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Abstract

In this paper, we study the low-rank tensor completion
problem, where a high-order tensor with missing en-
tries is given and the goal is to complete the tensor. We
propose to minimize a new convex objective function,
based on log sum of exponentials of nuclear norms, that
promotes the low-rankness of unfolding matrices of the
completed tensor. We show for the first time that the
proximal operator to this objective function is readily
computable through a hybrid singular value threshold-
ing scheme. This leads to a new solution to high-order
(low-rank) tensor completion via convex relaxation. We
show that this convex relaxation and the resulting solu-
tion are much more effective than existing tensor com-
pletion methods (including those also based on mini-
mizing ranks of unfolding matrices). The hybrid sin-
gular value thresholding scheme can be applied to any
problem where the goal is to minimize the maximum
rank of a set of low-rank matrices.

Introduction
In the past few years, an explosion of massive amounts of
high-dimensional data has permeated a large number of sci-
entific and engineering fields. The curse of dimensionality
has presented a challenging task to process such massive
data. However, the blessing of dimensionality has provided a
great opportunity: real data tends to lie in or near some low-
dimensional subspace or manifold even though the ambient
space is very high-dimensional. Consequently, it has been an
important theme to seek and recover low-dimensional struc-
tures in high-dimensional data.

An important body of work in this area is the low-rank
matrix recovery, which has been extensively studied in the
recent literature and for which we provide a (highly incom-
plete) survey. (Candès and Recht 2009) studied the problem
of recovering a low-rank matrix from incomplete observa-
tions on a given data matrix and gave theoretical conditions
on when exact recovery of such a low-rank matrix is achiev-
able by using nuclear norm minimization as the convex sur-
rogate. A singular value thresholding algorithm was intro-
duced in (Cai, Candès, and Shen 2010) to efficiently solve
∗The first two authors contributed equally to this work.
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the convex program. Later, a series of articles (Keshavan,
Montanari, and Oh 2010; Candès and Tao 2010; Recht 2011;
Hu et al. 2013) have provided tighter bounds for the matrix
completion problem. (Keshavan, Montanari, and Oh 2010)
and (Candès and Plan 2010) have dealt with the case where
the observed entries in the data matrix suffer from noisy cor-
ruptions. (Recht, Fazel, and Parrilo 2010) investigated the
issue of matrix completion under linear sensing matrices
model. (Gross 2011) gave a tight bound on matrix recov-
ery under the model of randomly sampling expansion co-
efficients with respect to any given matrix basis. Another
important and related line of work is Robust Principle Com-
ponent Analysis (RPCA) developed in (Candès et al. 2011;
Chandrasekaran et al. 2011). In this context, one seeks to
decompose a data matrix into a sum of a low-rank matrix
and a sparse error matrix. A series of follow-up papers in-
cluding (Zhou et al. 2010; Ganesh et al. 2012; Wright et
al. 2013) have made this model stable and have considered
extensions where linear measurements of the data matrix
are incomplete. While such theoretical endeavors have wit-
nessed a success, algorithmic efforts to efficiently solve the
proposed convex optimization programs have also surged.
Fast algorithms proposed in (Lin, Chen, and Ma 2010;
Lin et al. 2009) have proven effective in solving large low-
rank matrix recovery problems, thus enabling the benefits
guaranteed by the theoretical results to be enjoyed by real-
world applications. In particular, first-order methods such as
alternating proximal gradient method (Ma 2012) and alter-
nating direction method of multipliers (Luo 2012) have re-
gained attention in low-rank matrix recoveries due to its ef-
ficiency, especially in large-scale problems.

