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Abstract
The modern sensor technology helps us collect time se-
ries data for activities of daily living (ADLs), which in
turn can be used to infer broad patterns, such as com-
mon daily routines. Most of the existing approaches ei-
ther rely on a model trained by a preselected and man-
ually labeled set of activities, or perform micro-pattern
analysis with manually selected length and number of
micro-patterns. Since real life ADL datasets are mas-
sive, such approaches would be too costly to apply.
Thus, there is a need to formulate unsupervised meth-
ods that can be applied to different time scales. We pro-
pose a novel approach to discover clusters of daily ac-
tivity routines. We use a matrix decomposition method
to isolate routines and deviations to obtain two different
sets of clusters. We obtain the final memberships via the
cross product of these sets. We validate our approach
using two real-life ADL datasets and a well-known arti-
ficial dataset. Based on average silhouette width scores,
our approach can capture strong structures in the under-
lying data. Furthermore, results show that our approach
improves on the accuracy of the baseline algorithms by
12% with a statistical significance (p <0.05) using the
Wilcoxon signed-rank comparison test.

Introduction
The recent advances in sensor technology allow us to bring
healthcare systems to our everyday lives in the form of per-
vasive sensors and software. Using these tools, people can
quantify their physical activities and internal metabolisms
over time (Smarr 2012). Some systems also incorporate sim-
ple techniques to deliver correlation information for per-
sonal data (Tollmar, Bentley, and Viedma 2012). However,
researchers must employ even more sophisticated methods
to understand what physical activity patterns people adopt,
and whether these patterns cause variations in the level of
physical activeness within individuals (intrapersonal differ-
ences) or groups of people (interpersonal differences). A
pattern analysis on activity routines can help identify such
information, and thus enhance the usefulness of pervasive
healthcare systems.

The existing methods on ADL analysis either explicitly
specify models for a preselected set of activities (Wadley
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et al. 2008), or analyse and extract features from repetitive
micro-patterns (i.e., motifs). The first approach requires ex-
pert knowledge, thus it is costly and delivers a restricted un-
derstanding of the data. In the second approach, the appro-
priate granularity for micro-patterns must be exhaustively
searched for any given dataset. As such, despite early suc-
cesses (Bao and Intille 2004; Cook 2010), studies that adopt
these approaches report on a limited amount of physical
activities, likely monitored in laboratory conditions (Pham,
Plötz, and Olivier 2010; Zheng et al. 2013). Thus, there is a
need to formulate unsupervised methods that can be applied
to different time scales.

We observe that people adopt some activity routines in
their daily living, with some possible deviations every day.
Based on this observation, we propose a novel approach to
analyse time series activity data. We pre-process the time se-
ries with a smoothing filter (Hodrick and Prescott 1997) and
extract routines and deviations via a sparse and low rank ma-
trix decomposition technique (Lin, Chen, and Ma 2010). We
separately cluster the routines and deviations, and then per-
form a cross product between routine-clusters and deviation-
clusters to find the final memberships for each entry.

Our contributions in this paper are as follows:

• Our approach is different from prior work as it is model-
free, and it uses the whole time series data as opposed to
a subset of motifs or features.

• We propose a novel combination of low rank and sparse
matrix decomposition and time warping techniques for
activity analysis. To our knowledge, our approach is the
first one in the activity analysis studies to incorporate this
approach.

• We show, on two real-life datasets of accelerometer data
(calorie expenditure and steps) and of different time
scales, that our method can capture distinct structures in
ADL time series that are associated with different lev-
els of activeness. Furthermore, we show on a well-known
synthetic dataset (Keogh and Kasetty 2003) that we can
also obtain high accuracy scores on labelled time series
data.

