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Abstract

This paper presents a direct semantic analysis method
for learning the correlation matrix between visual and
textual words from socially tagged images. In the lit-
erature, to improve the traditional visual bag-of-words
(BOW) representation, latent semantic analysis has
been studied extensively for learning a compact visual
representation, where each visual word may be related
to multiple latent topics. However, these latent topics
do not convey any true semantic information which can
be understood by human. In fact, it remains a challeng-
ing problem how to recover the relationships between
visual and textual words. Motivated by the recent ad-
vances in dealing with socially tagged images, we de-
velop a direct semantic analysis method which can ex-
plicitly learn the correlation matrix between visual and
textual words for social image classification. To this
end, we formulate our direct semantic analysis from a
graph-based learning viewpoint. Once the correlation
matrix is learnt, we can readily first obtain a semanti-
cally refined visual BOW representation and then apply
it to social image classification. Experimental results on
two benchmark image datasets show the promising per-
formance of the proposed method.

Introduction
In image analysis and computer vision, the visual bag-
of-words (BOW) representation has been widely applied
to different challenging tasks such as image classification
and annotation. Especially for image classification, many
encouraging results (Lazebnik, Schmid, and Ponce 2006;
Moosmann, Nowak, and Jurie 2008; Li et al. 2008; Guillau-
min, Verbeek, and Schmid 2010; Stottinger et al. 2012) have
been reported in the literature. However, as shown in previ-
ous work (Mallapragada, Jin, and Jain 2010; Ji et al. 2009;
Liu, Yang, and Shah 2009; Lu and Peng 2011), the tradi-
tional visual BOW representation still suffers from the so-
called semantic gap. That is, for efficiency purposes, the vi-
sual words (which play an important role in visual BOW rep-
resentation) are commonly generated by directly quantizing
the local visual descriptors extracted from images, without
considering the high-level semantics of images.
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Figure 1: Illustration of the difference between our direct
semantic analysis (DSA) and two representative methods for
multi-modal data analysis.

To improve the traditional visual BOW representation,
many approaches to latent semantic analysis (Quelhas et al.
2005; Bosch, Zisserman, and Muñoz 2006; Fei-Fei and Per-
ona 2005; Cao and Fei-Fei 2007) have been developed based
on topic models such as probabilistic latent semantic analy-
sis (pLSA) (Hofmann 2001) and latent Dirichlet allocation
(LDA) (Blei, Ng, and Jordan 2003). A mixture of latent top-
ics is used to model each image, and the latent topics are
learnt by these approaches as multinomial distributions of
visual words. Hence, each visual word may be related to
multiple latent topics. However, the learnt latent topics do
not convey any true semantic information which can be un-
derstood by human. This is also the reason why these ap-
proaches are called as “latent semantic analysis”. In fact, it
remains a challenging problem how to relate visual words to
the high-level semantics in the literature.

Fortunately, with the burgeoning growth of shared im-
ages over online social networks, the aforementioned prob-
lem become less difficult to handle. That is, the tags of
shared images provided by users can be regarded as the
high-level semantics (or textual words) to be related to
visual words. In this paper, motivated by the recent ad-
vances in dealing with these socially tagged images, we
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Figure 2: The flowchart of our direct semantic analysis (DSA) for learning the correlation matrix between visual and textual
words from socially tagged images.

develop a direct semantic analysis (DSA) method which
can explicitly learn the correlation matrix between visual
and textual words for social image classification. The ba-
sic idea is to formulate the problem of learning the correla-
tion matrix between visual and textual words from a graph-
based learning viewpoint. We define Laplacian regulariza-
tion (Zhu, Ghahramani, and Lafferty 2003; Zhou et al. 2004;
Fu et al. 2011) over the textual words (i.e. social tags) of im-
ages and add this regularization term into the objective func-
tion of graph-based learning. Due to the special definition
of Laplacian regularization, our new DSA problem can be
solved efficiently based on the label propagation technique
proposed in (Zhou et al. 2004). Besides learning the corre-
lation matrix between visual and textual words, we also pay
much attention to dealing with the noise issue caused by the
inaccurate quantization and the nosily socially tagging in so-
cial image classification. Although image annotation based
on relevance models (Jeon, Lavrenko, and Manmatha 2003;
Feng, Manmatha, and Lavrenko 2004) can similarly learn
the relationships between image regions and textual words,
the tags of images are required to be exactly correct and this
approach is not suitable for nosily socially tagged images.

