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Abstract

Accurately measuring the aerosol optical depth (AOD)
is essential for our understanding of the climate. Cur-
rently, AOD can be measured by (i) satellite instru-
ments, which operate on a global scale but have limited
accuracies; and (ii) ground-based instruments, which
are more accurate but not widely available. Recent ap-
proaches focus on integrating measurements from these
two sources to complement each other. In this paper,
we further improve the prediction accuracy by using
the observation that the AOD varies slowly in the spa-
tial domain. Using a probabilistic approach, we im-
pose this smoothness constraint by a Gaussian random
field on the Earth’s surface, which can be considered as
a two-dimensional manifold. The proposed integration
approach is computationally simple, and experimental
results on both synthetic and real-world data sets show
that it significantly outperforms the state-of-the-art.

Introduction
Aerosols are fine solid airborne particles or liquid droplets
present throughout our environment. They possess different
forms, such as dust, haze, mist, smog and smokes. A good
understanding of the aerosol characteristics can enable us a
better understanding in the formation of clouds, rain drops,
snow flakes and ice crystals in the atmosphere. Besides,
aerosols are useful in predicting climatic effects (Watson et
al. 1990) and the estimation of air pollution such as PM2.5

(Wang and Christopher 2003). Aerosols also play a critical
role in the radiative forcing in the Earth’s atmosphere sys-
tem (Abdou et al. 2005). Moreover, aerosol properties have
a significant impact on industries such as manufacturing and
transport. Hence, not surprisingly, there have been a lot of
studies on aerosols in the past decades.

The distribution of aerosols is measured by the aerosol op-
tical depth (AOD), and can be assessed by different instru-
ments on-board satellites. For example, the Terra satellite
is equipped with the MODerate resolution Imaging Spec-
troradiometer (MODIS) and Multiangle Imaging Spectro-
Radiometer (MISR), the Aqua satellite is equipped with
MODIS, the Aura satellite with the Ozone Monitoring In-
strument (OMI), and SeaStar with the SEA-viewing Wide

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Field-of-view Sensor (SeaWiFS). These instruments vary in
their retrieval algorithms, coverage, sensor characteristics,
and thus also accuracies. As such, additional surface sen-
sors from the Aerosol Robotic Network (AERONET) are of-
ten needed for validation. While these ground-based instru-
ments have higher temporal and spectral resolutions, they
are unevenly distributed, with most being installed in North
America and Europe.

To have a better AOD estimate, one useful approach is
to integrate measurements from multiple satellite measure-
ments. For example, Mishchenko et al. (2010) average mea-
surements from the MODIS and MISR. Recently, Djuric,
Kansakar, and Vucetic (2013) aggregate both ground-based
and satellite instruments in a semi-supervised learning man-
ner. In particular, they use locations with both ground-based
and satellite AOD measurements (considered as “labeled”
data) to help in the AOD estimation of locations that have
only satellite measurements (“unlabeled” data).

However, in (Djuric, Kansakar, and Vucetic 2013), the
borrowing of strength from labeled data to unlabeled data
is achieved via a shared correlation matrix of the satellite
measurements. The AOD values at different locations, how-
ever, are assumed to be independent of each other. This is
at odds with the observation that the AOD indeed varies
slowly on scales of tens of kilometers (Chu et al. 2002;
Koelemeijer, Homan, and Matthijsen 2006). An example on
the MODIS data is shown in Figure 1.

Figure 1: The smooth distribution of the average monthly
AOD (reproduced with permission from NASA). As can be
seen, the AOD’s at nearby locations are close to each other.

In this paper, we attempt to further improve AOD esti-
mation by exploring such spatial correlations. In particular,
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we require the AOD predictions to be smooth on a mani-
fold defined over all the locations. The use of manifolds has
been popularly used in semi-supervised learning (Belkin,
Niyogi, and Sindhwani 2006), and has been successfully
used in tasks including dimensionality reduction (Belkin and
Niyogi 2003), classification (Belkin and Niyogi 2002), clus-
tering (Chapelle, Weston, and Schölkopf 2002) and ranking
(Zhou et al. 2004b). The proposed approach is able to uti-
lize the slow spatial variation of AOD, while preserving the
computational simplicity in (Djuric, Kansakar, and Vucetic
2013). Experiments on both synthetic and real-world data
sets demonstrate that the proposed method is much more ac-
curate than the state-of-the-art.

