is to have an ODP
utilize its global view of the problem domain to identify
high-performing behavior patterns, and then influence the
agents to avoid even thinking about behaving counter to those
patterns. For example, using its global perspective, an ODP
might identify that agents should typically fight fires near
their initial locations. It might then codify this pattern by
restricting an agent from reasoning about fighting fires in dis-
tant cells, which imposes a metareasoning regime that trades
computational speedup (due to never considering fighting
fires in those distant cells) for small expected reward loss (in
the rare cases that it should fight those fires).

We define an organizational influence, ∆i, as a modifi-
cation to agent i’s local problem description,Mi, that either
constrains the agent’s local policy space, or re-prioritizes the
agent’s preferential ordering over its local policy space. An
organizational design, Θ, is a set of organizational influ-
ences for each agent, Θ ≡ 〈θ1, · · · , θn〉, where θi ≡ {∆i}
is the set of organizational influences for agent i. Let π|Θ =

〈π∗|θ11 , · · · , π∗|θnn 〉 refer to the agents’ joint policy w.r.t. Θ,
where π∗|θii refers to agent i’s optimal local policy w.r.t. θi.

Leveraging Dec-MDP principles, we can quantitatively
measure the performance of an organizational design Θ. The
operational reward under Θ, ROp(Θ), is given by the ex-
pected joint reward of π|Θ:

ROp(Θ) ≡
∑
s∈S

α(s)
∑
a∈A

π|Θ(s, a)Qπ
|Θ

(s, a)

Assuming agents reason in parallel, the operational reason-
ing cost under Θ, COp(Θ), is given by the expected opera-
tional reasoning cost for an agent to calculate its individual
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π
∗|θi
i , notated as C(π

∗|θi
i ):

COp(Θ) ≡ Ei[C(π
∗|θi
i )]

To measure the quality of the metareasoning regime imparted
by Θ, we combine these metrics in the operational perfor-
mance of Θ, POp(Θ), which is a function, f , of the opera-
tional reward and reasoning cost under Θ.

POp(Θ) ≡ f(ROp(Θ),COp(Θ)) (1)
The specific form of f is defined by the problem domain, and
f conveys information to the ODP so it can determine how it
should trade off between ROp(Θ) and COp(Θ).

The optimal organizational design is given by Θ∗ ≡
argmaxΘ POp(Θ). Unfortunately, the space of possible Θs
is intractably large for even small, simple domains, mak-
ing direct enumeration infeasible. By our earlier defini-
tion, an organizational design is a set of constraints and
re-prioritizations over the agents’ policy spaces, and thus
there is at least one organizational design for each possible
total ordering of every subspace of the joint policy space,
yielding |Θ| =

∑|π|
i=1

|π|!
(|π|−i)! = O(|π|!) as a lower bound

for the worst-case complexity, where |π| = O(|Ai||Si|n). In
the next section, we describe several approximations an ODP
can make to efficiently search through this space while still
finding an organizational design that imparts a good (but not
provably optimal) metareasoning regime upon the agents.

4 Organizational Design Process
We focus on incremental search, and on techniques for com-
puting the incremental impact of an individual influence,
since as shown in Section 3 direct enumeration of the organi-
zational design space is infeasible. We utilize a simple greedy
hill-climbing search, although other incremental search al-
gorithms (e.g., Monte Carlo, A∗, etc.) could be used instead.
Characterizing the performance profiles of alternative incre-
mental search algorithms as a function of a problem domain’s
operational performance topology is something we plan to
consider in the future.

Naı̈vely, a greedy algorithm computes iteration j + 1 as:
Θj+1 = Θj + argmax

∆i,∀i∈n
POp(Θj + ∆i) (2)

where Θj + ∆i ≡ 〈θj1, · · · , θ
j
i ∪∆i, · · · , θjn〉. Notice how-

ever, that Equation 2 requires recomputing the performance
contribution of Θj for each POp(Θj + ∆i), which could
waste substantial computational effort. If we can instead fac-
tor the calculation of POp(Θj + ∆i) into POp(Θj) and the
conditional, incremental impact of ∆i w.r.t. Θj , then we
could avoid this redundant computation. We achieve this by
linearly approximating POp(Θj +∆i). Assuming ROp, COp,
and POp are everywhere differentiable1, and abusing notation
to write the linear approximations in traditional form, we get:

ROp(Θj + ∆i) ≈ ROp(Θj) + ∆i ·
dROp
dΘj

(Θj)

COp(Θj + ∆i) ≈ COp(Θj) + ∆i ·
dCOp
dΘj

(Θj)

1While the everywhere differentiable assumptions are theoreti-
cally required, in practice we have not found them necessary.

