
Symbolic Model Checking Epistemic Strategy Logic

Xiaowei Huang and Ron van der Meyden
School of Computer Science and Engineering

University of New South Wales, Australia

Abstract

This paper presents a symbolic BDD-based model checking
algorithm for an epistemic strategy logic with observational
semantics. The logic has been shown to be more expressive
than several variants of ATEL and therefore the algorithm can
also be used for ATEL model checking. We implement the
algorithm in a model checker and apply it to an application
on train control system. The performance of the algorithm is
also reported, with a comparison showing improved results
over a previous partially symbolic approach for ATEL model
checking.

Introduction
We are interested in verifying systems in which multiple
agents act strategically. ATL (Alur, Henzinger, and Kupfer-
man 2002) generalises the temporal logic CTL (Clarke,
Emerson, and Sistla 1986) with selective quantifications
over the paths, by quantifying over agents’ strategy ability.
ATEL (van der Hoek and Wooldridge 2002) adds epistemic
operators into ATL. In (Huang and van der Meyden 2014b;
2014a), an epistemic strategy logic ETLK is shown to be
strictly more expressive than several variants of ATEL,
e.g., (Schobbens 2004; van Otterloo and Jonker 2005; Jam-
roga and van der Hoek 2004), etc.

Reasoning about strategies generally needs to be based on
the premise that agents have imperfect information concern-
ing the underlying state of the system. In this paper, we as-
sume that agents determine their knowledge and behaviour
using only their current observation.

The main contribution of the paper is a symbolic model
checking algorithm for ETLK (and therefore for ATEL), us-
ing binary decision diagrams (BDDs). We show that the al-
gorithm performs better than a partially-symbolic approach
proposed in (Lomuscio and Raimondi 2006; Busard et al.
2013) for ATEL model checking.

We apply the implemented algorithm on a train control
system. The implementation can find strategies for the con-
troller or the trains to follow, so that the system satisfies
some critical properties.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

An Epistemic Strategy Logic
A distributed or multi-agent system consists of a set Agt of
agents running in an environment. We model these using in-
terpreted systems, following (Fagin et al. 1995). Let Var be
a set of atomic propositions. A global state is an element of
the set G = Le × Πi∈AgtLi, where Le is a state of the envi-
ronment and each Li is a local state for agent i. A run is a
mapping r : N→ G giving a global state at each moment of
time. A point is a pair (r,m) consisting of a run r and a time
m ∈ N. An interpreted system is a pair I = (R, π), where
R is a set of runs and π is an interpretation, mapping each
point (r,m) with r ∈ R to a subset of Var. For n ≤ m,
we write r[n . . .m] for the sequence r(n)r(n + 1) . . . r(m).
For each agent i ∈ Agt, we write ri(m) for the component
of r(m) in Li, and then define an equivalence relation on
points by (r,m) ∼i (r′,m′) if ri(m) = r′i (m

′). We also de-
fine ∼D

G≡ ∩i∈G ∼i, and ∼C
G≡ (∪i∈G ∼i)∗ for G ⊆ Agt.

Let SVar be a set of variables. The language
ETLK(Agt, Var, SVar) has syntax given by the grammar:

φ ::= p | ¬φ | φ1 ∨ φ2 | A©φ | A�φ | A(φ1Uφ2) |
∃x.φ | ei(x) | DGφ | CGφ

where p ∈ Var, x ∈ SVar, and G ⊆ Agt. The construct
DGφ expresses that agents in G have distributed knowledge
of φ, i.e., could deduce φ if they pooled their information,
and CGφ says that φ is common knowledge to group G. The
temporal formulas A©φ, A�φ and A(φ1Uφ2) have the stan-
dard meanings from CTL. The construct ∃x.φ says that there
exists in the system a point x such that φ holds at the current
point, and eG(x) says that agents in G have the same local
state at the current point and at the point x. Other opera-
tors can be obtained in the usual way, e.g., ∀x.φ = ¬∃x.¬φ,
A^φ = ¬E�¬φ, etc. We use construct Kiφ = D{i}φ to ex-
press that agent i knows φ, and EGφ =

∧
i∈G Kiφ to express

that every one in G knows φ. We write eG(x) for
∧

i∈G ei(x).
A context for an interpreted system I is a mapping Γ from
SVar to global states occurring in I. We write Γ[s/x] for the
result of changing Γ by assigning global state s to variable x.
The semantics of the language ETLK is given by a relation
Γ,I, (r,m) |= φ, representing that formula φ holds at point
(r,m) of the interpreted system I, relative to context Γ. This
is defined inductively on the structure of the formula φ, as
follows:
• Γ,I, (r,m) |= p if p ∈ π(r,m);