Notations: In the sequel, the transpose of vector/matrix
is denoted by the superscript T , tr(A) denotes the trace of
matrix A, I is the identity matrix, 0 is the zero matrix, 1 is
the vector of all ones, andN (·, ·) is the scalar/vector normal
distribution.

Related Work
At a particular location i, let its vector of K satellite mea-
surements be ŷi = [ŷi1, . . . , ŷiK ]T . In (Djuric, Kansakar,
and Vucetic 2013), the {ŷi}Ni=1 from N locations are as-
sumed to be generated i.i.d. as

ŷi|yi ∼ N (yi1,Σ), (1)

where yi is the underlying ground truth AOD at location
i, and Σ captures the correlation among satellite measure-
ments. The yi’s are also assumed to be generated i.i.d., as

yi ∼ N (u, σ2), (2)

where u can be regarded as the default AOD, and σ2 the
corresponding variance across locations. From (1) and (2),
it can be easily shown that the joint measurements Ŷ =
[ŷ1, ŷ2, . . . , ŷN ]T ∈ RN×K is distributed as

Ŷ|y ∼ MNN,K(y1T ,Σ⊗ I), (3)

y ∼ N (u1, σ2I). (4)

where y = [y1, y2, . . . , yN ]T , ⊗ is the Kronecker product,
andMNN,K(·, ·) is the N ×K matrix-variate normal dis-
tribution1 (Gupta and Nagar 2000).

At any location, its surface AOD measurement (e.g., from
AERONET) can be considered as ground truth. However,
typically these are only available at, say, Nl, locations.
Without loss of generality, assume that y is reordered as
[yTu ,y

T
l ]T , where yl ∈ RNl is the subvector for loca-

tions with known ground truths, and yu ∈ RNu (where
Nu = N −Nl) is for locations with unknown ground truths.
In the sequel, these will be referred to as the labeled and un-
labeled locations, respectively. Similarly, Ŷ is reordered as[

Ŷu

Ŷl

]
, with Ŷu ∈ RNu×K for the unlabeled locations,

1A random variable X ∈ Rm×n follows the matrix-variate nor-
mal distributionMNm,n(M,Σ⊗Ψ) with mean M ∈ Rm×n and
covariance matrix Σ⊗Ψ (where Ψ ∈ Rm×m and Σ ∈ Rn×n) if
its pdf is given by (2π)−

mn
2 |Ψ|−

n
2 |Σ|−

m
2 exp(− 1

2
tr[Ψ−1(X −

M)Σ−1(X−M)T ]).

and Ŷl ∈ RNl×K for the labeled locations. The task is to
infer the unknown yu from Ŷ and yl.

In (Djuric, Kansakar, and Vucetic 2013), they first esti-
mate Σ, and then, on using (1), (2) (or, equivalently, (3),
(4)), the posterior of yu can be shown to follow

N

((
Σ̄ +

1

σ2

)−1(
ŶuΣ

−11 +
u

σ2
1
)
,

(
Σ̄ +

1

σ2

)−1

I

)
, (5)

where
Σ̄ = 1TΣ−11. (6)

The mean of (5), i.e., yu, is used as the AOD prediction.
Note that if Σ = I and σ2 →∞, this reduces to 1

K Ŷu1. In
other words, the prediction at location i is simply the average
of its K satellite measurements.

As discussed in (Djuric, Kansakar, and Vucetic 2013),
as satellites have limited daily coverage, a location may
not always have all its K satellite measurements. When
some measurements are missing, the handling of the re-
sultant incomplete Ŷ matrix is also considered in (Djuric,
Kansakar, and Vucetic 2013). Besides, as can be seen from
Figure 1, the AOD in North America is considerably lower
than most parts of Asia. Thus, it is sometimes useful to par-
tition the globe into, say, R, regimes. In (Djuric, Kansakar,
and Vucetic 2013), location i is assigned to regime r with
probability πir according to the following softmax function

πir =
exp(−(xi − qr)

TSr(xi − qr))∑R
m=1 exp(−(xi − qm)TSm(xi − qm)

, (7)

where xi ∈ Rd is the feature vector for location i (typi-
cally, its latitude and longitude), qr is the prototype vector
for regime r, and Sr a scaling matrix. Different regimes are
assumed to have different Σ’s, and all the parameters are
then learned as in a standard Gaussian mixture model.