Related Work
Activity analysis studies follow two general directions. The
first approach constructs a model of some preselected activ-
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ities, and establishes the fitness of this model through meth-
ods such as Bayesian Learning (Zheng and Ni 2012) and
Hidden Markov Models (Cook 2010). The obtained models
can serve to predict people’s house activities (Cook 2010), to
group the users based on their activity routines (Zheng and
Ni 2012), or to identify common activity routines (Zheng
and Ni 2012). Model-based methods are commonly applied
on datasets of location and motion sensors. To obtain sound
results in their models, researchers study incorporate do-
main expert knowledge (and perhaps manually annotate the
dataset). This requires substantial effort, and constrains the
quality of the analysis to the extent of the expert’s knowl-
edge ahead of the quality of the dataset.

As an alternative, studies from the second approach ex-
tract features from frequently occurring patterns (motifs
in other words), and then construct classifiers based on
these features. The bioinformatics field spearheads the re-
search on discovering frequent patterns (we refer the read-
ers to the paper of Sandve and Drablos (2006) for an ex-
tensive review). Typically each pattern-based activity recog-
nition study proposes a custom motif-detection algorithm
(Pham, Plötz, and Olivier 2010; Patel, Hsu, and Lee 2012;
Rashidi et al. 2011), while some prefer to directly incorpo-
rate state-of-the-art pattern detection algorithms such as ran-
dom projection (Vahdatpour, Amini, and Sarrafzadeh 2009)
and Closet+ (Ali et al. 2008). Subsequently, for classifica-
tion, studies either apply state-of-the-art supervised learn-
ing techniques such as Support Vector Machines, Deci-
sion Trees (Patel, Hsu, and Lee 2012) or incorporate cus-
tom data structures (like graph-based clustering (Vahdat-
pour, Amini, and Sarrafzadeh 2009), and routine-tree (Ali
et al. 2008)). It is also possible to construct Hidden Markov
Models based on the extracted patterns (Rashidi et al. 2011)
or apply ensemble learning (Zheng et al. 2013). Motif-based
studies obtained empirical success on datasets a large va-
riety of sources: environmental motion sensors, wearable
accelerometers, pressure sensors, and medical analysis data
(such as blood tests and urinalysis).

Due to the computational complexity of finding motifs,
some studies prefer a fixed length and number of motifs
(Vahdatpour, Amini, and Sarrafzadeh 2009). Some other
studies report that the accuracy (or other quality measures)
of the classification and clustering consistently improves as
the number of motifs increase (Rashidi et al. 2011). On
the other hand, some studies show that clustering the en-
tire set of subsequences does not produce meaningful results
(Keogh and Lin 2005). Therefore, the scientists may have to
exhaustively search for the optimal length, and the number
of motifs in their studies. This, again, may limit the repre-
sentation capabilities of the systems.

Methods
We summarize the flow of data processing in Figure 1. We
pre-process the ADL time series data with a smoothing filter
(Hodrick and Prescott 1997) and apply a low rank and sparse
decomposition (Candès et al. 2011) to isolate routines (L-
Matrix) from the deviations (S-Matrix). We separately clus-
ter L-Matrix and S-Matrix, using Dynamic Time Warping
(Keogh and Pazzani 1999) as the distance metric. We use

the well-known Silhouette index (Kaufman and Rousseeuw
2009) to determine the optimal number of clusters. We then
perform a cross product of the two separate cluster sets to
find the final memberships for each day.
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Figure 1: The data flow in our approach. LRS stands for
“Low rank and sparse decomposition”, and ASW stands for
“Average Silhouette Width”

Smoothing Filter
The physical activity time series data may contain noise in
the form of small fluctuations. Such characteristics of the
raw data can deteriorate the quality of clustering. We ad-
dress this issue by applying the Hodrick-Prescott filter (Ho-
drick and Prescott 1997). This is a well-known trend analysis
method in economics. The filter decomposes a given time se-
ries object Y = (y1, ..., ym) into a summation yt = Tt +Ct

such that the objective function

m∑
t=1

Ct
2 + λ

m−1∑
t=2

((Tt+1 − Tt)− (Tt − Tt−1))
2
, (1)

is minimized over (T1, ..., Tm), where Tt represents the
trend component (the desired output), and Ct represents the
cyclical component. Increasing the smoothing parameter (λ)
results in smoother trend components at a cost of more in-
formation loss. We discard the cyclical component and use
the trend component in the further steps.