Although the low-rank matrix recovery problem has been
well studied, there is not much work on tensor recovery. In
fact, most of the existing high-dimensional data can be nat-
urally formed as tensors (e.g. color images, videos, hyper-
spectral images, high-dynamical range images etc.), and di-
rectly graying and vectorizing images will lose much use-
ful information. For tensorial data, one major challenge
lies in an appropriate definition of the tensor rank. Tra-
ditionally, there are two definitions of tensor rank, which
are based on CP (CANDECOMP/PARAFAC) decomposi-
tion (Kruskal 1977) and Tucker decomposition (Kolda and
Bader 2009) respectively. Similar to the rank definition of
a matrix, the CP rank of a tensor based on CP decompo-
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sition is defined as the minimum number of rank-one de-
compositions of a given tensor. However, this rank defini-
tion is a nonconvex function, and direct minimization of
this function is an NP-hard problem. As a result, Tucker
decomposition of a tensor has been proposed, resulting in
a new rank definition of a tensor, the Tucker rank, which
is simply a vector of ranks of the unfolding matrices of a
given tensor. Due to the recent breakthroughs in low-rank
recovery of matrix (Cai, Candès, and Shen 2010), the lat-
ter definition has received more attention. (Gandy, Recht,
and Yamada 2011) adopted the sum of the ranks of the dif-
ferent unfolding matrices as the rank of the tensor data, in
which the rank of the unfolding matrix is approximated by
the nuclear norm. (Signoretto, De Lathauwer, and Suykens
2010) proposed a general Shatten-{p, q} norm for tensors
and discussed the relationship between the proposed met-
ric and the nuclear norm. A weighted sum of the ranks of
the unfolding matrices was introduced by (Liu et al. 2013)
and three optimization algorithms were proposed to esti-
mate missing values in tensors of visual data. Three different
strategies were developed to extend the trace-norm regular-
ization to tensors (Tomioka, Hayashi, and Kashima 2010):
(1) tensors treated as matrices; (2) constrained optimization
of low-rank tensors; (3) mixture of low-rank tensors. The
above-mentioned methods all adopt a weighted sum of the
nuclear norms of the unfolding matrices to represent the
tensor rank. However, there is no universal agreement on
why such a metric is the best objective function to mini-
mize, nor is there any consensus on what the best objective
function is for tensor completion problems (Mu et al. 2013;
Oymak et al. 2012). Moreover, the weights play an impor-
tant role in tensor completion, but it is not clear how the
weights should be a priori chosen since the nuclear norm of
the unfolding matrix of each mode is not known given the
incomplete data tensor.

Motivated by the above discussions, we propose to min-
imize the maximum rank of all unfolding matrices. To this
end, we propose an alternative metric that serves as a con-
vex surrogate for the maximum rank. This metric is based
on the log sum of exponential of the nuclear norms of all
unfolding matrices. It aims to minimize the maximum of
the nuclear norms (and hence minimize the maximum rank).
Somewhat surprisingly, we show that this convex objective
function allows an efficiently computable proximal opera-
tor, which is given by an interesting hybrid singular value
thresholding scheme, unlike any singular value thresholding
scheme that we have seen before. In addition, experiments
show that this new objective function can better promote the
low-rankness of the recovered tensors than existing methods
based on tensor nuclear norm, tractional matrix norm, and
the newly proposed square matrix norm. We believe the hy-
brid thresholding solution is an interesting result of its own
right: It suggests that there might be other low-rank promot-
ing convex objective functions for high-order tensors that
could also lead to efficient proximal operators of a similar
kind. This result can also be independently applied to any
problem where the goal is to minimize the maximum rank
of a set of matrices.

Problem Formulation
We adopt the following notation conventions throughout the
paper. Scalars (a, b, c · · · ) are denoted as lowercase letters
and vectors (a, b, c · · · ) are denoted as bold lowercase let-
ters. We use capital letters for matrices (A,B,C · · · ) and
use calligraphic letters for tensors (A,B, C · · · ). In the fol-
lowing subsections, we provide the motivation of our work,
followed by a presentation of the problem statement.

Motivation
In tensor completion literature, a commonly adopted formu-
lation is as follows:

min
X

m∑
i=1

αi‖X(i)‖∗, s.t. XΩ = TΩ. (1)

where X(i) is the ith unfolding matrix of tensor X , and
‖X(i)‖∗ is the nuclear norm (the sum of the singular val-
ues) of the matrix X(i). Ω is the set of observed elements
and Ω̄ represents the missing entries.