Integration of AOD Predictions with Manifold
Recall that in (Djuric, Kansakar, and Vucetic 2013), the
ground truth AODs from the various locations are assumed
to be independent. However, as discussed in the introduc-
tion, the AOD should vary slowly in the spatial domain.
Such a smoothness property can be easily imposed with the
use of a manifold, a notion that has been popularly used in
the semi-supervised learning literature (Belkin, Niyogi, and
Sindhwani 2006; Zhou et al. 2004a; Zhu, Ghahramani, and
Lafferty 2003; Zhu 2007).

Definition of the Manifold
A manifold M is often represented by a weighted graph
G. Here, every geographical location is a node. For sim-
plicity, we assume that the nodes are fully connected. For
two locations i, j, with latitude-longitude values (φi, λi) and
(φj , λj) respectively, their great-circle distance (i.e., short-
est distance over the earth’s surface) dij is given by the
Haversine formula (Sinnott 1984):

dij = 2r arcsin
((

sin2((φi − φj)/2)

+ cos(φi) cos(φj) sin2((λi − λj)/2)
) 1

2

)
, (8)
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where r is the Earth’s radius. Obviously, the similarity (or
weight wij) between i and j should decrease with dij . Us-
ing the local scaling approach in (Zelnik-Manor and Perona
2004), we define it as

wij =

{
exp

(
− dij√

si
√
sj

)
i 6= j,

0 i = j,
(9)

where si, sj automatically rescale dij based on the local
statistics of the neighborhoods of i and j. Typically, si is set
to the distance between i and its Hth neighbor (with H = 5
in the experiments). Given W = [wij ], the Laplacian ma-
trix of M is then defined as L = D − W, where D is
the diagonal matrix with diagonal elements di =

∑
j wij .

To ensure that the Laplacian is non-singular, it is custom-
ary to add some regularization (Verbeek and Vlassis 2006;
Zhu, Lafferty, and Ghahramani 2003), leading to L̃ = L +
αI, where α > 0 is a small number.

Instead of assuming that the ground truth AODs (yi’s)
are generated independently as in (Djuric, Kansakar, and
Vucetic 2013), we assume that they are formed by a Gaus-
sian random field defined on the manifoldM (Zhu, Ghahra-
mani, and Lafferty 2003):

y ∼ N (u1, σ2L̃−1). (10)
Here, σ2 controls the scale of the covariance. Essentially,
(10) implies that when wij is large, the corresponding yi
and yj should be close to each other.

Prediction of yu

Given the satellite measurement’s covariance matrix Σ
(which can be either fixed or learned), the posterior of yu
can be obtained as

P (yu|yl, Ŷ) =
P (yu,yl|Ŷ)

P (yl|Ŷ)
=

P (y|Ŷ)

P (yl|Ŷ)

=
P (Ŷ|y)P (y)

P (Ŷ,yl)
. (11)

Now, P (Ŷ|y) and P (y) are defined in (3) and (10); while

P (Ŷ,yl) =

∫
P (Ŷ|y)P (y)dyu (12)

can be evaluated in closed-form as both Ŷ|y and y follow
the normal distribution. Assume that the Laplacian matrix L
(and similarly its regularized version L̃) has been reordered

and partitioned as L =

[
Ll Llu
LTlu Lu

]
, where the subscripts

l and u denote the parts corresponding to the labeled and
unlabeled locations, respectively. It can be shown that the
conditional distribution of yu is also a normal distribution:

yu|yl, Ŷ ∼ N

ȳ,

(
Σ̄I +

L̃u
σ2

)−1
 , (13)

where Σ̄ is as defined in (6),

ȳ =

(
Σ̄I +

L̃u
σ2

)−1(
y̆ − LTluyl

σ2
+
uLTlu1

σ2
+
uL̃u1

σ2

)
,

y̆ = ŶuΣ
−11, (14)

Hence, we can use ȳ as the prediction for yu.
Remark. In the absence of the manifold,
W = D = L = 0, and (13) reduces to
N
(
(Σ̄ + α

σ2 )−1(y̆ + uα
σ2 1), (Σ̄ + α

σ2 )−1I
)
. This is the

same as (5) on setting α = 1.
In situations where the positive semidefinite (psd) matrix