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1426

• Γ,I, (r,m) |= ¬φ if not Γ,I, (r,m) |= φ;

• Γ,I, (r,m) |= φ ∨ ψ if Γ,I, (r,m) |= φ or Γ,I, (r,m) |= ψ;

• Γ,I, (r,m) |= A© φ if for all r′ ∈ R with r[0 . . .m] =
r′[0 . . .m], there is Γ,I, (r′,m + 1) |= φ;

• Γ,I, (r,m) |= A�φ if for all r′ ∈ R with r[0 . . .m] =
r′[0 . . .m], there is Γ,I, (r′,m′) |= φ for all m′ ≥ m;

• Γ,I, (r,m) |= A(φUψ) if for all r′ ∈ R with r[0 . . .m] =
r′[0 . . .m], there exists m′ ≥m such that Γ,I, (r′,m′) |= ψ
and Γ,I, (r′, k) |= φ for all k with m ≤ k < m′;

• Γ,I, (r,m) |= ∃x.φ if Γ[r′(m′)/x],I, (r,m) |= φ for some
point (r′,m′) of I;

• Γ,I, (r,m) |= ei(x) if ri(m) = Γ(x)i;

• Γ,I, (r,m) |= DGφ if Γ,I, (r′,m′) |= φ for all (r′,m′) such
that (r′,m′) ∼D

G (r,m);

• Γ,I, (r,m) |= CGφ if Γ,I, (r′,m′) |= φ for all (r′,m′) such
that (r′,m′) ∼C

G (r,m).

Strategic Environment
Since interpreted systems are infinite objects, for purposes
of model checking, we work with a finite state object
from which an interpreted system is generated. An epis-
temic transition system for agents Agt is a tuple M =
〈S , I, {Oi}i∈Agt,−→, π,F 〉, where S is a set of states, I ⊆ S
is a set of initial states, Oi : S → O provides agent i with
an observation on each state, −→ is a transition relation (see
below), π : S → P(Var) is a propositional assignment, and
F = {Q1, ...,Qk} is a generalized Büchi fairness condition
such that Qi ⊆ S for all 1 ≤ i ≤ k. A system is said to
be finite if all its components, i.e., S , Agt, Acti and Var are
finite.

We work with two types of system. In labelled epistemic
transition systems, or environments the transition relation is
of type −→⊆ S × Act × S , with Act = Πi∈AgsActi a set
of joint actions, where each Acti is a nonempty set of ac-
tions that may be performed by agent i. Intuitively, a joint
action a ∈ Act represents a choice of action ai ∈ Acti for
each agent i ∈ Agt, performed simultaneously, and the tran-
sition relation resolves this into an effect on the state. We
assume that −→ is serial in the sense that for all states s ∈ S
and actions a ∈ Act there exists a state t ∈ S such that
(s, a, t) ∈−→. Once we have selected a strategy for each
agent in such a system, we obtain an unlabeled epistemic
transition system , in which the transition relation is of type
−→⊆ S × S , and we assume that this is serial in the sense
for each s ∈ S there exists t ∈ S such that s −→ t.

A strategy for agent i ∈ Agt in such an environment M is
a function α : S → P(Acti) \ {∅}, selecting a set of actions
of the agent at each state. We call these the actions enabled
at the state. A strategy αi for agent i is uniform if for all
states s, t, if Oi(s) = Oi(t), then αi(s) = αi(t). A strategy
αi for agent i is deterministic if αi(s) is a singleton set for
all s ∈ S . A strategy αG = 〈αi〉i∈G for a group G is locally
uniform (deterministic) if αi is uniform (respectively, deter-
ministic) for each agent i ∈ G. Given a system M, we write
Σunif ,det(M) for the set of all deterministic locally uniform
joint strategies (and denote other combinations similarly).

