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Abstract

Tensor completion is an important topic in the area of
image processing and computer vision research, which
is generally built on extraction of the intrinsic structure
of the tensor data. Drawing on this fact, action clas-
sification, relying heavily on the extracted features of
high-dimensional tensors, may indeed benefit from ten-
sor completion techniques. In this paper, we propose
a low-rank tensor completion method for action clas-
sification, as well as image recovery. Since there may
exist distortion and corruption in the tensor representa-
tions of video sequences, we project the tensors into a
subspace, which contains the invariant structure of the
tensors. In order to integrate useful supervisory infor-
mation for classification, we adopt a discriminant anal-
ysis criterion to learn the projection matrices. The re-
sulting multi-variate optimization problem can be ef-
fectively solved using the augmented Lagrange multi-
plier (ALM) algorithm. Experiments demonstrate that
our method results with better accuracy compared with
some other state-of-the-art low-rank tensor representa-
tion learning approaches on the MSR Hand Gesture 3D
database and the MSR Action 3D database. By denois-
ing the Multi-PIE face database, our experimental setup
testifies the proposed method can also be employed to
recover images.

Introduction

Images and video sequences can be naturally represented
as high-dimensional tensors. However, the real tensor rep-
resentations of images and videos are usually incomplete,
due to missing elements or the presence of noise. This is-
sue impels great research interest for recovering the origi-
nal tensors these past recent years. Many tensor represen-
tation learning approaches have been proposed (Chen and
Saad 2009; Koch and Lubich 2010; Haegeman et al. 2011;
Holtz, Rohwedder, and Schneider 2012; Khoromskij, Os-
eledets, and Schneider 2012; Arnold and Jahnke 2012;
Lubich et al. 2013; Uschmajew and Vandereycken 2013;
Mu et al. 2013). Many of these previous approaches aim
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to learn the low-dimensional representations of tensors,
while mainly using the high-order singular value decom-
position (HOSVD). Regardless, some tensor approximation
approaches have been proposed as well, which, in general,
estimate a rank-one tensor via vector outer production (Es-
pig 2007; Kazeev and Tyrtyshnikov 2010; Acar, Dunlavy,
and Kolda 2011; Espig and Hackbusch 2012; Phan, Anh
Huy and Tichavskỳ, Petr and Cichocki, Andrzej 2012; 2013;
Shi et al. 2013).

As of recent, several low-rank tensor representation
learning approaches have been proposed for computer vision
applications, such as image reflection and alignment (Zhang
et al. 2013), target tracking (Shi et al. 2013), face and object
recognition (Ding, Huang, and Luo 2008; Zhong and Cheriet
2014). These methods aim to learn the invariant structure of
the tensor data. However, the formulation and optimization
of these approaches are quite different. For concreteness,
Zhang et al. performed the low-rank tensor representation
learning on the original images, in parallel to eliminate noise
and recover missing pixels (Zhang et al. 2013); Shi et al. em-
ployed rank-one tensors for multi-target tracking (Shi et al.
2013); Ding et al. used rank-one tensors to reduce tensor
dimensionality for applications such as video compression
and face classification (Ding, Huang, and Luo 2008); Zhong
and Cheriet proposed a manifold-based tensor representa-
tion learning model for face and object recognition (Zhong
and Cheriet 2014). Note, although these low-rank ten-
sor representation learning approaches have been success-
ful when applied to different visual classification scenarios,
they are rarely integrated in the supervisory information for
maximizing class discrimination (Saghafi and Rajan 2012;
Jia and Yeung 2008; Etemad and Chellappa 1997), which
may dramatically improve the visual classification accuracy.

Some low-rank matrix learning approaches based on the
discriminant analysis criterion have been addressed. For ex-
ample, Zheng et al. used intra-class and inter-class informa-
tion for face recognition (Zheng et al. 2013), also, Cai et al.
employed the discriminant analysis criterion with low-rank
matrix learning for face and digits recognition (Cai et al.
2013). These discriminative low-rank matrix learning ap-
proaches have shown that the label information of data is
typically beneficial for visual classification. Rare previous
work was integrated the discriminant analysis criterion into a
low-rank tensor completion model, to the best of our knowl-
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Figure 1: Framework of the proposed algorithm for action
recognition. The tensor training set X is used for calculating
the low-rank projection matrices, which are employed for
subspace alignment of training and testing action videos Y
and Y ′.

edge. This can be directly applied to visual classification
applications, such as action classification.