Σ is not known, it can be learned by maximizing the like-
lihood P (Ŷ,yl) in (12) w.r.t. Σ using projected gradient
(Bertsekas 2004). Since Σ ∈ RK×K and K is typically
small (equal to 5 in the experiments), projection onto the psd
cone in each iteration is computationally inexpensive. Sim-
ilarly, u and σ2 in (10) can also be learned by maximizing
P (Ŷ,yl). In particular, u can be obtained in closed-form as

u =

(
1T L̃u + 1TLlu

)
ȳ∗ +

(
1T L̃l + 1TLTlu

)
yl

1T L̃1− 1
σ2

(
1TLlu + 1L̃u

)(
Σ̄I + L̃u

σ2

)−1 (
LTlu1 + L̃u1

) ,

where ȳ∗ =
(

Σ̄I + L̃u
σ2

)−1 (
y̆ − LTluyl

σ2

)
.

Missing Satellite Measurements
In this section, we consider the case where each location
may have some missing satellite measurements. Without
loss of generality, we rearrange each satellite measurement
vector ŷi as ŷi = [(ŷ

(a)
i )T , (ŷ

(q)
i )T ]T such that ŷ

(a)
i con-

tains the ai measurements available at location i, while ŷ
(q)
i

is for the qi = K − ai missing measurements. Similarly, for
each i, Σ−1 is reordered as

Πi(Σ
−1) =

[
Ui Vi

VT
i Qi

]
,

where Ui ∈ Rai×ai ,Vi ∈ Rai×qi , and Qi ∈ Rqi×qi ,
so that the first ai rows/columns of Πi(Σ

−1) correspond
to the available measurements, while the remaining qi
rows/columns correspond to the missing measurements.

Analogous to (11), the posterior probability of yu (given
yl and the available satellite measurements ŷ

(a)
i ’s) is

P (yu|yl, ŷ(a)
1 , . . . , ŷ

(a)
N ) =

P (ŷ
(a)
1 , . . . , ŷ

(a)
N |y)P (y)

P (ŷ
(a)
1 , . . . , ŷ

(a)
N ,yl)

.

(15)
The P (ŷ

(a)
1 , . . . , ŷ

(a)
N |y) term in the numerator can be ob-

tained by marginalizing the missing ŷ
(q)
i ’s from P (Ŷ|y), as

P (ŷ
(a)
1 , . . . , ŷ

(a)
N |y)

=

∫
. . .

∫
P (Ŷ|y)dŷ

(q)
1 . . . dŷ

(q)
N

=
N∏
i=1

(
exp(− 1

2 ((ŷ
(a)
i − yi1)TCi(ŷ

(a)
i − yi1))

(2π)
ai
2 |C−1

i |
1
2

)
,

where
Ci = Ui −ViQ

−1
i VT

i

is the Schur complement of the block Qi of
Πi(Σ

−1). Similarly, one can compute the de-
nominator P (ŷ

(a)
1 , . . . , ŷ

(a)
N ,yl) in (15) as
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∫
P (ŷ

(a)
1 , . . . , ŷ

(a)
N |y)P (y)dyu. After tedious deriva-

tion, it can be shown that the conditional distribution of yu
is again a normal distribution:

yu|yl, ŷ(a)
1 , . . . , ŷ

(a)
N ∼ N

m,

(
A +

L̃u
σ2

)−1
 , (16)

where

m =

(
A +

L̃u
σ2

)−1(̃
y − LTluyl

σ2
+
uLTlu1

σ2
+
uL̃u1

σ2

)
,(17)

A = diag
(
1TC11, . . . ,1

TCNu1
)
, (18)

ỹ =
[
ŷ

(a)T
1 C11, . . . , ŷ

(a)T
Nu

CNu1
]T
. (19)

Hence, the prediction for yu is m. Moreover, as in the pre-
vious section, when Σ is not known, we can compute its
maximum likelihood estimate (MLE) by projected gradient.
Remark. When there is no missing measurement, all the
Ui’s and Ci’s become Σ−1. Thus, A reduces to Σ̄I, ỹ re-
duces to y̆ in (14), and (16) reduces to the normal distribu-
tion in (13).
Remark. In the presence of missing measurements,
the covariance matrix of the prediction changes from(

Σ̄I + L̃u
σ2

)−1

in (13) to
(
A + L̃u

σ2

)−1

in (16). The follow-
ing Proposition shows that the variance on the predictions
is increased, which agrees with our intuition.