POp(Θj + ∆i) ≈ f(ROp(Θj),COp(Θj))+

∆i ·
dROp
dΘj

(Θj)
δf

δROp
(Θj) + ∆i ·

dCOp
dΘj

(Θj)
δf

δCOp
(Θj)

Substituting the above equations into Equation 2 yields:

Θj+1 = Θj + argmax
∆i

[
∆i ·

dROp
dΘj

(Θj)
δf

δROp
(Θj)

+∆i ·
dCOp
dΘj

(Θj)
δf

δCOp
(Θj)

] (3)

which avoids redundantly computing how Θj impacts the
operational performance, and instead only computes the in-
cremental impact of ∆i on operational performance.

We previously (Sleight and Durfee 2013) examined how
to express organizational influences to decision-theoretic
agents such that each influence has well-defined impact on
the agents’ reasoning processes, which we leverage here to
delineate the space of influences an ODP can consider. In our
prior work, we found that representing influences as modifi-
cations to factors of the agents’ local decision problems (i.e.,
Si, αi, Ai, Pi, Ri, and Ti) provides an expressive specifica-
tion language that the agents can easily incorporate into their
planning processes. In Sections 4.1 and 4.2, we describe a
general methodology for efficiently computing ∆i · dCOp

dΘj (Θj)

and ∆i · dROp

dΘj (Θj) respectively for any of our previously iden-
tified influence forms, and then in Section 4.3 we illustrate
in detail how an ODP can implement this methodology for
action influences.

4.1 Computing Incremental Reasoning Costs
∆i · dCOp

dΘj (Θj) corresponds to the conditional impact to the
agents’ computational costs from adding ∆i w.r.t. Θj . An
agent’s computational costs are determined by two primary
factors (Littman, Dean, and Kaelbling 1995), the number of
states in its planning problem and the number of edges in its
state graph. Thus, determining incremental reasoning costs
relies on determining the expected marginal costs of adding
a new state/edge, and then calculating the expected change to
the number of states and edges caused by adding ∆i into Θj .

Our methodology for empirically estimating the marginal
cost of a state and/or edge is as follows. We have an agent first
use its local modelMi to compute π∗i in a set of episodes.
We then create a modified version of Mi, labeled as M′i,
that contains the minimal number of edges between states
such that the reachable state space from all possible initial
states is unchanged, and the optimal policy is unchanged. We
include the latter condition so that the bias of our estimate
matches desired ODP behavior of removing non-optimal be-
haviors. The agent then solves the problem set again, but
plans usingM′i instead ofMi. Taking the relative compu-
tational difference between these experiments provides an
empirical estimate of an edge’s marginal cost. Additionally,
sinceM′i is “minimally” connected, the relative computa-
tional difference across the episodes (which typically have
different numbers of states), provides a good estimate of a
state’s marginal cost, i.e., “maximally” disentangles the cost
of a state and the edges to connect it to the state space.
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(a) CPU savings vs. # of edges removed from agent’s problem

(b) CPU time for agent vs. # of states in agent’s problem

Figure 2

To demonstrate the use of this methodology, Figure 2
shows its application in the firefighting domain, using 300
randomly-generated episodes. For reference,M′i removes
approximately 2.6 edges for every state. Taking the derivative
of Figure 2a shows that an edge’s marginal computational
cost is approximately 1.2ei + 2000 (ns), where ei is the cur-
rent number of edges. Taking the derivative of theM′i line in
Figure 2b shows that a state’s marginal cost is approximately
5.28si + 3000 (ns), where si is the current number of states.
The exact values we found here are clearly only applicable for
our agents’ specific policy creation implementation within
the firefighting domain; however, our methodology general-
izes to any problem domain expressed as a Dec-MDP, and to
any Dec-MDP solution techniques.