In this paper, we present a supervised low-rank tensor
completion method for dimensional reduction, to learn an
optimal subspace for action video recognition. Our model
automatically learns the low dimensionality of tensor, op-
posed to manually pre-defined, as other dimensional reduc-
tion methods. Considering the underlying structure infor-
mation of the whole high-dimensional dataset, it can use the
low-rank learning to extract the structure for image recov-
ery, while integrating with the discriminant analysis crite-
rion. Figure 1 shows the framework of our method applied to
the video-based action classification. We first select a train-
ing set from an action video database to learn the low-rank
projection matrices, which are then used to calculate a tensor
subspace for the action classification. When calculating the
low-rank projection matrices, we adopt a discriminant anal-
ysis criterion as a regularizer to avoid over-fitting. Mean-
while, with this discriminant analysis criterion, supervisory
information is seamlessly integrated in the low-rank tensor
completion model. After projecting the original training and
testing sets to the learned tensor subspace, we predict the la-
bels of the test video sequences with a K-nearest neighbor
(KNN) classifier. We add the sample information to recov-
ery some face images by removing different illuminations.

The contributions of this paper are as follows:
1. We proposed a new discriminative method for low-

rank tensor completion, which automatically learns the low
dimensionality of the tensor subspace for feature extraction.

2. We integrated the discriminant analysis criterion in the
low-rank tensor completion model based on the given super-
visory information.

3. The proposed model extracts the underlying structure
of the original tensor data by low-rank learning, which re-
constructs the data from the learned tensor subspace, for
high-dimensional image recovery.

Preliminary

A N-dimensional array is called a tensor, which is repre-
sented as A ∈ R

I1×I2×...×In×...×IN , where In is the mode-n
dimension (1 � n � N). A metadata of A is presented as

Ai1i2...in...iN , where in is the index of mode-n (1 � in � In).
The mode-n vectors of A are the vectors in R

In , by keeping
the vectors of other modes fixed (Kolda and Bader 2009).

Definition 1: (Mode-n unfolding) The mode-n unfolding of
A is denoted by matrix A(n) ∈ R

In×(I1·I2...In−1·In+1...IN),
with the column vectors that are the mode-n vectors of A.

Definition 2: (Core tensor) A tensor A ∈ R
I1×...×IN is de-

composed by Un ∈ R
In×Jn(1 � n � N) as

S = A×1 U1 ×2 U2 . . .×n Un . . .×N UN, (1)

where A = S×1U
T
1 ×2U

T
2 . . .×nU

T
n . . .×NU

T
N , ×n indicates

mode-n product. The transformed tensor S ∈ R
J1×J2×...×JN

is called the core tensor. Its mode-n unfolding matrix is rep-
resented as S(n) = (UN . . . Un . . . U1A)(n).

Definition 3: (Tensor Frobenius Norm) The tensor Frobe-
nius Norm (F-norm) can be calculated by

‖A‖F =

√∑
i1

. . .
∑
iN

A2
i1i2...in...iN

. (2)

Low-rank Tensor Completion

Here we introduce the proposed method, along with an in-
depth lot at its formulation and optimization.

Given a set of N-order tensors X = {Xi ∈
R

I1...IN | i = 1, . . . ,M}, the corresponding labels
{l1, . . . , lM}, and suppose the projection matrices are Un ∈
R

In×Jn . Then tensors after projection can be calculated as

Y = X ×1 U1 . . .×n Un . . .×N UN. (3)

Previous low-rank tensor completion and approximation
methods (Romera-Paredes and Pontil 2013; Cai et al. 2013;
Krishnamurthy and Singh 2013; Chen et al. 2013) are widely
used for image denoising and recovering an alignment. The
usual way to obtain the intrinsic structure of the tensors is to
calculate the trace norm of the N-order tensor as following:

min
X(1),...,X(N)

N∑
n=1

‖X(n)‖∗ + λ‖E(n)‖l, (4)

where X(n) is the mode-n unfolding matrix, and E(n) is the
mode-n error tensor, l ∈ {∗, 1}. This means the error item
can be calculated by trace norm or sparse learning.