When the visual BOW representation and the social tag
information are considered as two modalities of images,
our direct semantic analysis actually belongs to multi-modal
data analysis. However, our present work is distinctly dif-
ferent from previous work on multi-modal data analysis. In
(Rasiwasia et al. 2010), the two modalities of images are
mapped into two latent spaces of the same dimension by
canonical correlation analysis (CCA) (Hotelling 1936) so
that the correlation matrix can be estimated by the product
operation across the two latent spaces. In (Chandrika and
Jawahar 2010), the two modalities of images are mapped
into the same latent space by multi-modal pLSA (MM-
pLSA). In contrast, our direct semantic analysis can map
one modality into another modality without using any la-
tent space, which makes it convenient not only to learn the
correlation matrix but also to deal with the noise issue. The
difference between our direct semantic analysis and these
two representative methods is also illustrated in Figure 1.

In summary, we propose a direct semantic analysis (DSA)
method for learning the correlation matrix between visual
and textual words from socially tagged images, as illus-
trated in Figure 2. Once the correlation matrix between vi-
sual and textual words is learnt, we can readily first obtain

a semantically refined visual BOW representation and then
apply it to social image classification. Here, it is worth not-
ing that our DSA method is efficient even for large image
datasets. More notably, when the global visual features are
fused for social image classification, our DSA method can
achieve very impressive results on the PASCAL VOC’07
(Everingham et al. 2007) and MIR FLICKR (Huiskes and
Lew 2008) benchmark datasets, as shown in our later ex-
periments. Although only evaluated in social image classi-
fication, our DSA method can be readily extended to other
challenging tasks such as semantic image segmentation.

The remainder of this paper is organized as follows.
In Section 2, we develop a novel direct semantic analysis
(DSA) method for learning the correlation matrix between
visual and textual words from a graph-based learning view-
point. In Section 3, the semantically refined visual BOW
representation is evaluated on two benchmark datasets by
applying it to social image classification. Finally, Section 4
gives the conclusions drawn from our experimental results.

Direct Semantic Analysis
This section presents direct semantic analysis (DSA) in de-
tail. We first give our problem formulation for learning the
correlation matrix between visual and textual words from a
graph-based learning viewpoint, and then develop an effi-
cient DSA algorithm based on the label propagation tech-
nique (Zhou et al. 2004). Finally, we discuss the out-of-
sample extension and illustrative explanation of our DSA.

Problem Formulation
In this paper, our goal is to learn the correlation matrix
between visual and textual words from social tagged im-
ages. To this end, we need to first generate the visual and
textual BOW representation for each social tagged image.
More concretely, the visual BOW representation is formed
by quantizing local visual descriptors extracted from im-
ages, while the textual BOW representation is derived from
the social tags of images. Due to the inaccurate quantization
and the nosily socially tagging, both visual and textual BOW
representation suffer from the noise issue. Hence, the main
challenge in learning the correlation matrix between visual
and textual words is actually how to deal with the noise is-
sue. In the following, our problem formulation is elaborated
from a graph-based learning viewpoint.
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Let Y ∈ RM×N denote the visual BOW representation
and X ∈ RK×N denote the textual BOW representation,
where N is the number of images, M is the number of vi-
sual words, and K is the number of textual words. We com-
pute the kernel matrix A ∈ RN×N over the textual BOW
representation X . In this paper, we only consider linear ker-
nel for the textual BOW representation. By directly using
A as the affinity matrix, we construct an undirected graph
G = {V, A} with its vertex set V being the set of images.
The normalized Laplacian matrix of G is given by

L = I −D−1/2AD−1/2, (1)
where I is an identity matrix andD is a diagonal matrix with
its i-th diagonal entry being the sum of the i-th row of A.

Based on the above notations, the problem of learning the
correlation matrix between visual and textual words can be
formulated from a graph-based learning viewpoint:

min
W,X̂,Ŷ

1

2
||Ŷ −WX̂||2F +

λ

2
tr(WX̂LX̂TWT )

+γ||Ŷ − Y ||1, (2)
where W ∈ RM×K denotes the correlation matrix between
visual and textual words, X̂ ∈ RK×N denotes the ideal tex-
tual BOW representation, Ŷ ∈ RM×N denotes the ideal vi-
sual BOW representation, λ and γ denote the positive regu-
larization parameters, and tr(·) denotes the trace of a matrix.
It should be noted that although our goal is to find the corre-
lation matrixW between visual and textual words, X̂ and Ŷ
are also optimized since both original X and Y suffer from
the noise issue. That is, we expect to find optimal W by si-
multaneously dealing with the noise issue associated with
X and Y . Moreover, considering that the correlation matrix
W can be found directly, solving Eq. (2) is called as direct
semantic analysis (DSA) in this paper.