We now define an interpreted system that contains all
the possible runs generated when agents Agt behave by
choosing a strategy from some set Σ of joint strategies in
the context of an environment M. This interpreted system
is obtained as the system generated from an unlabeled
epistemic transition system that we now define. One
innovation, introduced in (Huang and van der Meyden
2014b), is that the construction of this epistemic transition
system introduces new agents σ(i), for each i ∈ Agt. Both
the observation and the local state of σ(i) are the strategy
currently being used by agent i. Agent σ(i) is not associated
with any actions, and is primarily for use in epistemic
operators to allow reference to what could be deduced were
agents to reason using information about each other’s strate-
gies. We can refer, using distributed knowledge operators
DG where G contains the new strategic agents σ(i), to what
agents would know, should they take into account not just
their own observations, but also information about other
agent’s strategies. For example, D{i,σ(j)}φ says that agent i
can deduce φ from its observation, plus knowledge of the
strategy being used by agent j. For G ⊆ Agt, we write σ(G)
for the set {σ(i) | i ∈ G}. Additionally, we include an agent
e for representing the state of the environment.

Given an environment M = 〈S , I, {Oi}i∈Agt,−→, π,F 〉 for
agents Agt, and a set Σ of strategies for the group Agt, we
define the strategy space (unlabeled) epistemic transition
system E(M,Σ) = 〈S ∗, I∗,−→∗, {O∗i }i∈Agt∪σ(Agt)∪{e}, π

∗,F ∗〉
for agents Agt ∪ σ(Agt) ∪ {e} as follows. The state space
is defined by S ∗ = S × Σ, i.e., a state (s, α) ∈ S ∗ consists
of a state s of M together with a joint strategy α for the
set of all agents in M. The transition relation is given
by ((s, α), (t, α′)) ∈−→∗ if α = α′ and there exists a joint
action a such that (s, a, t) ∈−→ and ai ∈ αi(s) for all agents
i ∈ Agt. Intuitively, in a transition, each agent in Agt first
selects one of the actions enabled by its strategy, and we
then make a transition in M using the resulting joint action.
There are no changes to the agents’ strategies resulting from
the transition. The initial states are given by I∗ = I × Σ, i.e.,
an initial state consists just of an initial state in M and a
choice of joint strategy in Σ. For the observation functions,
the definition of O∗j at a state (s, α) ∈ S ∗ depends on the
type of j. We define O∗j(s, α) = O j(s), for j ∈ Agt. For
j = σ(i), with i ∈ Agt, we define O∗j(s, α) = αi. For j = e,
we define O∗j(s, α) = s. Finally, π∗(s, α) = π(s) for all states
(s, α) ∈ S ∗. We let F ∗ = {Q × Σ | Q ∈ F }.

A run of an unlabeled epistemic transition system E is
a sequence r : N → S ∗ such that r(0) ∈ I∗, (r(k), r(k +
1)) ∈−→∗ for all k ∈ N, and for all 1 ≤ i ≤ k there are
infinitely many indices j ≥ 0 for which O∗e(r(j)) ∈ Qi.
Given an unlabeled epistemic transition system E, we ob-
tain an interpreted system I(E) = (R, π′) as follows. For
a run r : N → S ∗ of E, define the lifted run r̂ : N →
S ∗ × Πi∈Agt∪σ(Agt)∪{e}O∗i (S ∗), by letting r̂i(m) = O∗i (r(m)) for
i ∈ Agt ∪ σ(Agt) ∪ {e}. Then we take R to be the set of
lifted runs r̂ with r a run of E. The assignment π′ is given by
π′(r,m) = π∗(r(m)). Therefore, we start with an environment
M and an associated set of strategies Σ, and then work with
the language ETLK(Agt ∪ σ(Agt) ∪ {e}, Var, SVar) in the
interpreted system I(E(M,Σ)).

1427

Given a labeled transition system M, the set Σ of joint
strategies, and a formula φ of ETLK language, the model
checking problem, written as M,Σ |= φ, is to decide whether
I(E(M,Σ)), (r, 0) |= φ for all r ∈ R.

Embedding of ATEL
The syntax of ATEL is as follows:

φ ::= p | ¬φ | φ1 ∨ φ2 | 〈〈G〉〉©φ | 〈〈G〉〉�φ |
〈〈G〉〉(φ1Uφ2) | DGφ | CGφ

where p ∈ Var is an atomic proposition and G ⊆ Agt is a set
of agents. For the ATEL semantics of (Schobbens 2004), we
have the following translation (Huang and van der Meyden
2014b; 2014a) from ATEL to ETLK. For a formula φ, we
write φ∗ for the translation of φ, defined inductively on the
construction of φ by the following rules

p∗ = p (¬φ)∗ = ¬φ∗ (φ1 ∨ φ2)∗ = φ∗1 ∨ φ
∗
2

(DGφ)∗ = DGφ
∗ (CGφ)∗ = CGφ

∗

(〈〈G〉〉©φ)∗ = ∃x.EG(eσ(G)(x)⇒ A©φ∗)
(〈〈G〉〉�φ)∗ = ∃x.EG(eσ(G)(x)⇒ A�φ∗)
(〈〈G〉〉φ1Uφ2)∗ = ∃x.EG(eσ(G)(x)⇒ A(φ∗1Uφ∗2))

Intuitively, the construct ∃x.EG(eσ(H)(x) ⇒ ψ) states that
there exists a global state x such that every agent in G knows
that if the agents in group H run the strategy contained in the
global state x, then ψ is guaranteed. The translation applies
this with H = G for several ψ.