Matrix Decomposition
The low rank and sparse decomposition is a recently discov-
ered approach that aims to capture regular and symmetric
structures within a possibly corrupted data matrix (Liang et
al. 2012). While it is designed for image processing prob-
lems such as video surveillance and face recognition, it is
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also used other high-dimensional data mining tasks such as
finding topic models in document analysis (Min et al. 2010).

Based on existing studies (Candès et al. 2011), we can
formulate this decomposition problem as

min(‖L‖∗ + γ ‖S‖0)s.t.M = L+ S, (2)

where L is the low-rank matrix, and S is the sparse matrix.
‖L‖∗ denotes the nuclear norm of L, which is the best ap-
proximation for the rank of L. ‖S‖0 is the number of non-
zero entries in S. γ>0 is the parameter to make a trade-off
between the rank of L and the sparsity of S. Theoretical
studies show that it is optimal to set γ as 1/

√
max(n1, n2),

where n1, n2 are the number of rows and columns of M ,
respectively (Candès et al. 2011).

The interpretation of the L-matrix and S-matrix differs
among the related studies. L is commonly regarded as the
“true matrix”, which is recovered from the errors and miss-
ing values denoted in S (Zhou and Tao 2011). In a related
study, L contains linearly aligned images and S contains the
rotational errors from the original matrix (Peng et al. 2010).
In some other image processing studies, L is considered to
be the background and S the non-background objects in the
given images (Kyrillidis and Cevher 2012). As such, de-
pending on the application, the information in both of these
matrices can be useful.

We use the Linearized Alternating Direction Method (Lin,
Chen, and Ma 2010) on the matrix of ADL time series data
to identify common daily routines (in the form of low-rank
matrix) and deviations (in the form of the sparse matrix). To
our knowledge, our study is the first to apply the low rank
and sparse decomposition approach to ADL analysis.

Distance Metric: Dynamic Time Warping
ADL routines are subject to nonlinear warps in the time
dimensions (e.g., waking up 15 minutes late, having lunch
for 30 minutes instead of 45, etc.). Dynamic Time Warping
(DTW) is a dynamic programming-based distance metric to
compensate these warps (Berndt and Clifford 1994). In con-
trast to Euclidean distance, DTW takes local misalignments
into consideration, and reports the optimal warping path be-
tween the given two sequences. The DTW distance between
the time series data Q and P can be calculated as

DTW (Q,P ) = minW (
K∑

k=1

d(wk)), (3)

where d(wk) = (qi − pj)2 such that (qi, pj) is on the warp-
ing path w (Fu 2011). Various studies with artificial datasets
(Keogh and Pazzani 1999), image data of letters in historical
documents (Rath and Manmatha 2003), speech data (Sakoe
and Chiba 1978), and kitchen tool usage data (Pham, Plötz,
and Olivier 2010) suggest that DTW improves the classifi-
cation accuracy of the time series classification algorithms
in comparison to Euclidean distance. DTW is sensitive to
noise (Fu 2011). This can be overcome by applying addi-
tional preprocessing (Rath and Manmatha 2003). We avoid
this problem by applying Hodrick-Prescott filter before the
matrix decomposition stage.

Clustering
We obtain pairwise distance matrices for L-matrix and the
S-matrix. Then we feed these distance matrices to agglom-
erative hierarchical clustering with complete linkage. As a
result, for each row in the original data, there will be one
cluster membership from L-matrix and one cluster member-
ship from S-matrix. To determine the final memberships, we
perform a cross product of L-clusters and S-clusters, i.e.,
we explore all possible combinations of L-clusters and S-
clusters. The maximum possible number of final clusters is
(number of L-clusters) × ( number of S-Clusters). We dis-
card the clusters with no members. To guarantee the optimal
number of clusters, we select the number of L-clusters and
S-clusters that result in the highest average silhouette width.