4.2 Computing Incremental Reward

∆i · dROp

dΘj (Θj) corresponds to the expected Q-value change
from adding ∆i into Θj . By definition, Qπ(s, a) only
changes if ∆i alters either π, the immediate reward R(s, a),
or the transition probabilities P (s′|s, a). Since alterations
to R(s, a) or P (s′|s, a) also induce changes to π (and oth-
erwise ∆i’s impact on Q-values is trivial to compute), we
focus on how ∆i alters the agents’ policy w.r.t. Θj . While the
ODP could do this by calculating π|Θ

j+∆i for each candidate
organizational design, such an approach is computationally
daunting given the complexity of computing optimal policies
and the possible number of candidates. Instead, the insight
we exploit is that an ODP can use its global view to com-

pute/estimate an optimal joint policy, π∗, once, and then
should only consider candidate organizations that preserve
this policy while steering agents away from taking, and even
considering, behaviors outside of this policy. If the organi-
zation does not preclude π∗, then the calculation of ∆i’s
impact to the agents’ policy is independent of Θj , and the
ODP does not need to compute π|Θ

j+∆i . While the ODP
(unavoidably) must still determine what good behaviors are
by calculating an optimal joint policy, the ODP only need
do this costly calculation once—rather thanO(|∆i|2) times—
and then amortize those costs over all of the search iterations,
which results in substantial computational savings.

4.3 Action Influences
In this section, we illustrate how an ODP can apply our
general methodology from Sections 4.1 and 4.2 to action
influences. We chose to implement action influences because
they are a particularly commonplace organizational mecha-
nism in previous research (Shoham and Tennenholtz 1995;
Pacheco and Carmo 2003; Horling and Lesser 2008). Note
however, that prior work has not given explicit, quantitative
consideration to how such influences affect the agents’ metar-
easoning regime, which is our focus here.

An action influence, ∆i, that blocks action ai from con-
sideration in state si, removes one edge for each possible
successor state upon taking ai in si, and removes any now-
unreachable states. By enumerating the successor states (via
the transition function), an ODP can calculate the expected
change to the number of edges, |E∆i

i |, and states |S∆i
i |,

caused by adding ∆i to Θj . Combining those quantities with
our previous marginal cost estimates in Section 4.1 yields:

∆i ·
dCOp
dΘj

(Θj) =
(

5.28|SΘj

i |+ 3000
)
|S∆i
i |+(

1.2|EΘj

i |+ 2000
)
|E∆i
i |

where |SΘj

i | and |EΘj

i | are the expected number of states and
edges respectively for agent i given that it conforms to Θj .
|SΘj

i | and |EΘj

i | are known from the previous search itera-
tion, meaning this computation requires only O(|Ssuccessori |)
time for enumerating the successor state space.

The expected Q-value change associated with an action
influence ∆i, that blocks action ai from consideration in state
si, is equal to the expected difference between the Q-value
of ai and the next best action. Mathematically this yields,

∆i ·
dROp
dΘj

(Θj) =Es7→si

[((
max

a=〈·,ai,·〉
Qπ
∗
(s, a)

)
−(

max
a′ 6=〈·,ai,·〉

Qπ
∗
(s, a′)

))
x(s, a)

]
where (in a non-recurrent state space like the domains we
consider here), an occupancy measure, x(s, a), is equal to the
probability of reaching state s and then executing action a,
and is calculated via a dual problem representation (Kallen-
berg 1983). This computation requires O(|A||S|) time in the
worst case, but the |S| term represents the number of states
that map into si and will often be much less than the total
number of global states.
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5 Evaluation
We begin our evaluation by briefly describing some imple-
mentation details of our evaluation domain, and ODP. Our
experiments use the firefighting domain as previously de-
scribed in Section 2, where in each episode there are: two
agents, who always begin in the initial locations in Figure 1;
two fires, each with initial intensity independently and uni-
formly selected from {1, 2, 3}, and with a uniformly random,
but distinct location; delay in each cell independently and uni-
formly chosen from [0, 1]; and a time horizon of 10. Agents
create their optimal local policies with respect to their or-
ganizationally augmented local model using CPLEX (IBM
2012) to solve a linear program (Kallenberg 1983). While the
agents’ individual planning problems in this domain are rela-
tively simple, it is important to recognize that the difficulty
of the ODP’s problem instead stems from the complexity
of the possible agent-interaction patterns, which given the
breadth of ways agents’ local models can interact, makes the
firefighting domain interesting from an ODP perspective.