Proposition 1. The diagonal elements of
(
A + L̃u

σ2

)−1

are

larger than the corresponding elements of
(

Σ̄I + L̃u
σ2

)−1

.

Proof. It can be easily shown that

[Σ̄I]ii − [A]ii = Σ̄− 1TCi1 = 1TBi1, (20)

where Bi =

[
ViQ

−1
i VT

i Vi

VT
i Qi

]
. Obviously, the Schur

complement of Qi in Bi is zero, and thus psd. Hence, Bi

is also psd, which implies 1TBi1 ≥ 0. From (20), A thus
has smaller diagonal entries than Σ̄I, and so Σ̄I − A � 0.
Moreover,(

A +
L̃u
σ2

)−1

−

(
Σ̄I +

L̃u
σ2

)−1

=

(
A +

L̃u
σ2

)−1

J

(
A +

L̃u
σ2

)−1

,

where J = (Σ̄I − A) − (Σ̄I − A)
(

Σ̄I + L̃u
σ2

)−1

(Σ̄I −

A) is the Schur complement of Σ̄I + L̃u
σ2 in F =[

Σ̄I + L̃u
σ2 Σ̄I−A

Σ̄I−A Σ̄I−A

]
. It can be seen that F is psd,

as the generalized Schur complement of Σ̄I − A in F

is A + L̃u
σ2 (pd) and

(
I− (Σ̄I−A)(Σ̄I−A)†

)
(Σ̄I −

A) = 0 (Zhang 2005). Hence, J is psd, and(
A + L̃u

σ2

)−1

J
(
A + L̃u

σ2

)−1

is psd, which shows that the

diagonal entries of
(
A + L̃u

σ2

)−1

−
(

Σ̄I + L̃u
σ2

)−1

are non-
negative.

Multiple Data Regimes
Recall that in (Djuric, Kansakar, and Vucetic 2013), dif-
ferent regimes are assumed to have different Σ’s. In other
words, correlations among the satellite measurements are as-
sumed to be different in different geographical regions.

In this paper, we instead take the more plausible assump-
tion that the satellite correlations are independent of the ge-
ographical location. Instead, while (10) assumes that all the
yi’s are sampled from the same value u, we now assume that
the ground truths at different locations are generated from
different values. Specifically,

y ∼ N (u, σ2L̃−1), (21)

where u = [u1, u2, . . . , uN ]T , with ui’s generated from a
mixture with R components

ui =

R∑
r=1

πirµr. (22)

Here, µr is the default AOD value at the rth regime, and πir,
as defined in (7), is the probability that location i belongs to
regime r. This model is also in line with the observation in
(Levy, Remer, and Dubovik 2007) that the aerosol sources
and atmospheric composition differ in different regions.

As in the previous sections, it can be shown that the pos-
terior of yu is again a normal distribution

yu|yl, ŷ(a)
1 , . . . , ŷ

(a)
N ∼ N

z,

(
A +

L̃u
σ2

)−1
 ,

where z =
(
A + L̃u

σ2

)−1 (
ỹ − LTluyl

σ2 +
LTluul
σ2 + L̃uuu

σ2

)
,

A, ỹ are as defined in (18) and (19), and ul,uu are the sub-
vectors of u corresponding to the labeled and unlabeled data,
respectively. In particular, when R = 1 (i.e., there is only
one regime), u = u11 and z reduces to m in (17).

Note that u, in turn, depends on µr’s and πir’s (which are
defined by qr’s and Sr’s). All these parameters can be ob-
tained by maximum likelihood. In particular, the MLE of µr
can be given in closed-form; the MLEs of {qr,Sr}r=1,...,R

can be obtained by gradient ascent on P (ŷ
(a)
1 , . . . , ŷ

(a)
N ,yl),

while those of Sr’s (which are psd) by projected gradient as-
cent. Again, note that as Sr ∈ R2×2, the projection onto the
psd cone is computationally inexpensive.