Even though certain empirical success has been achieved
under the formulation in Eq. (1), there is no universal agree-
ment on why

∑m
i=1 αi‖X(i)‖∗ is the best objective function

to minimize, nor is there any consensus on what the best
objective function is for tensor completion (Mu et al. 2013;
Oymak et al. 2012). Moreover, it is not clear how the weights
should be a priori chosen since the nuclear norm of the
unfolding matrix of each mode is not known given the in-
complete data tensor. Motivated by the above-mentioned
concerns, we propose in this paper a worst-case metric:
|‖X‖| = maxi ‖X(i)‖∗, where it can be easily verified that
|‖·‖| thus defined is a norm for tensors. Hence, we can inter-
pret this norm as a characterization of the low-rankness of a
tensor. The corresponding optimization problem can hence
be written as follows.

min
X

max
i
‖X(i)‖∗, s.t. XΩ = TΩ. (2)

In addition to having a clear interpretation of a worst-case
metric, which can be interesting for study in its own right,
our proposed formulation can in fact be complementary with
the traditional weighted sums of nuclear norms formulation.
If one decides to use the formulation in Eq. (1), then one
can first solve the optimization problem in Eq. (2) and ob-
tain an estimate, in the worst-case mindset, the values of the
nuclear norms for all the unfolding matrices. Those values
can provide a basis on which one can select their choice of
the weights. Finally, maxi rank(X(i)) lower bounds the CP
rank of the tensor X , where the CP rank of X is the mini-
mum number of rank-one tensors that sum up to X (a rank-
one k-way tensor in Rn1×n2×·×nk is the outer product of k
vectors, where the ith vector has dimension ni). In special
cases where the ranks of all unfolding matrices are equal,
they all equal the CP rank of the tensor. Consequently, when
|‖X‖| is viewed as a convex surrogate for maxi rank(X(i)),
solving the optimization problem in Eq. (2) amounts to ap-
proximating a feasible solution with low CP rank.
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Problem Relaxation
Although the objective function max(·) in Problem (2) is
convex, it is highly non-smooth. Common gradient descent
methods, when applied to solving this problem, can be quite
inefficient, with accuracy not guaranteed. Hence we seek a
relaxation which can be solved very efficiently with high ac-
curacy. We replace the objective function with the following
function to obtain again a convex problem.

min
X

log
(
e‖X(1)‖∗ + e‖X(2)‖∗ + · · ·+ e‖X(m)‖∗

)
,

s.t. XΩ = TΩ. (3)

We note that this is a rather tight approximation of the orig-
inal function |‖X‖|, since the following inequality holds:
maxi ‖X(i)‖∗ ≤ log

(
e‖X(1)‖∗+e‖X(2)‖∗+···+e‖X(m)‖∗

)
≤

maxi ‖X(i)‖∗ + logm. The second inequality is tight when
the nuclear norms of all the unfolding matrices are equal.
In addition, since log(·) is a monotonically strictly increas-
ing function, it suffices to solve the following optimization
program:

min
X

e‖X(1)‖∗ + e‖X(2)‖∗ + · · ·+ e‖X(m)‖∗ ,

s.t. XΩ = TΩ. (4)

It is easily seen that the optimal solutions to Problem (3) and
Problem (4) are the same.

A Hybrid Thresholding Solution
In this section, we provide a key building block that will
prove essential in solving the optimization problem in (4).
Given a matrix Y ∈ Rn1×n2 and a τ ≥ 0, consider the
function

h(X) = τe‖X‖∗ +
1

2
‖X − Y ‖2F , X ∈ Rn1×n2 .

The ultimate goal of this section is to find the matrix X̂

that achieves the minimum of the function h(X), i.e. X̂ =
arg minX h(X). This is also known as the proximal op-
erator for the convex function e‖X‖∗ . We note that when
τ = 0, this problem is trivial, and hence we will assume
τ > 0 for the rest of the paper. Cai et al. in (Cai, Candès,
and Shen 2010) have considered the problem of finding
arg minX τ‖X‖∗ + 1

2‖X − Y ‖
2
F . There, they have shown

that the singular value shrinkage gives the proximal opera-
tor. We will briefly describe it here since our method makes
use of it. However, as we will see the proximal operator
for e‖X‖∗ is a nontrivial extension of the soft thresholding
shrinkage operator.

Consider a matrix Y ∈ Rn1×n2 of rank r, whose con-
densed singular value decomposition (SVD) is:

Y = UΣV ∗,Σ = diag({σiY }1≤i≤r),

where V ∗ is the transpose of the matrix V , U and V are
n1 × r and n2 × r matrices respectively with orthonormal
columns. The positive singular values of Y are σiY ’s. Unless
specified otherwise, all SVDs in this paper will be assumed
to be of this condensed form. In addition, we assume that the
singular values σiY are always ordered in decreasing values.