Previous research has shown that abstract organizational
influences outperform detailed organizational micromanag-
ing when agents possess local expertise (Dignum, Vázquez-
Salceda, and Dignum 2005; Sleight and Durfee 2013). We
incorporate this principle in two ways: first by presenting our
ODP with a model where it only knows the mean cell delay
as opposed to the specific delay of each cell for an episode,
and second by having our ODP consider action influences for
each agent i, that block an action, ai, from an abstract local
state, ŝi, where the abstraction drops all state factors exclud-
ing agent i’s position. This abstraction was chosen to prevent
the ODP from micromanaging the agents because it forces
an influence to apply to broader situations. Finer abstractions
would enable the ODP to find more refined organizational
designs at the expense of greater ODP computation and/or
overfitting (and vice versa for coarser abstractions).

Our ODP sampled and solved training problems from its
domain model until it had stable estimates for ∆i · dROp

dΘj (Θj),
which took 300 samples in our experiments. To test our
claim that our algorithm correctly finds an organizational
design that imparts a desired metareasoning regime upon
the agents, we explored a space of environments with a
range of metareasoning tradeoff demands, parameterized by
POp(Θ) = ROp(Θ) − COp(Θ)/b for different values of b.
We present results across b values such that at extremely
costly reasoning (b = 1E4) the ODP designs an organization
where the agents only consider executing a single action (FF
in this case), and at extremely low reasoning costs (b = 1E8)
designs an organization where every action the ODP expects
an agent to ever want to execute is included. Note that the
latter, 1E8Org will still exclude local actions that would never
be sensible (e.g., fighting fires in distant cells that are always
another agent’s responsibility).

Unexpectedly, we found that our ODP was able to encode
surprisingly nuanced organizational designs despite being
limited to a space of abstracted influences. For example, the
ODP frequently imposes unidirectional movements (see Fig-
ure 3), where an agent is allowed to consider moving into
a cell, but the action to move back and in effect “undo” the

Agent 1 Agent 2

Figure 3: Agents’ movement action influences in the bOrg
with b = 1E6. An agent can move into a cell in a direction
where it first passes a dotted line, but not a solid line.

previous action is blocked from consideration. This type of
influence imparts a good metareasoning regime by forcing
the agent to reason about complete, irreversible behavior tra-
jectories rather than needlessly reasoning about reversing
prior actions. These unidirectional movements also improve
coordinated behavior by discouraging an agent from rushing
to the other side of the grid (where the other agent is located)
to fight a high-intensity fire since it would be unable to come
back and fight an initially-closer fire. In the future, we plan to
investigate whether irreversible task trajectories are an effec-
tive general-purpose organizational strategy (especially with
respect to metareasoning issues), as well as the possibility of
other overarching heuristic organizational principles.

To quantitatively determine the expected joint reward and
agent computational cost characteristics of each organiza-
tional design, we gave the agents a sequence of 1500 test
problem episodes randomly sampled fromM∗ and had them
utilize each of the organizational designs (as well as a lo-
cal baseline with no organizational influences) in each of
the episodes. We focus on mean performance over all prob-
lems not only to smooth out the inherent randomness of
the episodes but also to emphasize that organizations are
designed for long-term use over an extended time frame. Fig-
ures 4a and 4b show the mean ROp and COp respectively
over the 1500 test episodes for each of the bOrgs and the local
baseline. These graphs show that as our organizational design
algorithm faces different target metareasoning tradeoffs (i.e.,
values of b), the organizational designs it creates have mono-
tonically increasing performance properties in both ROp and
COp. That is, as computation becomes cheaper (b increases),
the algorithm creates organizational designs that induce the
agents to consider more actions (and thus utilize more com-
putation), which yields increased expected joint reward. We
also observe that these bOrgs, which are limited to influences
that only remove actions from consideration, do not lead
to agents finding better policies than they otherwise would
have (ROp of the bOrgs do not surpass the local baseline),
but find these policies with significantly less computation
(lower COp). In Figure 4c, we use the expected ROp and
COp data to calculate the metareasoning regime imparted
upon the agents by the organizations as a function of trade-
off parameterizations. This graph shows that, for any target
tradeoff parameterization β, the best organizational design
(i.e., maximizing the y-axis) is approximately the bOrg our
algorithm generates with b = β, which confirms that our
ODP designs organizations that approximately optimize the
tradeoff represented in the f function within POp.
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(a) ROp(Θ) for the bOrgs and local baseline