The objective function given by Eq. (2) is further dis-
cussed as follows. The first term denotes the Frobenius-
norm fitting constraint, which means that WX̂ should not
change too much from Ŷ . The second term denotes the
smoothness constraint, also known as Laplacian regular-
ization (Zhu, Ghahramani, and Lafferty 2003; Zhou et al.
2004; Fu et al. 2011), which means that WX̂ should not
change too much between similar images. The third term
denotes the L1-norm fitting constraint, which can impose
direct noise reduction on the original Y due to the nice
property of L1-norm optimization (Elad and Aharon 2006;
Mairal, Elad, and Sapiro 2008; Wright et al. 2009). Here,
besides the ideal textual BOW representation X̂ , we also
introduce the ideal visual BOW representation Ŷ into our
problem formulation. Our main motivation is to impose di-
rect noise reduction on Y by extra consideration of the L1-
norm fitting constraint ||Ŷ − Y ||1. Although this L1-norm
fitting constraint is only defined with respect to Ŷ , the effect
of noise reduction can be transferred to WX̂ by solving Eq.
(2) with Ŷ being an intermediate representation.

To apply our DSA to large image datasets, we have to
concern the following key problem: how to solve Eq. (2) ef-
ficiently. Fortunately, due to the special definition of Lapla-
cian regularization in Eq. (2), the problem of learning the

correlation matrix W can be solved efficiently using the la-
bel propagation technique (Zhou et al. 2004) based on k-
nearest neighbors (k-NN) graph constructed with the textual
BOW representation. The proposed efficient DSA algorithm
will be elaborated in the next subsection.

Efficient DSA Algorithm
In fact, the DSA problem (2) can be solved in two alternate
optimization steps as follows:

W ∗, X̂∗ = argmin
W,X̂

1

2
||Ŷ ∗ −WX̂||2F +

λ

2
tr(WX̂LX̂TWT ),

Ŷ ∗ = argmin
Ŷ

1

2
||Ŷ −W ∗X̂∗||2F + γ||Ŷ − Y ||1.

Here, we set X̂∗ = X and Ŷ ∗ = Y initially. Concretely,
as a basic L1-norm optimization problem, the second sub-
problem has an explicit solution based on the following soft-
thresholding function:

Ŷ ∗ = soft(W ∗X̂∗ − Y, γ) + Y, (3)

where soft(y, γ) = sign(y)max{|y| − γ, 0}. In the follow-
ing, we focus on developing an efficient algorithm to solve
the first quadratic optimization subproblem.

LetQ(W, X̂) = 1
2 ||Ŷ

∗−WX̂||2F + λ
2 tr(WX̂LX̂TWT ).

We can still adopt the alternate optimization technique for
the first subproblem minW,X̂ Q(W, X̂): 1) fix X̂ = X̂∗, and
updateW byW ∗ = argminW Q(W, X̂∗); 2) fixW =W ∗,
and update X̂ by X̂∗ = argminX̂ Q(W ∗, X̂).
Updating W : When X̂ is fixed at X̂∗, the solution of
minW Q(W, X̂∗) can be found by solving

∂Q(W, X̂∗)

∂W
= (WX̂∗ − Ŷ ∗)(X̂∗)T + λWX̂∗L(X̂∗)T = 0,

which can be further transformed into

W (X̂∗(I + λL)(X̂∗)T ) = Ŷ ∗(X̂∗)T . (4)

Since X̂∗(I + λL)(X̂∗)T ∈ RK×K and K � min(N,M),
the above linear equation can be solved very efficiently.
Updating X̂: When W is fixed at W ∗, the solution of
minX̂ Q(W ∗, X̂) can be found by solving

∂Q(W ∗, X̂)

∂X̂
=W ∗T (W ∗X̂ − Ŷ ∗) + λW ∗TW ∗X̂L = 0,

which is actually equivalent to

W ∗TW ∗X̂(I + λL) =W ∗T Ŷ ∗. (5)

Let F (X̂) =W ∗TW ∗X̂ . Since I+λL is a positive definite
matrix, the above linear equation has an analytical solution:

F ∗(X̂) =W ∗T Ŷ ∗(I + λL)−1. (6)

However, this analytical solution is not efficient for large
image datasets, since matrix inverse has a time complexity
of O(N3). Fortunately, this solution can also be efficiently
found using the label propagation technique proposed in
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(Zhou et al. 2004) based on k-NN graph. Finally, the so-
lution of minX̂ Q(W ∗, X̂) is found by solving:

(W ∗TW ∗)X̂ = F ∗(X̂). (7)

Since W ∗TW ∗ ∈ RK×K and K � min(N,M), the above
linear equation can be solved very efficiently.