To learn an effective subspace of the tensors for action
classification, we alternatively optimize each projection ma-
trices. We denote

X(n) = UnD(n), (5)

where X(n) is the mode-n unfolding of tensor datum, Un

is the projection matrix, D(n) = (UN . . . Un+1 Un−1 . . . U1

X )(n). During learning the projection matrices Un, D(n)

is taken as a constant matrix. Hence, Problem (4) can be
transformed to minimizing the trace norm of Un according
to

min
Un

N∑
n=1

‖Un‖∗, (6)
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Alternative direction method 

Figure 2: Illustration of 2, 3-dimensional projection matri-
ces respectively. Form left to right: U1, U2 and U3. During
learning, each projection matrix is calculated by the alterna-
tive direction method.

with some conditions imposed. Meanwhile, the low dimen-
sional structure of Un can be automatically captured by the
low-rank learning, which is useful for tensorial subspace
learning and dimensional reduction.

The matrices Un can indicate rotation properties of ten-
sors in the subspace, such as row space, column space. It
can also reflect the degree of movement in the frame space.
Figure 2 shows how the Un works. Here X ∈ R

I1×I2×I3 is
a 3-order tensor with 1≤ n ≤3. From left to right, it shows
the learned projection matrices U1, U2 and U3, which corre-
spond to the transformation in the row, column, and frame
space, respectively. Compared with the convectional vector-
based method, the matrices can reflect different variances in
the row, column of an image, and show the sample infor-
mation as well. The first and second rows illustrate the 2,
3-dimensional projection matrices, respectively. U1 and U2

reflect the location of the movement in the row space and
the column space of the database. This is different from
the vector-based low-rank method (Liu, Lin, and Yu 2010),
which cannot reflect the variance in the row and column of
an image. As for U3, each small block stands for a frame
reflecting the significance of the frames – if it is a full-rank
matrix, each frame plays an important role in the video se-
quence. Here, the color bar in the second row means differ-
ent values of Un (1≤ n ≤ 3). During learning the projection
matrices are calculated in an iterative process performed by
the alternative direction method.

Discriminant analysis

In order to integrate supervisory information into the low-
rank tensor completion model, the discriminant analysis cri-
terion is adopted as a regularizer. For simplicity, let A =
X(n). The inter-class and intra-class scatter matrices as fol-
lows:

Bn =
C∑

i=1

mi(Ai −A)(Ai −A)T, (7)

Wn =
C∑

i=1

Ci∑
j=1

(Aij −Ai)(Aij −Ai)
T, (8)

where Bn, Wn are the mode-n inter-class and intra-class ma-
trices respectively. Ai, A are the mean samples of the i-th

class and the total number of samples, respectively. Aij is
the j-th sample of the i-th class. mi denotes the number of
i-th class.

The corresponding discriminant regularizer is given as
λ‖UT

n(Wn − αBn)Un‖2F, (9)

where ‖ · ‖2F is the Frobenius Norm (Kolda and Bader 2009),
α is the tuning parameter to control the value of the regu-
larization, and λ is the parameter to balance the low-rank
item and the discriminant item. According to the regulariza-
tion constraint the low-rank tensor completion model can be
expressed as follows:

min
U1,...,UN

N∑
=1

‖Un‖∗ + λ‖UT
n(Wn − αBn)Un‖2F. (10)

With this, the discriminant regularizer not only avoids
over-fitting, but also seamlessly integrates the intra-class and
inter-class information into the proposed model.