BDD-based Model Checking Algorithm
We develop a symbolic model checking algorithm for ETLK
using Binary Decision Diagrams (BDDs) (Bryant 1986).1
These are a canonical representation of boolean functions
that can, in practice, be quite compact and that support ef-
ficient computation of operations, e.g., boolean operations
∧,¬,∨, =⇒ ,⇔, boolean quantification ∃,∀, an operation
= to decide if two functions are equivalent, and a variable
substitution operation f [v 7→ v′] which renames input vari-
able v to v′ in the function f . The substitution operation is
also lifted to work with sets of variables f [V 7→ V ′]. These
BDD operations allow us to map a boolean or QBF formula
to a BDD in an obvious way.

Our model checking algorithm takes a formula represen-
tation of the environment M as one of the inputs.

1. Each state s is represented as a boolean assignment to the
set Var of atomic propositions. This means that the set
of states S can be represented by a boolean formula over
Var, and similarly for the set I of initial states, the fairness
constraint Qi for 1 ≤ i ≤ k.

2. Actions in Acti can be represented as assignments to a set
of boolean variables BActi = {bi1, ..., bimi }, such that mi =
dlog2 |Acti|e. Therefore, a joint action a is represented as
an assignment to variables BAct =

⋃
i∈Agt BActi.

1We assume the reader has some familiarity with symbolic
model checking, and refer to (Clarke, Grumberg, and Peled 1999)
for an exposition of this area.

3. For the transition relation −→, we represent the successor
state using “primed” versions of Var, defined by Var′ =
{v′ | v ∈ Var}. The transition relation is presented as a
boolean formula over variables Var ∪ BAct ∪ Var′, or, in
the unlabeled case, over Var ∪ Var′.

4. The observation function Oi is defined by giving a subset
Vari ⊆ Var of variables as agent i’s observable variables.
Therefore, an observation o is an assignment to the set
Vari of variables. We use formula

eqi ≡
∧

v∈Vari

v⇔ v′

to represent that agent i has the same observation on two
states that are assignments of Var and Var′ respectively.

Given a boolean assignment z to a set of variables V , we
write ẑ for the conjunction of the literals v or ¬v, for v ∈ V ,
such that z(v) = 1 or z(v) = 0, respectively.

Formulas such as the above can be converted to BDD rep-
resentations in the usual way. The idea of symbolic model
checking is then to compute BDD’s representing sets of in-
terest using BDD operations. As an example, we show the
computation of reachable states with BDD operations over
the above formulas. Let S reach be the set of states reachable
via transitions −→ from a state in I. The BDD representa-
tion of this can be computed as the first element g j such that
g j+1 = g j, of the following recursively defined sequence:

1. g0 = I, and
2. gi+1 = gi ∨ (∃Var∪BAct : gi∧ −→)[Var′ 7→ Var].

Symbolic Representation of Strategies
The key idea of our algorithm is to represent strategies sym-
bolically (rather than explicitly, as in prior work). We focus
on uniform and deterministic strategies, where we can take
advantage of the fact that agent’s choice of actions can be
represented using a number of variables that is logarithmic
in the size of the agent’s action set. The approach can be
easily adapted to work with nondeterministic strategies, but
requires a linear number of variables in that case.

Let Oi be the set of possible observations of agent i. This
can be computed from reachable states, by letting

Oi ≡ {s � Vari | s ∈ S reach}.

A uniform and deterministic strategy of agent i can be repre-
sented as a function αi : Oi → Acti. To represent the space
of such functions, we introduce for each agent i ∈ Agt a set
of new boolean variables Xi, containing the variables xi,o, j
for o ∈ Oi and j = 1 . . .mi. Therefore, a strategy αi for an
agent i can be represented by an assignment χαi to variables
in Xi such that for an observation o ∈ Oi and j = 1 . . .mi, we
have χαi (xi,o, j) = 1 iff αi(o)(bi j) = 1. Let X =

⋃
i∈Agt Xi.