Experiments
Datasets
CBF Dataset. This artificial dataset (Keogh and Kasetty
2003) contains time series objects that belong to one of three
distinct shape characteristics (i.e., Cylinder c(t), Bell b(t)
and Funnel f(t), see Figure 2). The dataset can be generated
with the following equations:

Figure 2: Samples from the CBF dataset. The axes are unit-
less. Each class of objects (C:Cylinder, B: Bell, F: Funnel)
is defined uniquely by its shape characteristics.

c(t) = (6 + η)χ[a,b](t) + ε(t) (4)

b(t) = (6 + η)χ[a,b](t)
t− a
b− a

+ ε(t) (5)

f(t) = (6 + η)χ[a,b](t)
b− t
b− a

+ ε(t), (6)

where η and ε(t) are drawn from a standard normal distri-
bution, a is an integer drawn uniformly from [16, 32], and
b− a is an integer drawn uniformly from [32, 96]. We have
generated 256 instances for each class (cylinder, bell, and
funnel), each of which contains 256 data points.
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E-Walk Dataset. This dataset is the courtesy of the Yiqi-
zou company, which provide a platform for people to form
social groups and walk together. This dataset contains step
counts of 236 people, who wore modern wearable ac-
celerometers in October 2013 for a month. In its raw form,
each data point represent activities during a single day. Due
to some possible reasons (losing interest in the program, for-
getting to wear the sensors, sensor batteries running out,
etc.), 3108 out of 7080 data points (approximately 44%)
have the value 0. We represent steps time series data in a
matrix where each row represents a person. There are a total
of 236 time series objects, each of which has 30 data points,
one for each day. Here, we can analyse the long-term usage
of pedometers, and the patterns that differentiate the long-
term physical performances.

HealthyTogether Dataset. Previously collected for an-
other study (Chen and Pu 2014), this dataset contains the
calorie expenditure data of 48 users wearing Fitbit (a wear-
able accelerometer) for ten days in the period between April
2013 and June 2013. In its raw form, each data point rep-
resents activity during a single minute. This dataset do not
have any missing values. We process the data in a matrix
where each row represents a day. There are a total of 480
time series objects, each of which has 1440 data points. With
this dataset, we can analyse the effects of daily routines on
the daily physical performance.

Evaluation
Overall Comparison
We compare our method with some well-known base-
line algorithms (namely, K-means, 1-nearest neighbor, and
agglomerative hierarchical clustering). We employed Eu-
clidean distance for K-means and DTW distance in 1-nearest
neighbor and agglomerative hierarchical clustering.

Since the E-Walk and HealthyTogether datasets do not
have labels, we evaluate our method via internal cluster eval-
uation. We specifically employ overall average silhouette
width (Kaufman and Rousseeuw 2009). This value indicates
the quality of the underlying structure of the clusters: values
below 0.25 indicate no structure, values between 0.25 and
0.5 indicate a possibly strong structure, and values above 0.5
indicate a very strong structure (Kaufman and Rousseeuw
2009).

Experiment Accuracy F-1 NMI Jaccard Index
K-means 0.75 0.62 0.51 0.46
Hierarchical 0.81 0.72 0.63 0.58
1-NN 0.93 0.87 0.78 0.77
Our method 0.95 0.92 0.85 0.86

Table 1: The external index scores for the CBF dataset.

Figure 3 conveys the average silhouette width scores for
the three datasets. On average, our method outperforms
baseline methods in ASW by 0.455, and it is able to capture
clusters with high quality. We have applied Wilcoxon signed
rank test with p<0.05 to compare our method’s and baseline
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Figure 3: The average silhouette width scores for clustering
with (denoted by *) and without our method. “HealthyTo-
gether” is abbreviated as “HT”. The lines drawn on 0.25
and 0.5 denote boundary for acceptable and good values
of ASW, respectively. We report the highest average score
achieved with baseline methods.