Objective function

Provided an N-order tensor X ∈ R
I1×...×IN . For its real

data there always exists some noise or corruption E , which
satisfies the following conditions: (1) there is only small
fragment or missing part; (2) the location of the error is un-
known. Hence, the original tensor can be represented as

X = Y + E , (11)

where Y = UN . . . U1X is the low-rank tensor, and E is the
error. We next employed the error item as a constraint, de-
fined by mode-n unfolding as follows:

‖Y(n) −X(n)‖2F ≤ ε, (12)
where ε is the bias.

Considering the discriminant regularizer and the error
item, The low-rank tensor completion model is rewritten as

min
Un

N∑
n=1

‖Un‖∗ + λ‖UT
n(Wn − αBn)Un‖2F

s.t. ‖Y(n) −X(n)‖2F ≤ ε, Y(n) = (UN . . . U1X )(n)

(13)

This model is intractable, because the error item is not
convex with respect to the variables. In order to solve this
problem, we employ the augmented Lagrange multiplier
(ALM) algorithm (Lin, Chen, and Ma 2010) to optimize
Problem (13).

Optimization

Due to the difficulty of solving Eq. (13), we introduce two
auxiliary matrices Jn and M(n) to the objection function.
The regularization ‖M(n) − X(n)‖2F ≤ ε is set as an error
term in Eq. (13), allowing the objective function to be inte-
grated and rewritten as

min
U1,...,UN

N∑
n=1

‖Jn‖∗ + λ‖JnT(Wn − αBn)Jn‖2F

+β‖M(n) −X(n)‖2F
s.t. Un = Jn, Y(n) = (UN . . . U1X )(n),Y(n) = M(n),

(14)
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where β is the parameter of the error item. We use the ALM
algorithm to solve the following unconstrained multi-variate
optimization problem. The Lagrange function is defined as

Ln = argmin
Jn, Un, Y(n),

M(n), Y1, Y2, Y3

N∑
n=1

‖Jn‖∗ + λ‖JT
n(Wn − αBn)Jn‖2F

+ β‖M(n) −X(n)‖2F + tr
[
V T
1

(
Y(n) − (UN . . . U1X )(n)

)]
+ tr

[
V T
2 (Un − Jn)

]
+ tr

[
V T
3

(
Y(n) −M(n)

)]
+

μ

2

[
‖Y(n) − (UN . . . U1X )(n) ‖2F + ‖Un − Jn‖2F

+‖Y(n) −M(n)‖2F
]
,

(15)

where V1, V2, V3 are the Lagrange multipliers, μ > 0 is
the penalty operator, tr(·) is the trace of a matrix. All the
variables in the Lagrange function are solvable as following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jn = argmin
Jn

1

μ

∑
‖Jn‖∗ +

1

2
‖Jn − (I+

2
λ

μ
(Wn − αBn))

−1(Un +
V2

μ
)‖2F,

Un =

(
Y(n)D

T
(n) + Jn +

1

μ

(
V1D

T
(n) − V2

))
·(

D(n)D
T
(n) + I

)−1

,

Y(n) =
1

2
(M(n) + UnD(n) −

1

μ
(V1 + V3)) = 0,

M(n) =
1

2β + μ
(2βX(n) + μY(n) + V3),

V1 = V1 + μ
(
Y(n) − (UN . . . U1X )(n)

)
,

V2 = V2 + μ (Un − Jn) ,

V3 = V3 + μ
(
Y(n) −M(n)

)
.

(16)

The convergence conditions are ‖Un−Jn‖∞ < ε, ‖Y(n)−
(UN . . . U1X )(n) ‖∞ < ε, and ‖Y(n) − M(n)‖∞ < ε. The
whole iterative procedure is shown in Algorithm 1.