The complete DSA algorithm is outlined as follows:

(1) Construct a k-NN graph with its affinity matrix A being
defined over the textual BOW representation X;

(2) Compute the normalized Laplacian matrix L = I −
D− 1

2AD− 1
2 according to Eq. (1);

(3) Initialize the deal textual and visual BOW representa-
tion as X̂∗ = X and Ŷ ∗ = Y , respectively;

(4) Find the best solution W ∗ by solving W (X̂∗(I +
α

1−αL)(X̂
∗)T ) = Ŷ ∗(X̂∗)T , which is exactly Eq. (4)

with α = λ/(1 + λ) ∈ (0, 1);

(5) Iterate Ft+1(X̂) = αFt(X̂)(I − L) + (1− α)W ∗T Ŷ ∗

until convergence, where a solution can thus be found just
the same as Eq. (6) with α = λ/(1 + λ) (see more expla-
nation below);

(6) Find the best solution X̂∗ by solving Eq. (7):
(W ∗TW ∗)X̂ = F ∗(X̂), where F ∗(X̂) denotes the limit
of the sequence {Ft(X̂)};

(7) Iterate Steps (4)–(6) until the stopping condition is sat-
isfied, and update the deal visual BOW representation as:
Ŷ ∗ = soft(W ∗X̂∗ − Y, γ) + Y ;

(8) Iterate Steps (4)–(7) until the stopping condition is satis-
fied, and output the final semantically refined visual BOW
representation Ŷ ∗.

Similar to the convergence analysis in (Zhou et al. 2004),
the iteration in Step (5) converges to F ∗(X̂) =W ∗T Ŷ ∗(1−
α)(I − α(I − L))−1, which is equal to the solution given
by Eq. (6) with α = λ/(1 + λ). Moreover, in our later
experiments, we find that the iterations in Steps (5) , (7),
and (8) generally converge in very limited number of itera-
tion steps (<10). Finally, since the time complexity of Steps
(4-7) is respectively O(K2M +KMN +K2N + kKN),
O(KMN + kKN), O(K2M + K2N), and O(KMN)
(k,K � min(N,M)), the proposed DSA algorithm can be
applied to large image datasets.

Out-of-Sample Extension
In this subsection, we discuss the out-of-sample extension
issue. In fact, since we have found the best correlated matrix
W ∗ ∈ RM×K , our DSA algorithm can readily deal with this
issue when a new image is coming. Let y ∈ RM×1 be the vi-
sual BOW representation of this new image. The problem of
learning the semantically refined visual BOW representation
for this new image can be formulated as follows:

min
x̂,ŷ

1

2
||ŷ −W ∗x̂||2 + γ||ŷ − y||1, (8)

Car
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textual word
Image patches of visual word
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Figure 3: Illustration of the mostly correlated textual words
found by our DSA for several examples of visual words,
where each visual word is denoted by image patches.

where x̂ ∈ RK×1 and ŷ ∈ RM×1 denote the ideal tex-
tual and visual BOW representation of this new image. The
above problem can be solved by alternate optimization:

x̂∗ = argmin
x̂

1

2
||ŷ∗ −W ∗x̂|2,

ŷ∗ = argmin
ŷ

1

2
||ŷ −W ∗x̂∗||2 + γ||ŷ − y||1.

Here, we set ŷ∗ = y initially. The first subproblem can
be solved by the standard quadratic optimization technique,
while the second subproblem has an explicit solution:

ŷ∗ = soft(W ∗x̂∗ − y, γ) + y, (9)
where soft(y, γ) = sign(y)max{|y| − γ, 0}. Since both of
the above two subproblems are solved at a linear time cost
with respect to M , we can learn the semantically refined vi-
sual representation for the new image very efficiently.