Multiple Time Points
Typically, measurements are collected over a long period of
time. Hence, in the real-world data sets, it is common for a
location to have multiple measurements from the same satel-
lite collected at different time points. In (Djuric, Kansakar,
and Vucetic 2013), these measurements are simply taken as
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independent. This can be problematic when the manifold is
introduced. Specifically, though satellites have large spatial
coverage, they still take a relatively long period of time to
scan the whole globe (e.g., the MISR satellite takes 9 days
(Meloni et al. 2004)). For a particular satellite, it is thus
unlikely that measurements for the same location collected
at different time points are similar to each other. In other
words, measurements from different time stamps may not
be smooth on the manifold.

To alleviate this problem, we extend the definition of man-
ifold as follows. First, each node in the graph G is no longer
a location, but a (location, time) pair. The weight between
two such nodes (`i, ti) and (`j , tj) is defined as

wij =

 exp

(
− d`i,`j√

s`i
√
s`j

)
`i 6= `j and ti = tj ,

0 otherwise.

Experiments
In this section, experiments are performed on both synthetic
data and real-world data from the ground-based AERONET
measurements and five satellite measurements.

Synthetic Data
The experimental setup is similar to that in (Djuric,
Kansakar, and Vucetic 2013). First, we consider the case
with only one regime (the black cluster over North Amer-
ica in Figure 2). The locations are generated from the nor-
mal distribution N (q1,S1) with q1 = [38,−100]T , and
S1 = diag([20, 60]). The weight function on the mani-
fold is defined by (9), where the radius r in (8) is set to
a thousandth of that of the Earth (i.e., r = 6.371). For
simplicity, all the scaling parameter si’s in (9) are fixed to
1. The ground truth y vector is generated from (10), with
u = 0.1, σ2 = 0.01 and α = 1. The number of satellites
K is 5, and their measurements are sampled using (3), with
Σ = diag([0.01, 0.02, 0.03, 0.04, 0.05]). To simulate miss-
ing data, we remove each satellite measurement randomly
with probability p = 0.5.

−200 −150 −100 −50 0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure 2: Synthetic data set showing the geographical loca-
tions for the two regimes. The first regime is colored in black
and the second one in white.

In the sequel, the proposed algorithm will be called APM
(Aerosol Prediction using Manifold). The following algo-
rithms will be compared in the experiments:

1. APM with Σ = I;

2. APM with a learnable diagonal Σ;

3. APM with a learnable full Σ;

4. DKV, which is the algorithm2 proposed in (Djuric,
Kansakar, and Vucetic 2013); and

5. simple averaging of the available satellite measurements.

For performance evaluation, we use the root mean squared

error (RMSE),
√

1
Nu

∑Nu
i=1(yi − fi)2, evaluated on a set of

Nu = 200 unlabeled samples. Here, yi is the ground truth
and fi the corresponding prediction. The number of labeled
locations is varied from 0 to 200. To reduce statistical vari-
ability, results are averaged over 100 repetitions.

Prediction Accuracy Figure 3 shows the RMSEs. As can
be seen, with the use of manifold, APM significantly out-
performs both DKV and averaging3. This holds even when
there is no labeled data, and the performance improves as the
amount of labeled data increases. Moreover, note that APM
with a learnable diagonal Σ achieves the lowest RMSE,
which is consistent with the data generation process.

Figure 3: RMSE’s obtained on the synthetic data set.

Manifold Noise In this experiment, we inject each label
yi with noise ξi, which is generated from the normal dis-
tribution with mean 0 and variance in {0.01, 0.1, 1}. The
corresponding signal-to-noise ratios (averaged over the 100
repetitions) are 12.63, 1.27, and 0.13, respectively. To avoid
clutterness, we only show the performance of APM with a
learnable diagonal Σ. Results are shown in Figure 4. As ex-
pected, the RMSE of APM increases as the manifold gets
noisier, and becomes comparable with DKV and averaging
only when the signal-to-noise ratio is as low as 0.13.4

2The code is provided by Djuric, Kansakar, and Vucetic.
3The improvements are statistically significant according to the

pairwise t-test with 99% confidence.
4When the variance is 0.01 and 0.1, the improvements of APM

over DKV and averaging are always statistically significant accord-
ing to the pairwise t-test with 99% confidence. When the variance
equals 1, the improvements of APM are statistically significant
only with 0 and 50 labeled data points.
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Figure 4: RMSE’s with different amounts of manifold noise.