For each τ > 0, the soft thresholding shrinkage operator Dτ
introduced in (Cai, Candès, and Shen 2010) is defined to be:

Dτ (Y ) = UDτ (Σ)V ∗, Dτ (Σ) = diag((σiY − τ)+),

where t+ = max(0, t).
However, since the function of interest now is τe‖X‖∗ +
1
2‖X−Y ‖

2
F , the soft thresholding shrinkage operator cannot

be directly applied to obtain the minimizer X̂ . In fact, it is
not even a priori clear why X̂ should have the same left and
right singular vectors as Y . As we shall see later, a properly
generalized method, the hybrid thresholding scheme, read-
ily finds the minimizer X̂ . We first state a lemma that will
be used later in establishing an algorithm to find X̂ . For con-
venience, we augment the list of singular values {σiY }1≤i≤r
of Y with σr+1

Y = −∞.

Lemma 1. Suppose the rank of Y is r and τ < σ1
Y . There

exists a unique integer j, with 1 ≤ j ≤ r, such that the
solution tj to the following equation

ln(tj) + jtj = ln(τ) +

j∑
i=1

σiY (5)

satisfies the constraint

σj+1
Y ≤ tj < σjY . (6)

Proof. We first show that if at least one such j exists, then
such a j (and hence tj) is unique. Consider the set J = {j |
tj satisfies (5) and (6)}.Assume J is not empty, let j∗ be the
smallest element in J . Now we argue that no j∗+k, 1 ≤ k ≤
r − j∗, can be in J . Consider any k with 1 ≤ k ≤ r − j∗.
Suppose for the sake of contradiction, j∗ + k ∈ J . That is

ln(tj∗+k) + (j∗ + k)tj∗+k = ln(τ) +

j∗+k∑
i=1

σiY , (7)

σj
∗+k+1
Y ≤ tj∗+k < σj

∗+k
Y . (8)

Expanding on the right side of (7), we have

ln(τ) +

j∗+k∑
i=1

σiY ≥ ln(τ) +

j∗∑
i=1

σiY + kσj
∗+k
Y

= ln(tj∗) + j∗tj∗ + kσj
∗+k
Y ≥ ln(σj

∗+k
Y ) + (j∗ + k)σj

∗+k
Y

where the first inequality follows from the decreasing val-
ues of the singular values, the equality follows from that
tj∗ satisfies (5) and the last inequality follows from that
tj∗ ≥ σj

∗+1
Y ≥ σj

∗+k
Y due to (6). Hence we have

ln(tj∗+k)+(j∗+k)tj∗+k ≥ ln(σj
∗+k
Y )+(j∗+k)σj

∗+k
Y (9)

by (7).
Since the function f(t) = ln(t) +mt is a strictly increas-

ing function for positive m, (9) implies that tj∗+k ≥ σj
∗+k
Y .

However, this contradicts with the second assumption in (8),
establishing that such a k does not exist.

Next, we prove that J is indeed not empty.
First, we note that by monotonicity of f(t) = ln(t) +mt,

a unique solution exists for ln(t) + jt = ln(τ) +
∑j
i=1 σ

i
Y ,
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for each j satisfying 1 ≤ j ≤ r. We denote by tj the unique
solution corresponding to each j. Hence, it suffices to show
at least one tj satisfies σj+1

Y ≤ tj < σjY .
Again by monotonicity of f(t) = ln(t) + mt, it is easily

seen that τ < σ1
Y if and only if t1 < σ1

Y . Hence, by assump-
tion of the lemma, we have t1 < σ1

Y . Now suppose it also
holds that σ2

Y ≤ t1, then we are done. Otherwise, we have
t1 < σ2

Y . Under this assumption, we claim that t1 < t2 and
t2 < σ2

Y . This is readily verified by the following inequali-
ties.

ln(t2) + 2t2 = ln(τ) + σ1
Y + σ2

Y (10)

= ln(t1) + t1 + σ2
Y > ln(t1) + 2t1, (11)

which implies that t2 > t1. On the other hand, we also have

ln(t2) + 2t2 = ln(t1) + t1 + σ2
Y < ln(σ2

Y ) + 2σ2
Y , (12)

which implies that t2 < σ2
Y . If t2 ≥ σ3

Y , then the claim is
established. If not, we can repeat this process inductively.
More formally, suppose we have just finished the j-th itera-
tion (note that the induction basis j = 1 is already verified)
and we have tj < σjY . If it also holds that tj ≥ σj+1