Using this representation of strategies, the formula

fα ≡
∧

i∈Agt

∧
o∈Oi

ô⇒ ∧
j=1...mi

(xi,o, j ⇔ bi j)

over variables Var∪X∪BAct states that each agent i selects
its action b from its observation o using the strategy encoded
by the assignment to X.

1428

We also need to represent contexts Γ. A global state in
I(E(M,Σ)) corresponds to a pair (s, α) where S is a state of
M and α is a joint strategy in M. Thus, for each global state
variable v ∈ SVar in the formula to be model checked, we
introduce a set Xv = {xv | x ∈ Var ∪ X} of variables.

Symbolic Representation of E(M,Σunif ,det)
The transition system E(M,Σ) is represented as follows. A
state s∗ ∈ S ∗ is an assignment to variables Var ∪ X. The
transition relation −→∗ is represented as a boolean formula
over Var ∪ X ∪ Var′ ∪ X′, more specifically

−→∗≡ ∃BAct : (−→ ∧ fα ∧ feqs)

where feqs ≡
∧

x∈X(x ⇔ x′), represents that the joint strat-
egy is not changed in a run. (Note that the action variables
BAct are quantified out here because transitions in E(M,Σ)
are unlabelled; there are no actions in this system.)

For the observation function O∗i , the formula eqi is iden-
tical to that in M for i ∈ Agt. For i = e, we let
eqi ≡

∧
v∈Var v ⇔ v′. For i = σ(j) for j ∈ Agt, we let

eqσ(j) ≡
∧

v∈X j
v⇔ v′. Moreover, for v ∈ SVar, we write

eqv
j ≡
∧

x∈Varj

x⇔ xv and eqv
σ(j) ≡

∧
x∈X j

x⇔ xv

for j ∈ Agt. Intuitively, eqv
j states the equivalence of agent

j’s observations on the global state v and the current state,
and eqv

σ(j) states the equivalence of X j variables and Xv
j vari-

ables.
The formulas representing states and initial states in

I(E(M,Σunif ,det)) are S ∗ = S and I∗ = I, but interpreted over
the set of variables Var ∪ X, to capture that strategies are
unconstrained assignments to the variables X representing
uniform deterministic strategies.

Symbolic Algorithm
The BDD-based symbolic algorithm computes recursively,
for each subformula ϕ, a BDD representation of a boolean
function S ϕ over variables Var, X and Xv such that
v ∈ SVar occurs in ϕ, such that S ϕ(s) = 1 iff
Γ,I(E(M,Σunif ,det)), (r,m) |= ϕ for some (equivalently, all)
points (r,m) such that re(m) = s, where the global state Γ(v)
is encoded by the restriction of the assignment s to Xv. The
computation of S ϕ can be done recursively as follows. We
write S ′ = S [Var ∪ X 7→ Var′ ∪ X′]. A state in an unla-
beled transition system is fair if there is a run from it that
satisfies the fairness condition. The sets S reach and S fair of
reachable and fair states (respectively) of the unlabeled tran-
sition system E(M,Σ) can be computed following techniques
from (Clarke, Grumberg, and Peled 1999), as illustrated for
S reach above.

Definition 1 The formula representation of S ϕ is computed
recursively by

1. S p = p
2. S ¬ϕ = ¬S ϕ

3. S ϕ1∧ϕ2 = S ϕ1 ∧ S ϕ2

4. S EXϕ = ex(S fair ∧ S ϕ)

5. S E�ϕ is the first element Ui of the sequence U0,U1, ...
such that Ui = Ui+1, where U0 = S ϕ and U j+1 =
S ϕ ∧

∧
Q∈F ex(eu(S ϕ,U j ∧ S Q))

6. S E(ϕ1Uϕ2) is the first element Ui of the sequence U0,U1, ...
such that Ui = Ui+1, where U0 = S ϕ2 ∧ S f air and U j+1 =
U j ∨ (S ϕ1 ∧ ex(U j))

7. S ∃v.ϕ = ∃Xv : ((S fair ∧ S reach)[X 7→ Xv] ∧ S ϕ)
S eG(v) =

∧
i∈G eqv

i
8. S DGϕ = ∀Var′ ∪ X′ : (

∧
i∈G eqi ∧ S ′fair ∧ S ′reach ⇒ S ′ϕ)