Discussion
As we have mentioned in the introduction, the traditional
latent semantic analysis (Quelhas et al. 2005; Bosch, Zisser-
man, and Muñoz 2006; Fei-Fei and Perona 2005; Cao and
Fei-Fei 2007) can only relate visual words to latent topics
which convey no true semantic information, while our di-
rect semantic analysis (DSA) can learn the correlation ma-
trix between visual and textual words explicitly. To make
this clearer, we show the mostly correlated textual words
found by our DSA for several examples of visual words in
Figure 3. Here, the experiment is conducted on a subset of
the PASCAL VOC’07 dataset (Everingham et al. 2007), and
each example of visual word is denoted by a set of image
patches. We can observe that the mostly correlated textual
word found by our DSA is consistent with what we should
understand each visual word as it really is. This means that
the correlation matrix between visual and textual words has
been effectively learnt by our DSA from socially tagged im-
ages. To end this section, we want to emphasize that the ex-
perimental results illustrated in Figure 3 actually pave the
way to apply our DSA to the challenging task of semantic
image segmentation, since each image patch has been ex-
plicitly attached with a textual word.
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Figure 4: The cross-validation classification results using the semantically refined visual BOW representations learnt by our
DSA algorithm on the training set of the PASCAL VOC’07 dataset.

Experimental Results
In this section, the proposed DSA algorithm is evaluated in
social image classification on two benchmark datasets. We
first describe the experimental setup, including information
of the two benchmark datasets and the implementation de-
tails. Moreover, our DSA algorithm is compared with other
closely related methods on the two benchmark datasets.

Experimental Setup
We select two benchmark datasets for performance evalua-
tion. The first dataset is PASCAL VOC’07 (Everingham et
al. 2007) that contains around 10,000 images. Each image is
annotated by users with a set of tags, and the total number
of tags used here is reduced to 804 by the same preprocess-
ing step as (Guillaumin, Verbeek, and Schmid 2010). This
dataset is organized into 20 classes. Moreover, the second
dataset is MIR FLICKR (Huiskes and Lew 2008) that con-
tains 25,000 images annotated with 457 tags. This dataset is
organized into 38 classes. For the PASCAL VOC’07 dataset,
we use the standard training/test split, while for the MIR
FLICKR dataset we split it into 12,500 training/test images
just as (Guillaumin, Verbeek, and Schmid 2010).

For each dataset, we extract the same feature set as (Guil-
laumin, Verbeek, and Schmid 2010). That is, we use local
SIFT features and local hue histograms, both computed on
a dense regular grid and on regions found with a Harris
interest-point detector. We quantize the four types of local
descriptors using k-means clustering, and represent each im-
age using four visual word histograms. Moreover, following
the idea of (Lazebnik, Schmid, and Ponce 2006), each visual
BOW representation is also computed over a 3×1 horizontal
decomposition of the image, and concatenated to form a new
representation that encodes some of the spatial layout of the
image. Finally, by concatenating all the visual BOW repre-
sentations into a single representation, we generate a large
visual vocabulary of about 10,000 visual words exactly the
same as (Guillaumin, Verbeek, and Schmid 2010).

To evaluate the semantically refined visual BOW repre-
sentation learnt by our DSA algorithm, we apply it directly
to social image classification using SVM with χ2 kernel.
Since we actually perform multi-label classification on the
two benchmark datasets, the classification results are mea-
sured by mean average precision (MAP) just the same as
(Guillaumin, Verbeek, and Schmid 2010). In the following,

we compare our DSA algorithm with three closely related
methods: CCA (Rasiwasia et al. 2010), MM-pLSA (Chan-
drika and Jawahar 2010), and standard pLSA over the con-
catenation of visual and textual BOW representation. Al-
though there exist other multi-modal pLSA methods such as
(Lienhart, Romberg, and Hörster 2009), we only make com-
parison to MM-pLSA which has been shown to have superior
performance in (Chandrika and Jawahar 2010).

In the experiments, the parameters of our DSA algorithm
are selected by cross-validation on the training set. For ex-
ample, according to Figure 4, we set the three parameters
of our DSA algorithm on the PASCAL VOC’07 dataset as:
k = 25, α = 0.94 and γ = 0.00012 (which appear in
Steps 1, 4 (or 5), 7 of our DSA algorithm proposed in Sec-
tion 2, respectively). The same parameter selection strategy
is adopted by other closely related methods.