Y , then
the claim follows. If not, then

ln(tj+1) + (j + 1)tj+1 = ln(τ) +

j+1∑
i=1

σiY

= ln(tj) + jtj + σj+1
Y > ln(tj) + (j + 1)tj ,

which implies that tj+1 > tj . On the other hand, we also
have

ln(tj+1) + (j + 1)tj+1 = ln(tj) + jtj + σj+1
Y

< ln(σj+1
Y ) + (j + 1)σj+1

Y ,

which implies that tj+1 < σj+1
Y .

Thus, we have a strictly increasing sequence {tj} with
tj < σiY . If it holds that σj+1

Y ≤ tj < σjY at some iteration j,
then such a j certifies that J is not empty. If σj+1

Y ≤ tj < σjY
never holds for j up to r − 1, then it must hold for j = r,
since −∞ = σr+1

Y ≤ tr < σrY , also certifying that J is not
empty.

Remark 1. The above proof suggests a sequential search
through all j’s to find such a j that satisfies the constraints.
However, a sequential search is inefficient especially if such
systems need to be solved a large number of times for dif-
ferent τ ’s and Y ’s. It turns out binary search can be used to
improve the efficiency of the search. The algorithm is given
in Algorithm 1, followed by the proof of its correctness.

Note that the step “Compute tM” can be easily done very
efficiently by numerically solving ln(x) + Mx = ln(τ) +∑M
i=1 σ

i
Y to an arbitrary precision. Next, we give the proof

of the algorithm’s correctness.

Proof. From the first part of proof for Lemma 1, we know
that if j∗ is the unique j guaranteed by Lemma 1, then for
all k > j∗, we have tk ≥ σkY . Thus, if tM < σMY , then we

Algorithm 1 Hybrid Threshold Computation
Input: Y , τ
Compute {σi

Y }1≤i≤r

if τ ≥ σ1
Y then

RETURN σ1
Y .

end if
Initialize L = 1, R = r,
while L ≤ R do
M = dL+R

2
e.

Compute tM .
if tM < σM

Y then
if σM+1

Y ≤ tM then
RETURN tM and M .

end if
if σM+1

Y > tM then
L =M .
CONTINUE

end if
end if
if tM ≥ σM

Y then
R =M .
CONTINUE

end if
end while

know that j∗ cannot be less than M. That is, j∗ must be in
the second half of the unsearched space.

Conversely, if we hypothetically do a sequential search,
then it follows immediately from the second part of proof
of Lemma 1 that before j reaches j∗, tM < σMY must hold.
This establishes that if in the while loop we encounter tM ≥
σMY , then it must be the case that j∗ ≤ M . That is, j∗ must
lie in the first part of the unsearched space.

It then follows that j∗ always lies between L and R, es-
tablishing that while loop will eventually halt, returning tj∗
and j∗.

We now proceed to define a hybrid thresholding operator
Hτ :

Definition 1. Given a τ > 0, the hybrid thresholding oper-
atorHτ is define to be:

Hτ (Y ) = UDtj∗ (Σ)V ∗, Y = UΣV ∗ ∈ Rn1×n2 ,

where tj∗ is the threshold computed by Algorithm 1.

Lemma 1 guarantees that Hτ is well-defined and Algo-
rithm 1 guarantees thatHτ is efficiently computable. Having
defined Hτ , we are ready to state our main result promised
at the beginning of the section.

Theorem 1. Given a τ > 0 and a Y ∈ Rn1×n2 , we have:

Hτ (Y ) = arg min
X
{τe‖X‖∗ +

1

2
‖X − Y ‖2F }.

Remark 2. The proof is rather lengthy and hence omitted
due to space limitation. However, in what follows, we give a
rough proof sketch as a guideline.