9. S CGϕ is the first element Ui of the sequence U0,U1, ... such
that Ui = Ui+1, where U0 = S ϕ and

U j+1 =
∧
i∈G

∀Var′ ∪ X′ : (eqi ∧ S ′fair ∧ S ′reach ⇒ U′j)

where
• ex(ss) = ∃Var′ ∪ X′ : (−→∗ ∧ss′)
• eu(ss1, ss2) is the first element Ui of the sequence

U0,U1, ... such that Ui = Ui+1, where U0 = ss2 and
U j+1 = U j ∨ (ss1 ∧ ex(U j))

We then have the following characterization of the model
checking problem:

Theorem 1 Let M = (S , I, {Oi}i∈Agt,−→, π,F) be an en-
vironment and and φ an ETLK formula. Then we have
M,Σunif ,det |= φ iff ∀Var ∪ X : I∗ ∧ S f air ⇒ S φ.

There is an exponential expansion from M and Σunif ,det

to E(M,Σunif ,det). The theoretical complexity of the model
checking problem is PSPACE-complete (Huang and van der
Meyden 2014b; 2014a).

Application: Train Control System
The following train control scenario is a variant of the one
presented in (van der Hoek and Wooldridge 2002). There
are n trains T = {T1, ..., Tn}, each of which operates on its
own railway. They share a common tunnel that can pass one
train at a time. The tunnel has been equipped with a control
system C intended to prevent collisions.

Every train Ti has two one-bit signals, wsig[Ti] and
esig[Ti], to communicate with the tunnel’s control system.
The signal wsig[Ti] is used by the train to notify the con-
trol system that it wishes to pass through the tunnel, and
the signal esig[Ti] is used by the control system to no-
tify the train that it is allowed to enter the tunnel. A sig-
nal may be in one of two states {Green, Red}. Every train
may be in one of the three states {Away, Waiting, Tunnel}
and the the controller maintains a variable concerning the
tunnel that may be in one of the two states {Full, Empty}.
Intuitively, the value Full represents that there may be a
train in the tunnel. We use tst[Ti] to denote train Ti’s state
and cst to denote controller’s variable. Therefore, we have
Var = {cst} ∪ {tst[Ti], wsig[Ti], esig[Ti] | Ti ∈ T } and
system states are assignments to Var.

The system starts from an initial state where cst = Empty
and for every train Ti, tst[Ti] = Away and wsig[Ti] =
esig[Ti] = Red. The control system C has two actions
ActC = {Allow, Skip} and train Ti has four actions ActTi =
{Wait, Enter, Leave, Skip}.

1429

We give the transition relation by describing the effects
of actions. When the control system C takes action Allow,
the environment will nondeterministically choose one of the
trains Ti that has sent a request to the control system (i.e.,
for which wsig[Ti] = Green), change the tunnel state cst
into Full, turn the signal esig[Ti] into Green, representing
that the control system sends a signal to the train Ti and
allows it to enter the tunnel, and turn the signal wsig[Ti]
into Red, representing that the request has been accepted. If
none of the trains is waiting then variables stay unchanged.
We assume that a signal is always received immediately and
correctly.

If train Ti takes action Wait when it is not in Tunnel,
then its own state tst[Ti] becomes Waiting and the signal
wsig[Ti] turns into Green, to model that it sends a request
to the control system. If train Ti takes action Enter, its own
state will be updated into Tunnel. Once train Ti takes action
Leave, its own state will be updated into Away, the variable
cstwill be updated into Empty, and the signal esig[Ti] will
be turned into Red, representing that this round of passing
through the tunnel has finished.

The observation functions are given by letting vari-
ables {tst[Ti], esig[Ti]} be observable to Ti and variables
{cst} ∪ {wsig[Ti] | Ti ∈ T } be observable to C.

Actions have no effect in situations where they are not
legal. For the controller C, action Allow is legal when its
state cst is Empty. In all other conditions, action Skip is
legal. On the other hand, for the train Ti, action Wait is legal
when it is Away, action Enter is legal when it is Waiting,
action Leave is legal when it is in Tunnel, and action Skip
is legal at any condition.