Improvement

In all actuality, there are many of high-dimensional images
with noise or small corruption. Here, we improve the low-
rank tensor model in order to complete such images. Mo-
tivated by the 2-dimensional image recovery method X =
AZ + E (Liu, Lin, and Yu 2010), where X is the original
image with noise, A is the low-rank image and E is the er-
ror, we proposed a 3-dimensional image recovery method by
learning the low-rank structure of the sample space Z. Given
an image set with M 3-order samples X ∈ R

I1×I2×I3×M ,
which is transformed by X = U3U2U1XZ + E , where U1,
U2 and U3 are the projection matrices of one sample, Z re-
flects the low-rank structure of all the samples, and E is the
error. The original dataset X can be reconstructed from the
discriminant subspace by low-rank learning of Z, therefore,
the pure images without noise or illumination interference
can be obtained. The model is given as follows:

Algorithm 1 Low-rank tensor discriminant analysis (LRTD)
INPUT: M labeled N-order training tensors Γ = {Xi}, asso-
ciated labels {l1, . . . , lM} ∈ {1, . . . ,C}, the tuning parame-
ter α, λ, β, and the maximum number of training iterations
tmax.
OUTPUT: Updated U

(t)
n (1 � n � N).

1: Initialize Un by eigen-decomposition of dataset Γ. Jn =
0, V1 = V2 = V3 = 0, μ = 10−6, μmax = 106, ρ = 1.1,
and ε = 10−8.

2: for t = 1 to tmax do
3: for n = 1 to N do
4: Xi ←Xi×1(U

(t−1)
1 )T · · · ×n−1(U

(t−1)
n−1 )T

×n+1(U
(t−1)
n+1 )T · · · ×N(U

(t−1)
N )T.

5: while t
′
< t

′
max do

6: 1) Update Bn, Wn by Eqs. (7 ∼8).
7: 2) Update Jn, Un, Y(n), M(n) and multipliers

V1, V2, V3 via fixing others in equation set (16).
8: 3) Update μ by μ = min

μ
(ρμ,maxμ).

9: end while

10: U
(t−1)
n = U

(t)
n .

11: end for
12: end for

min
Un

3∑
n=1

‖Un‖∗ + ‖Z‖∗ + λ‖UT
n(Wn − αBn)Un‖2F

s.t. ‖Y(n) −X(n)Z‖2F ≤ ε, Y(n) = (U3U2U1XZ)(n) ,

(17)

where Z =
(
Y ′D′

T
+ J ′ + V1D

′T−V2

μ

)(
DD′

T
+ I

)−1

,
Y ′, D′ and J ′ are the mode-4 variates, which reflects the
sample information.

Experiment Results

In this part, we use two databases to verify our algorithm
and to compare it with other state-of-the-art low-rank tensor
representation learning methods used for the action classifi-
cation (see Figure 3).
On the MSR hand gesture 3D database

The MSR hand gesture 3D database (Oreifej, Liu, and Red-
mond 2013; Wang et al. 2012) contains 12 classes of hand
gestures: letter ”Z”, ”J”, ”Where”, ”Store”, ”Pig”, ”Past”,
”Hungary”, ”Green”, ”Finish”, ”Blue”, ”Bathroom”, and
”Milk”. These are performed by 10 subjects, with each sub-
ject performs 2-3 times. There are total of 333 samples, each
is an action video consisting of a depth image sequence. We
use the same experimental set-up as (Oreifej, Liu, and Red-
mond 2013) (Wang et al. 2012) in this experiment. All the
subjects are independent, and each video sequence is sub-
sampled to be the size of 80×80×18. The image dimension
is sufficient to represent the gesture, and the third dimension
is due to the least number of the video sequence.

The optimized low-rank projection matrices of each mode
U1, U2, U3 are illustrated in Figure 4. The x, y, z-axis
indicate the dimension of row, column, and frame, respec-
tively. The color bar represents the value of the matrices.
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Figure 3: Key frames of different actions/gestures of (1)
MSR action 3D database and (2) MSR hand gesture database
on the first and second rows, respectively.

Figure 4: Illustration of the projection matrices on the MSR
Hand Gesture database. The left column are our result, while
the right column shows Zhong and Cheriet’s. Form top to
bottom: U1, U2, U3.