First, note that the function h(X) = τe‖X‖∗ + 1
2‖X −

Y ‖2F is strictly convex, and hence the minimizer X̂ to h(X)
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is unique and it suffices to show that Hτ (Y ) is one mini-
mizer. One can check that if there exists such a W satisfying
U∗
X̂
W = 0,WVX̂ = 0, ‖W‖2 ≤ 1 such that:

Y − X̂ = τe‖X̂‖∗(UX̂V
∗
X̂

+W ), (13)

(where UX̂ and VX̂ are obtained from the SVD of X̂), then
X̂ is a minimizer (hence the unique minimizer) to h(X). Fi-
nally, one can show that with X̂ = Hτ (Y ), Eq. (13) does
hold, with W satisfying the given constraints.

Optimization Algorithm
Although the problem in (4) is convex, it is still difficult to
solve due to the interdependent nuclear norm terms. To re-
move these interdependencies and optimize these terms in-
dependently, we may introduce a set of auxiliary matrices
{Mi, i = 1, 2, . . . ,m} to replace {X(i), i = 1, 2, . . . ,m},
and the optimization problem changes to

min
X ,Mi

m∑
i=1

e‖Mi‖∗ , s.t. XΩ = TΩ, X(i) = Mi,∀i. (14)

To relax the above equality constraints, we apply the Aug-
mented Lagrange Multiplier (ALM) method (Lin, Chen, and
Ma 2010), and obtain the following augmented Lagrangian
function:
fµ(Mi, X(i), Qi) =
m∑
i=1

(e‖Mi‖∗ + 〈Qi, X(i) −Mi〉+
µi
2
‖X(i) −Mi‖2F ). (15)

In fµ(Mi, X(i), Qi), there are several terms need to be opti-
mized. To optimize these terms in a separated way, we adopt
the alternating direction method (ADM) (Lin, Chen, and
Ma 2010), which is effective to solve optimization problems
with multiple terms. According to the framework of ADM,
the above optimization problem can be iteratively solved as
follows.

Mk+1
i : = arg min

Mi

fµ(Mi, X
k
(i), Q

k
i ),∀i;

Xk+1
(i) : = arg min

X(i)

fµ(Mk+1
i , X(i), Q

k
i ),∀i;

Qk+1
i : = Qki + µi(X

k+1
(i) −M

k+1
i ), ∀i.

(16)

In detail, the solutions of each term are obtained as follows.
• For term Mk+1

i :

argmin
Mi

k∑
i=1

(e‖Mi‖∗ + 〈Qk
i , X

k
(i)−Mi〉+

µi

2
‖Xk

(i)−Mi‖2F ),

Since {Mi, i = 1, 2, . . . , k} are independent, so the
above problem can be simplified as follows,

arg min
Mi

e‖Mi‖∗ + 〈Qki , Xk
(i) −Mi〉+

µi
2
‖Xk

(i) −Mi‖2F ,

= arg min
Mi

1

µi
e‖Mi‖∗ +

1

2
‖Xk

(i) +
1

µi
Qki −Mi‖2F

According to the hybrid thresholding scheme, the optimal
solution of Mi is given by

Mk+1
i = Hτ (Y ),

where Y = Xk
(i) + 1

µi
Qki and τ = 1

µi
.

• For term Xk+1
(i) :

arg min
X

k∑
i=1

(
〈Qki , Xk

(i) −Mi〉+
µi
2
‖Xk

(i) −Mi‖2F
)
,

= arg min
X

k∑
i=1

µi
2
‖X(i) +

1

µi
Qki −Mk+1

i ‖2F .

Together with the equality constraint XΩ = TΩ, the opti-
mal solution of X can be obtained as follows.

XΩ̄ =

∑
i µi

(
foldi(M

k+1
i − 1

µi
Qki )

)
Ω̄∑

i µi

• For term Qk+1
i :

Qk+1
i = Qki + µi(X

k+1
(i) −M

k+1
i ).

Experimental Evaluation
To validate the effectiveness of the proposed tensor comple-
tion algorithm, we conduct two comparison experiments as
follows: (1) the proposed metric versus tensor nuclear norm;
(2) the proposed metric versus matrix nuclear norm. All the
experiments are conducted with MATLAB on a platform
with Pentium IV 3.2GHz CPU and 1G memory.

Proposed Metric vs Tensor Nuclear Norm
In this section, we compare the proposed metric with the
tensor nuclear norm adopted in (Liu et al. 2013), and all
the algorithms in their work are used for comparison. These
algorithms are referred to as SiLRTC (simple low-rank ten-
sor completion), FaLRTC (fast low-rank tensor completion),
and HaLRTC (high accuracy low-rank tensor completion).