Cluster Id Median of Daily Steps
E1 1842
E2 4194
E3 6461
E4 10357
E5 10646
E6 13782

Table 2: The median of daily step counts for each cluster in
E-Walk dataset, with ids matching with those in Figure 4.

methods’ ASW scores in each dataset, and validated the sig-
nificance of these improvements.

CBF Results
Since CBF dataset contains labels, we also evaluated CBF
dataset’s output clusters with external evaluation indices (ac-
curacy, F-1 score, normalized mutual information and Jac-
card index) with 10-fold cross validation. Table 1 summa-
rizes these scores in the CBF dataset. Our approach outper-
forms baseline methods in terms of accuracy (by 12%), F-1
score (by 0.18), normalized mutual information (by 0.21),
and cluster purity (by 0.25). For each of these indices, we
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Figure 4: The clusters for the E-Walk dataset (λ = 100 and γ = 0.065). Y axis represents the steps taken and X axis represents
the days.

compared our method against each of the baseline methods
with Wilcoxon signed rank test with p<0.05, and validated
that these improvements are significant.

E-Walk Results
The representatives for each cluster (member with median
number of average steps), and the selected values for the pa-
rameters λ and γ are shown in Figure 4. The median calorie
expenditures for all clusters are shown in Table 2. Through
the 6 clusters that we obtain from this dataset, we can ob-
serve the long-term usage patterns of pedometers. For in-
stance, some people convey a novelty effect, i.e., they per-
formed well in the early days of their pedometer usage,
but then lost their engagement. Such people are generally
grouped in the clusters with lowest average number of steps.
We also observe that regularity of activeness has positive
contribution towards higher average numbers of steps.

HealthyTogether Results
The representatives for each cluster (member with median
calorie expenditure), and the selected values for the param-
eters λ and γ are shown in Figure 5. The median calorie
expenditures for all clusters are shown in Table 3.

The results show that we can characterize 7 types (clus-
ters) of daily activity routines. These routines can be as-
sociated to some persona, such as “Commuter” (H1), who
has two main peaks in the morning and afternoon; “After-
noon Break-taker” (H2), who is more active in the afternoon
with frequent “breaks”; “Early morning person” (H3), who
is more active in the early times of the day; “The Frequent

breaker” (H4), who takes frequent breaks through the day;
“Night Person” (H5), whose is more active late at night;
“Hyperactive” (H6), who has moderate, and continuous ac-
tiveness through the day; and “Traveler” (H7), who has high
and continuous activeness through the day.

Through these 7 clusters, we can observe how the intra-
day patterns can contribute to the average daily activeness.
The average step count increases from the “Commuter” type
of daily routine to “Traveler” type of daily routine. Similar to
the clustering results in the E-Walk dataset, we see that reg-
ular distribution of activeness contributes most to the level
of activeness.

Cluster Id Median of Daily Calories
H1 1412
H2 1519
H3 1587
H4 1640
H5 1660
H6 1862
H7 2353

Table 3: The median of daily step counts for each cluster
in HealthyTogether dataset, with ids matching with those in
Figure 5.

Conclusion
We proposed a novel approach to perform cluster analysis
on ADL data. This approach is different from prior stud-
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Figure 5: The clusters for the HealthyTogether dataset (λ = 100 and γ = 0.026). Y axis represents the calorie expenditure and
X-axis represents the hours in the day.

ies as it can process ADL time series without expert knowl-
edge or micro-pattern extraction. Our approach is useful to
reveal clusters with high external and internal evaluation
scores, and it outperforms baseline algorithms (for instance,
by 12% of accuracy and 0.455 points of average silhouette
width) with statistical significance. The employed matrix de-
composition technique makes our method suitable for high-
dimensional data, paving the way for further possible appli-
cations such as analysing between-subject variabilities and
multi-sensor data.

Our next step is to employ our understandings we ob-
tained from this study to identify and elaborate on predic-
tors or crucial behavior patterns that lend to activeness in
daily physical activity routines. Such an analysis of clusters
was shown to be useful in predicting illnesses based on be-
haviour patterns (Madan et al. 2010).
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