Varying the Number of Mixture Components In this ex-
periment, we demonstrate the effect of using the mixture.
First, we add one more regime (the white cluster over Asia
in Figure 2), which generates locations fromN (q2,S2) with
q2 = [38, 100]T , S2 = diag([20, 60]). Both regimes have
equal probabilities of generating locations. The true µ1, µ2

values in (22) are 0.1 and 0.2, respectively. We evaluate the
performance with 1, 2 and 3 mixture components.

Results are shown in Figure 5. As can be seen, APM again
outperforms DKV and averaging.5. Moreover, the results of
APM having 2 and 3 components are very similar. Indeed,
when R = 3, two of the components obtained by APM have
very similar µr values.

Figure 5: RMSE’s with different mixture components.

Real-World Aerosol Data
In this section, we perform experiments using the ground-
based AERONET data6 (10:00-11:00am local time) and five
satellite measurements7 (including two from Terra MODIS
and MISR at 10:00-11:00am local time; and three from
Aqua MODIS, OMI and SeaWiFS at 1:00-2:00pm local
time) from the years 2004-2010.

5The improvements are statistically significant according to the
pairwise t-test with 99% confidence.

6aeronet.gsfc.nasa.gov/cgi-bin/combined data access new
7disc.sci.gsfc.nasa.gov/aerosols/services/mapss

USA Data
As in (Djuric, Kansakar, and Vucetic 2013), we first ex-
periment with data on the United States. After removing
days with fewer than 10 observations, we obtain 2,382 data
points spanning 206 time points and 86 locations. Overall,
around 70% of the satellite measurements are missing. To
reduce statistical variability, results are averaged over 100
repetitions. In each repetition, we randomly sample 150 time
points, each with 10 locations. 5 of these are used as labeled
locations, while the remaining 5 are unlabeled locations.

Table 1 shows the RMSE’s obtained. As can be seen,
APM has significantly lower RMSE compared with the other
methods. In particular, the best performance is obtained with
a diagonal Σ, suggesting that the satellite measurements are
indeed not strongly correlated, contrary to the assumption in
(Djuric, Kansakar, and Vucetic 2013).

Table 1: RMSE on the real-world aerosol data sets. The im-
provements are statistically significant according to the pair-
wise t-test with 99% confidence.
. USA Europe

averaging 0.0968 ± 0.0029 0.0784 ± 0.0032
R = 1 0.0968 ± 0.0031 0.0789 ± 0.0032

DKV R = 2 0.0967 ± 0.0030 0.0784 ± 0.0032
R = 3 0.0970 ± 0.0030 0.0786 ± 0.0032

APM R = 1 0.0907 ± 0.0057 0.0646 ± 0.0015
(Σ = I) R = 2 0.0894 ± 0.0056 0.0642 ± 0.0015

R = 3 0.0893 ± 0.0056 0.0642 ± 0.0015
APM R = 1 0.0690 ± 0.0028 0.0539 ± 0.0014

(full Σ) R = 2 0.0676 ± 0.0028 0.0535 ± 0.0014
R = 3 0.0676 ± 0.0028 0.0536 ± 0.0014

APM R = 1 0.0688 ± 0.0028 0.0538 ± 0.0009
(diagonal Σ) R = 2 0.0674 ± 0.0027 0.0535 ± 0.0010

R = 3 0.0674 ± 0.0027 0.0535 ± 0.0014

Europe Data
Next, we perform experiments with data on Europe. After
removing days with fewer than 10 observations, we obtain
4, 879 data points spanning 397 time points and 90 locations.
Around 71% of the satellite measurements are missing. The
rest of the experimental setup is the same as that for the USA
data. The RMSE results are shown in Table 1. Again, APM
outperforms the other methods.

Conclusion
In this paper, we proposed an enhanced probabilistic ap-
proach to integrate AOD measurements from satellite instru-
ments and ground-based sensors. By considering the Earth’s
surface as a two-dimensional manifold, a Gaussian random
field is used to enforce spatial smoothness of the AOD pre-
dictions. The resultant model allows simple probabilistic in-
ference, and can handle missing satellite measurements and
the division of locations into regimes. Experimental results
on both synthetic and real-world data sets show that it sig-
nificantly outperforms the state-of-the-art.
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