The left column shows our matrices with regular color dis-
tribution, specifically, U1, U2 indicates the number of vari-
ations of the row space and column space, respectively. U3

indicates the significant frames in the video sequence. It is
similar with the full-rank matrix, that is, each frame in the
sequence plays an important role in the action. In Zhong and
Cheriet’s method (Zhong and Cheriet 2014), the matrices do
not have the obvious structure in the row, column, and frame
space. The differences between Zhong’s method and ours
are twofold: (1) Zhong used the k-neighbors to construct
local graph, while our method considers the global discrimi-
nant information, and it is sufficient for describing the whole
dataset; (2) Zhong used gradient decrease method to update
only one variable Wn = UT

n × Un to solve their problem,
while we use augmented Lagrange method (ALM) to up-
date all the variables iteratively. In conjunction with this,
the matrix Un has two properties: (1) it is a low-rank struc-
ture; (2) contains the structure of the action videos in row,
column, and frame space, respectively. The corresponding
subspace obtained by the low-rank projection is shown in
Figure 5. By reference of this, our method portrays the pro-
jected gestures of the action video with the details contain-
ing more energy (e.g moving fingers) compared with Zhong
and Cheriet’s method. This situation indicates that the pro-
jection matrix we obtained contains effective information
that ensures a more reliable subspace for the classification
task. Table 1 shows the accuracy of different methods. It
should be evident that, the proposed method performs bet-

ter than the state-of-the-art low-rank tensor representation
learning methods. HON4D+Ddisc (Oreifej, Liu, and Red-
mond 2013) is the latest work on the gesture database using
normal orientation histogram. Zhang et al.’s work (Zhang
et al. 2013) proposed to rectify align images with distortion
and partial missing, which used image sequence after low-
rank learning in this experiment. It had lower accuracy than
our method, as it relies on the original images and can deal
with the trivial changing, such as sparse noise, small frag-
ment, and distortion; while it is not suitable for the large
scale of movement, distortion or rotation in the gesture clas-
sification task. Zhong and Cheriet’s method is less effective
when compared with ours. Figure 6(a) shows the accuracy
under different parameters β and λ. We can see the proposed
method is robust across different parameter settings.

Figure 5: Left to right: Zhong and Cheriet’s and our learned
projected gestures of the MSR hand gesture database.

On the MSR action 3D database

The MSR action 3D database contains 20 classes of actions.
This includes ”arm waving”, ”horizontal waving”, ”ham-
mer”, ”hand catching”, ”punching”, ”throwing”, ”draw-
ing x”, ”drawing circle”, ”clapping”, ”two hands waving”,
”sideboxing”, ”bending”, ”forward kicking,” ”side kicking”,
”jogging”, ”tennis swing,” ”golf swing,” ”picking up and
throwing”. Each action is performed by 10 subjects, each
performing 2-3 times. There are 567 samples in total. The
action video is represented as a high-dimensional tensor in
this experiment. In the following, we report two sets of re-
sults performed under different experimental settings.

Experiment setting 1 Here uses the same conditions as
(Wang et al. 2012; Oreifej, Liu, and Redmond 2013). The
first 5 subjects are chosen for training, while the rest are for
testing. Considering the 0 value pixel as non-informative in
the depth image, we first cropped the images using a bound-
ing box to resize each image to 80 × 80. Next, we sub-
sampled each tensor to 80 × 80 × 10. Figure 6(b) shows
the accuracy with different value of parameters on the MSR
action 3D database. This shows our method outperforms
the state-of-the-art low-rank tensor representation learning
methods. Table 2 shows the accuracy for different parame-
ter settings of β and λ. The time for training of our method
is approximately 190 seconds, while it takes 160 seconds in
the recognition phase.

Experiment setting 2 Here we use the same conditions as
Chen et al. (Chen, Liu, and Kehtarnavaz 2013). We split
the MSR Action 3D database into 3 different sets. In the
Test One (Two) set, we take the first (second) action video of
each subject for training and the rest for testing. In the Cross
Subject set we took the 1, 3, 5, 7, 9 subjects as training us-
ing the rest for testing. We performed three different tests on
each action set. The results are shown in Figure 7. From top
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(a) MSR Gesture database (b) MSR Action database

Figure 6: Accuracy of the proposed method under different
parameter settings of λ and β on two used databases.