We do not need fairness constraints, i.e., F = ∅. Several
properties are of interest in this system, e.g.,

φ1 ≡ A�
∧

x,y∈T, x,y

¬(tst[x] = Tunnel ∧ tst[y] = Tunnel)

which expresses the exclusive access to the tunnel: it is al-
ways the case that there do not exist two trains that are in
Tunnel simultaneously,

φ2 ≡
∧

x∈T A�(tst[x] = Waiting ∧ esig[x] = Green⇒
A^ tst[x] = Tunnel)

which expresses that all trains Ti will eventually enter the
tunnel if they are Waiting and have already received the
signal esig[Ti] from the control system, and

φ3 ≡
∧
x∈T

A� A^ tst[x] , Tunnel

which expresses that none of the trains will stay in the tunnel
forever. To synthesize trains’ collective strategies, we use
the following ETLK formula to describe their goals:

∃vE{T1,...,Tn}(eσ({T1,...,Tn)}(v)⇒ φ1 ∧ φ2 ∧ φ3) (1)

Note that, to compare the performance of our algorithm with
an ATEL model checking algorithm (to be explained later),
all formulas we considered in the paper are also expressible
in ATEL. For example, the above formula can be expressed
as

〈〈{T1, ..., Tn}〉〉(φ1 ∧ φ2 ∧ φ3),

by the transformation stated before. However, as stated
in (Huang and van der Meyden 2014b; 2014a), ETLK has
strictly more expressiveness than ATEL.

The algorithm presented in the previous section has been
implemented in an epistemic model checker MCK (Gammie
and van der Meyden 2004). We describe here some strate-
gies that were discovered by the algorithm.

For the system with two trains, i.e., T = {T1, T2}, the al-
gorithm found a strategy for both trains:

αTi =

Wait if tst[Ti] = Away and esig[Ti] = Red
Enter if tst[Ti] = Waiting and esig[Ti] = Green
Leave if tst[Ti] = Tunnel and esig[Ti] = Green
Skip otherwise

That is, the trains repeatedly request to enter the tunnel,
enter it when they get the green light to do so, and exit im-
mediately after they have entered the tunnel (when the entry
light happens to remain green).

In the following, we consider a different problem, in
which we aim to find a strategy for the controller rather than
for the trains. For the controller C, both action Skip and
action Allow are legal at all states. On the other hand, we
restrict train Ti’s behaviour to be to use the strategy given
above. (This is done by treating the above behaviour of the
trains to be part of the environment.)

In such a system, we are interested in the existence of a
strategy for the control system C to follow, so that the whole
system can satisfy the properties φ1, φ2 and φ3, expressed as
ETLK formula

∃v.KC(eσ({C})(v)⇒ φ1 ∧ φ2 ∧ φ3) (2)

For the system with two trains, the algorithm found a
strategy for the control system: the control system takes ac-
tion Allow if

1. cst = Empty and for both trains Ti, we have wsig[Ti] =
Green, or

2. cst = Full and one of the trains has wsig[Ti] = Red
and the other one has wsig[Ti] = Green.

In other cases, it takes action Skip.
The second option is arguably somewhat unexpected. To

understand it, we notice that by protocol for the trains, if a
train is in tunnel, it will exit the tunnel at the next round.
That is, a train will not stay in the tunnel for more than one
round. It is therefore safe for the controller to signal to an-
other train that it is safe to enter, since by the time it receives
the signal, the tunnel will be empty.

Performance Comparison
In this section, we report the performance of our algorithm
on two scalable examples. The experiments were conducted
on a Debian Linux system, 3.3 GHz Intel i5-2500 CPU, with
each process allocated up to 500M memory.

We compare our algorithm with a partially-symbolic algo-
rithm, also implemented in the same model checker. The al-
gorithm follows the ideas in (Lomuscio and Raimondi 2006;
Busard et al. 2013) for ATEL model checking: for a formula
〈〈G〉〉φ, it proceeds by constructing all uniform and determin-
istic strategies αG of the agents in G, combining each αG

1430

No. of Trains 2 3 4
size time size time size time

fully symbolic, formula (1) |X| = 24 1.1 |X| = 36 35.9 |X| = 48 813.2
partially symbolic, formula (1) |αG | =?

fully symbolic, formula (2) |X| = 7 1.4 |X| = 14 2.2 |X| = 26 13237.2
partially symbolic, formula (2) |αG | = 128 5.7 |αG | = 16384 852.1 |αG | =?

Table 1: Strategy Space and Running Times (s) of Train Control System

with the model M to obtain a restricted model MαG, and
then applying symbolic model checking on all the models
MαG to check the formula EGφ.

For the train control system, we scale up the number of
trains in the system. The strategy space and running times
are given in Table 1. For fully symbolic algorithm, the size
of the strategy space is represented as the number of vari-
ables in X, while for partially symbolic algorithm, the strat-
egy space is represented as the number of strategies |αG |.
The number of strategies |αG | is computed as the number
of times the model checking algorithm is applied on a re-
stricted model MαG and formula EGφ. We write |αG | =? for
the experiments which did not terminate in 36 hours.