(b) COp(Θ) for the bOrgs and local baseline

(c) Example imparted metareasoning regimes for bOrgs and
local baseline as a function of tradeoff parameterization

Figure 4

6 Related Work
Our work in this paper resides in the intersection of three
fields of study: multiagent metareasoning, organizational
modeling, and multiagent sequential decision making. Multi-
agent metareasoning (see Cox and Raja (2011) for a contem-
porary snapshot of the field) has largely treated the problem
as a decentralized coordination problem, where agents model
each others’ reasoning processes and pass pertinent informa-
tion among themselves so as to decide how best to coordinate
the use of their reasoning resources. In contrast, the work
we present here centralizes the problem in the ODP, amortiz-
ing the costs associated with centralization by constructing
long-term metareasoning regimes about which parts of the
joint problem are worthwhile for each agent to reason about
given its ongoing organizational role. Thus, for specific prob-

lem instances, our algorithm’s resulting solution might be
suboptimal both in terms of circumscribing agents’ reason-
ing and coordinating the timing of that reasoning, but for
long-term systems, the amortized computational cost for our
ODP to design an organization could be much less than the
agents’ costs to determine how to balance their reasoning and
behaviors for each individual problem instance.

Organizational modeling research (see Dignum and Pad-
get (2012) for a comprehensive overview) has typically fo-
cused on how to marshal agents to work together to achieve
collective goals none would have achieved alone, by defin-
ing the roles, norms, interaction protocols, etc. that agents
should follow. The organizational constructs thus might fo-
cus agents on considering particular tasks and interactions,
and hence might simplify their reasoning. In this context,
the work that we describe here, while so far lacking in the
richness of modeling constructs considered in much organi-
zational modeling research, provides a basis for raising this
otherwise overlooked impact of an organizational design on
agent reasoning to explicit consideration.

Given the general intractability of optimally solving de-
centralized decision problems, multiagent sequential deci-
sion making research has investigated a variety of algo-
rithmic techniques for approximating, simplifying, and de-
coupling agents’ reasoning (Hansen and Zilberstein 2001a;
Witwicki and Durfee 2010; Velagapudi et al. 2011; Durfee
and Zilberstein 2012; Oliehoek et al. 2013; Zhang and Lesser
2013). Rather than directly contributing to this body of tech-
niques, our work instead emphasizes a strategy for analyzing
patterns of joint behavior to selectively modify the problems
agents solve. This idea has been used before to bias agents to
separately find solutions that have joint benefit, through, for
example, reward shaping (Agogino and Tumer 2005), tran-
sition shaping (Witwicki and Durfee 2010), organizational
influence (Sleight and Durfee 2013), and hand-encoded do-
main knowledge (Oliehoek, Whiteson, and Spaan 2013) but
that prior work did not explicitly factor quantitative impacts
on agent reasoning when designing modifications to agents’
local models. Recent work on optimal reward functions (Brat-
man et al. 2012) is a single-agent exception in that it does
shape reward functions to fit an agent’s cognitive limitations,
but that work optimizes behavior given fixed limitations,
rather than balancing behavioral benefits against reasoning
costs as in our approach.

7 Conclusion
In this paper, we leveraged the Dec-MDP formalism to char-
acterize a quantitative organizational design problem that
explicitly considers both the performance of the agents’ be-
haviors and their computational costs. We presented tech-
niques for efficiently, approximately solving this problem
through the use of incremental search, and showed how an
ODP can compute the expected incremental impact of an
individual influence. Our empirical evaluation confirmed that
our algorithm creates organizational designs that impart a
target metareasoning regime upon the agents. In the future,
we plan to expand our algorithm to other organizational influ-
ence forms such as shaping the agents’ state representations,
transition functions, and reward functions.
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