Figure 7: Accuracy with different parameters set for the
MSR action 3D database. Top to bottom: Test One, Test
Two, and Cross Subject Test. Each test contains three sets
AS1, AS2, AS3, respectively.

to bottom is Test One, Test Two, and Cross Subject test, each
with three training, and testing sets AS1, AS2, AS3 with dif-
ferent parameters. The best result in each test experiment is
obtained with the parameter set to 0.01 and scaled as [0, 1].
The results compared with the state-of-the-art methods are
shown in Table 3. In the Test One and Cross Subject sets
our method performs best. In the Test Two set, we have an
accuracy just 2% lower than Chen et al.’s method. For Zhang
et al’s (Zhang et al. 2013) work, we used entire images in the
database, i.e., 10 ∗ 567 = 5670 images. Still, it was able to
deal with the trivial sparse noise or distortion, such as the
digit ’3’ in their test experiment (Zhang et al. 2013). How-
ever, the action video containing large scale movements in
the arms or legs, making it not suitable for this application.

Method Accuracy %

HON4D +Ddisc 92.45
HON4D 87.29

Zhang et al. 89.93
Zhong et al. 69.44

LRTD 99.09

Table 1: Results for the
MSR gesture database.

Method Accuracy %

HON4D +Ddisc 88.89
HON4D 85.85

Zhang et al. 95.96
Zhong et al. 92.88

LRTD 98.50

Table 2: Results for the
MSR action database.

On CMU Multi-PIE face database

The CMU Multi-PIE face database (Gross et al. 2010) in-
cludes about 750,000 face images of 337 subjects, involv-
ing 15 various views, in 19 changes to illuminations, and
4 expressions. In this experiment, we use 67 subjects with
total of 469 samples, half for training and half for testing.
The discriminant information was used in this experiment.
Here we selected 10 faces from one subject to show our

Table 3: Accuracy (%) of 3 sets on the MSR action database.
Chen Zhang Zhong Ours

Test One

AS1 97.3 46.67 92.76 99.34

AS2 96.1 47.71 98.08 99.36

AS3 98.7 11.33 80.26 99.34

Average 97.4 35.24 90.37 99.35

Test Two

AS1 98.6 45.95 77.63 98.68

AS2 98.7 47.24 91.03 97.44
AS3 100 10.81 90.79 96.05

Average 99.1 34.67 86.48 97.39

Cross Subject AS1 96.2 44.35 91.67 98.33

AS2 83.2 46.16 85.83 97.50

Test AS3 92.0 10.81 85.83 99.17

Average 90.5 33.78 87.78 98.33

Figure 8: PIE face database. Top row: the original faces;
second row: the low-rank faces; third row: the errors.

method’s performance when recovering images. The origi-
nal face set X ∈ R

I1×I2×I3×M , the corresponding low-rank
faces U3U2U1XZ and the errors E are shown in Figure 8,
where M is the number of samples, X = U3U2U1XZ + E .
It shows that the illumination effect is well eliminated by the
low-rank learning.

Conclusion

We proposed a low-rank tensor completion method with dis-
criminant learning for action classification and image recov-
ery. We employed the alternative direction method to calcu-
late each projection matrix, by having the others fixed. In
order to integrate the label information of the database, we
use the discriminant analysis criterion in the low-rank tensor
completion model as a regularizer. To obtain the optimized
projection matrices, the augmented Lagrange method was
used to solve the multi-variate optimization problem. The
property of the projected matrices is explained in detail, i.e.,
the matrices can reflect the low-rank structure in the row,
column and frame space, respectively. In order to recover
the high-dimensional images with noise or different illumi-
nation, we proposed an improved version that learns the low-
rank structure of the sample space, and obtains good perfor-
mance. Results on the MSR hand gesture 3D database and
the MSR action 3D database have shown that our method
performs better than the state-of-the-art low-rank tensor rep-
resentation learning methods. Experiments on the Multi-PIE
face database reveals the good recovery results of the faces
under different illuminations.
Acknowledgements: We specially thank Xiaoqin Zhang for
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