We first randomly generate a pure low-rank tensor Lo ∈
R50×50×50 whose Tucker rank (defined in the introduction)
is (2,2,2) (the same set is adopted in (Liu et al. 2013)), and
then we sample a fraction c of elements in Lo as the obser-
vations while the rest elements are missing. Here, Ω is the
set of observed elements and Ω̄ represents the set of missing
entries. All the above algorithms are applied to recover the
low-rank structure of Lo from the observed elements, which
is represented as Lr. Therefore, the reconstruction error is
defined as error = ‖Lo−Lr‖F

‖Lo‖F . The result of a single run is a
random variable, because the data are randomly generated,
so the experiment is repeated 50 times to generate statistical
averages.

Fig. 1(a) shows the reconstruction error of all the algo-
rithms when the observed elements changes from 1% to
30%, from which we can see that our method achieves the
highest accuracy of reconstruction among all the algorithms.
For SiLRTC, FaLRTC and HaLRTC, if the weight parame-
ters are not properly chosen1, the performance of the other
three algorithms will be worse.

To show the influence of the tensor rank on the perfor-
mance, this part investigates the sensitivity of the algorithm

1In our experiment, we choose the parameters with the best per-
formance.
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Figure 1: (a),(c): reconstruction errors versus sampling rate c for different tensor completion methods; (b)(d): reconstruction
errors versus tensor rank for different tensor completion methods.

to changes of this factor. Fig. 1(b) shows the reconstruction
error curve using different rank numbers (take c = 20% as
an example). We can see that the performance of all algo-
rithms degrades when the tensor rank increases. According
to the theoretical results in (Candès and Recht 2009), the
degradation of performance is inevitable because we need to
observe more elements to recover the tensor structure when
the tensor rank increases. However, our method always ob-
tains better results than the other three algorithms.
Proposed Metric vs Matrix Norm
As a baseline, we compare the proposed metric to the ma-
trix norm. Here, two kinds of matrix norm are chosen for
comparison: (1) Traditional matrix nuclear norm (Tomioka,
Hayashi, and Kashima 2010). We can convert the tensor
completion problem into a matrix completion problem by
unfolding the tensor in the kth mode, and solve the ma-
trix completion problem with the traditional matrix nuclear
norm. To make this norm more competitive, we perform ma-
trix completion on each mode of the tensor and take the
mode that has the minimal reconstruction error. (2) Square
matrix nuclear norm (Mu et al. 2013). Mu et al. defined a
new unfolding operator which can generate a balanced ma-
trix, and then define the nuclear norm on that matrix. In their
work, they claim that the square norm can achieve better per-
formance than the traditional tensor nuclear norm (Liu et al.
2013).

Since the square matrix nuclear norm can only work well
on the 4-order or higher tensor, we generate a low-rank ten-
sor Lo ∈ R30×30×30×30 with Tucker rank (2,2,2,2) (the
same set is adopted in (Mu et al. 2013)). Other settings are
the same as that in Section ‘Proposed Metric vs Tensor Nu-
clear Norm’. Fig. 1(c) and Fig. 1(d) show the reconstruction
errors when c and the tensor rank changes, respectively. The
results show that the proposed metric can recover the low-
rank tensor more accurately than the other two norms.

Conclusion
We have considered the low-rank tensor completion problem
in this paper. We have shown that minimizing the maximum
rank of all unfolding matrices of a tensor is a feasible thing
to do in the following sense: Firstly, there exists a convex
surrogate for this goal based on log sum of exponentials of
nuclear norms. Secondly, this convex objective function al-
lows an efficiently computable proximal operator. The prox-
imal operator can be computed through a hybrid singular

value thresholding scheme which has some rather interesting
properties. Through extensive comparison, we have demon-
strated the effectiveness of this new surrogate for complet-
ing low-rank tensors over existing methods. As future work,
it would be interesting both to identify new problems that
can leverage the hybrid thresholding scheme and to study
the other norms or metrics whose proximal operator can be
better dealt with in a similar hybrid thresholding framework.
Another line of future work can be theoretically understand-
ing the exact recovery conditions for tensor completion. In
addition, it would also be interesting to look for other char-
acterizations of tensor rank that can model useful structures
of tensorial data.
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