Classification Results
We first show the comparison between different BOW rep-
resentations on the two benchmark datasets in Figure 5(a).
The immediate observation is that the semantically refined
visual BOW representation learnt by our DSA algorithm sig-
nificantly outperforms the original visual BOW representa-
tion. That is, the social tags of images have been effectively
added to the refined visual BOW representation and thus
the semantic gap associated with the original visual BOW
representation has been reduced effectively. More notably,
our semantically refined visual BOW representation is even
shown to achieve more than 39% gains over the original
textual BOW representation on both of the two benchmark
datasets. The significant gains over the original visual and
textual BOW representation are due to the fact that our DSA
algorithm can deal with the noise issue associated with these
two types of BOW representations during learning the se-
mantically refined visual BOW representation.

The comparison between different methods for learning
semantically refined visual BOW representation is further
shown in Figure 5(b). Here, our DSA method do not use any
latent space for learning semantically refined visual BOW
representation, while the other three methods all consider
one or more latent spaces. From Figure 5(b), we find that our
DSA method obviously outperforms the other three methods
in the challenging task of social image classification. These
impressive results mean that directly learning the mapping
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Figure 5: The test classification results using semantically refined visual BOW representations on the two benchmark datasets:
(a) comparison between different BOW representations; (b) comparison between different methods.

Table 1: Comparison of our DSA method with the state-of-
the-art on the two benchmark datasets (LVF: local visual fea-
tures; GVF: global visual features).

Methods LVF GVF Tags VOC MIR
Winner yes yes no 0.594 –

(Guillaumin et al. 2010) yes yes yes 0.667 0.623
Ours (LVF only) yes no yes 0.675 0.600

Ours (LVF+GVF) yes yes yes 0.701 0.646

between visual and textual BOW representation by our DSA
method is more suitable for social image classification than
those methods that make use of latent spaces. More impor-
tantly, without using any latent space, our DSA method can
readily deal with the noise issue associated with the original
visual and textual BOW representation, which is especially
crucial for social image classification.

The comparison of our DSA method with the state-of-the-
art on the two benchmark datasets is shown in Table 1. To
the best of our knowledge, the recent work (Guillaumin, Ver-
beek, and Schmid 2010) has reported the best results so far
for social image classification on the PASCAL VOC’07 and
MIR FLICKR datasets. However, when the semantically re-
fined visual BOW representation (i.e. local visual features)
obtained by our method is fused with the global visual fea-
tures (i.e. color histogram and GIST descriptor (Oliva and
Torralba 2001)), our method is shown to achieve better re-
sults than (Guillaumin, Verbeek, and Schmid 2010) on both
benchmark datasets. This becomes more impressive given
that the present work makes use of much weaker global vi-
sual features than (Guillaumin, Verbeek, and Schmid 2010)
(i.e. two types vs. seven types). Moreover, since (Guillau-
min, Verbeek, and Schmid 2010) makes a direct fusion of
visual features and tag information, the gain achieved by
our method also means that our method outperforms direct
fusion. Finally, from Table 2, we observe that both (Guillau-
min, Verbeek, and Schmid 2010) and our method obviously
outperform the winner of PASCAL VOC’07 due to the ef-
fective use of extra tags for social image classification.

Table 2: The running time (minutes) of learning semanti-
cally refined visual BOW representation taken by different
methods on the MIR FLICKR dataset.

Methods DSA CCA MM-pLSA pLSA
Running time 5 1 83 62

Besides the above advantages, our DSA method has an-
other advantage, i.e., it runs very fast even on large datasets.
For example, the running time of learning semantically re-
fined visual BOW representation taken by different methods
on MIR FLICKR (N = 25, 000) is listed in Table 2. We
run the algorithms (Matlab code) on a computer with 3GHz
CPU and 32GB RAM. It can be observed that our DSA runs
much faster than MM-pLSA and pLSA, while CCA runs the
fastest without considering noise reduction.

Conclusions
In this paper, we have proposed novel direct semantic anal-
ysis for learning the correlation matrix between visual and
textual words from socially tagged images. To deal with the
noise issue associated with the original visual and textual
BOW representation, we have developed an efficient graph-
based learning algorithm for our direct semantic analysis.
The effectiveness of the proposed method has been veri-
fied by the extensive experimental results on two benchmark
datasets. More importantly, since our experimental results
have actually paved the way to apply the proposed method
to semantic image segmentation, we will pay much attention
to this challenging task in the future work.
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