Note that the fully symbolic algorithm actually works
with a number k(|X|+|Var|)+|X| new variables, where k is the
depth of quantifier nesting in ϕ. The X variables represent
a strategy space of size 2|X|. Whereas, in the case of for-
mula (1), where we synthesize a protocol for the trains, the
symbolic algorithm of the present paper solves the problem
for up to four agents in reasonable time, the partially sym-
bolic algorithm did not terminate even for just two agents.
For formula two we are synthesizing a protocol only for the
controller, but here also the fully symbolic approach is able
to handle larger problems.

Related Work

There are several previous proposals for model checking al-
gorithms for ATEL assuming partial observation and uni-
form strategies. None of them is fully-symbolic. (Lomuscio
and Raimondi 2006) and (Busard et al. 2013) take a similar
approach as the partially symbolic algorithm in our experi-
ments, with the latter able to deal with fairness constraints.
The algorithm in (Calta, Shkatov, and Schlingloff 2010) is
an explicit state algorithm, and involves a computation of all
maximal cliques of graphs. The complexity of the algorithm
is O(|φ| ·m ·3m/3) where m is the number of transitions in the
system M.

There is no tool available for model checking ATEL as-
suming uniform strategies. MCMAS (Lomuscio, Qu, and
Raimondi 2009) has an implementation for the semantics
of (van der Hoek and Wooldridge 2002), i.e., without con-
sidering the uniformity of strategies. It has been argued, in
e.g., (Jonker 2003; Schobbens 2004), that uniformity more
closely fits the spirit of the epistemic extension, in which ob-
servations represent that agents have partial information of
the state.

Conclusions
The paper proposes a symbolic BDD-based algorithm for
model checking ETLK. We can use the implementation
to handle interesting examples, and the experiments show
that it can give an improvement of several orders of magni-
tude over a previous partially-symbolic approach for ATEL
model checking.

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-Time Temporal Logic. Journal of the ACM
49(5):672–713.
Bryant, R. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers
C-35(8):677–691.
Busard, S.; Pecheur, C.; Qu, H.; and Raimondi, F. 2013.
Reasoning about strategies under partial observability and
fairness constraints. In 1st International Workshop on
Strategic Reasoning (SR2013), 71–79.
Calta, J.; Shkatov, D.; and Schlingloff, B.-H. 2010. Find-
ing uniform strategies for multi-agent systems. In Computa-
tional Logic in Multi-Agent Systems (CLIMA XI), 135–152.
Clarke, E. M.; Emerson, E. A.; and Sistla, A. P. 1986. Au-
tomatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2):244–263.
Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
Checking. The MIT Press.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning About Knowledge. The MIT Press.
Gammie, P., and van der Meyden, R. 2004. MCK: Model
Checking the Logic of Knowledge. In Proc. Conf. on
Computer-Aided Verification, CAV, 479–483.
Huang, X., and van der Meyden, R. 2014a. An epistemic
strategy logic. In the 2nd International Workshop on Strate-
gic Reasoning (SR2014).
Huang, X., and van der Meyden, R. 2014b. A temporal logic
of strategic knowledge. In the 14th International Conference
on Principles of Knowledge Representation and Reasoning
(KR2014).
Jamroga, W., and van der Hoek, W. 2004. Agents that Know
How to Play . Fundamenta Informaticae 62:1–35.
Jonker, G. 2003. Feasible strategies in alternating-time tem-
poral. Master’s thesis, University of Utrech, The Nether-
lands.

1431

Lomuscio, A., and Raimondi, F. 2006. Model Check-
ing Knowledge, Strategies, and Games in Multi-Agent Sys-
tems. In the proceedings of the 5th international joint con-
ference on Autonomous agents and multiagent systems (AA-
MAS 2006), 161–168.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS: A
Model Checker for the Verification of Multi-Agent Systems.
In Proc. Conf. on Computer-Aided Verification, 682–688.
Schobbens, P.-Y. 2004. Alternating-time logic with imper-
fect recall. Electronic Notes in Theoretical Computer Sci-
ence 85(2):82–93.
van der Hoek, W., and Wooldridge, M. 2002. Tractable mul-
tiagent planning for epistemic goals. In Proceedings of the
First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’02), 1167–1174.
van Otterloo, S., and Jonker, G. 2005. On Epistemic Tem-
poral Strategic Logic. Electronic Notes in Theoretical Com-
puter Science (ENTCS) 126:77–92.

1432

