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Abstract

Many distance learning algorithms have been developed in re-
cent years. However, few of them consider the problem when
the class labels of training data are noisy, and this may lead to
serious performance deterioration. In this paper, we present
a robust distance learning method in the presence of label
noise, by extending a previous non-parametric discrimina-
tive distance learning algorithm, i.e., Neighbourhood Com-
ponents Analysis (NCA). Particularly, we analyze the effect
of label noise on the derivative of likelihood with respect to
the transformation matrix, and propose to model the condi-
tional probability of the true label of each point so as to re-
duce that effect. The model is then optimized within the EM
framework, with additional regularization used to avoid over-
fitting. Our experiments on several UCI datasets and a real
dataset with unknown noise patterns show that the proposed
RNCA is more tolerant to class label noise compared to the
original NCA method.

Introduction
The goal of distance learning is to learn a distance func-
tion tailored to some task at hand, and has been found to be
useful in the KNN or other classification algorithms relying
on distances or similarities (Kulis 2012). Many algorithms
(Blitzer, Weinberger, and Saul 2005), (Davis et al. 2007),
(Park et al. 2011) have been developed to achieve this goal
recently. One of the most popular ones is to treat the prob-
lem as learning a linear transformation (e.g., a Mahalanobis
matrix ) using some form of supervision.

One typical example is the Neighbourhood Components
Analysis (NCA) algorithm among others, which is a dis-
criminative non-parametric method with the goal to learn a
Mahalanobis distance measure to be used in the KNN algo-
rithm. The key idea of NCA is to minimize the probability
of error under stochastic neighborhood assignments using
gradient descent. Computationally this is equal to drive the
linear transform of interest in a direction that reduces the
probabilistic intra-class scatter matrix most.

However, one major problem of this type of algorithm is
that, to calculate the intra-class scatter matrix, one has to
know the perfect class labels, which are almost impossible in
many cases. In fact, when the needed class label information
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comes from the web (e.g., through crowdsourcing (Howe
2006) or harvesting them with weak labels by web search-
ing (Bergamo and Torresani 2010)) or when the number of
data to be labeled is huge, they tend to be noisy and inaccu-
rate and using them blindly is dangerous. In particular, many
distance learning algorithms (including NCA) are based on
the idea of minimizing the pairwise distances between ex-
amples within the same category. But if the observed labels
are noisy (i.e., labeled incorrectly), they can be misled to
pull examples from different classes together.

In this paper, we present a robust distance learning
method in the presence of label noise based on the NCA
method (hence called RNCA - robust NCA). The reasons
we choose NCA as our basic model are mainly due to the
fact that NCA is a popular and typical linear transforma-
tion learning-based method and that it is developed under
a well-formulated probabilistic framework. Particularly, we
analyze the effect of label noise on the derivative of likeli-
hood with respect to the transformation matrix, and propose
to model the conditional probability of the true label of each
point for a more robust estimation of intra-class scatter ma-
trix. The model is then optimized within the EM framework.
In addition, considering that the model tends to be complex
under the situation of label noise, we regularize its objec-
tive to avoid overfitting. Our experiments on several UCI
datasets and a real dataset with unknown noise patterns show
that the proposed RNCA is more tolerant to class label noise
compared to the original NCA method.

In what follows, we review the related work in section 2
and the NCA is introduced in Section 3. Section 4 details the
method and experiments are given in Section 5. The paper
concludes in section 6.

Related Work
The problem of label noise is previously studied under the
umbrella of agnostic learning (Kearns, Schapire, and Sellie
1994), in which the relationship between the label and the
data is largely relaxed. It is closely related to overfitting -
any strategy (e.g., regularization) that prevents a learning al-
gorithm from overfitting the data has the capability to reduce
the influence of label noise to some extend. In this sense,
many supervised methods in practice are robust to the la-
bel noise. Despite this, another important factor influencing
generalization is the loss function - some are known to be
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extremely sensitive to the label noise, such as the exponen-
tial loss adopted by Adaboost and even for the hingle loss
adopted by SVM, an incorrectly labelled data point could
lead to arbitrary large loss, despite of the SVM’s noise re-
laxation mechanism1. Metric learning is a kind of supervised
learning and hence suffers from the same problem as well.

Recently many works have been devoted to deal with the
problem of label noise recently (Frénay and Verleysen 2013)
and they can be roughly divided into three categories. The
first type - perhaps the most intuitive type among them - is
to pre-precess the data such that the data points whose la-
bels are likely to be noise will be removed before feeding to
classifier training (Van Hulse, Khoshgoftaar, and Napolitano
2010) (Fefilatyev et al. 2012).

The second type of methods tries to estimate the proba-
bility of their labels being noised and warns the classifier
for this. The key issue here, therefore, is how to identify
those suspicious points confidently. For this, in (Lawrence
and Schölkopf 2001) a probabilistic model of a kernel Fisher
Discriminant is presented in which an EM algorithm is pro-
posed to update the probability of the data point being incor-
rectly labeled. This EM-type algorithm has inspired many
later methods (including this work) in which the true but
unknown label of each data point is treated as latent vari-
able and its posterior given the current label is estimated in
a probabilistic framework (Pal, Mann, and Minerich 2007)
(Bootkrajang and Kabán 2012). Alternatively, a multiple in-
stance learning-based method is proposed in (Leung, Song,
and Zhang 2011) to cope with label noise, but it essentially
has to estimate the most correctly labeled positive samples
in a bag. Some heuristic strategy can also be adopted. For
example, (Cantador and Dorronsoro 2005) takes boosting
to detect the incorrect labels based on the observation that
those data are likely to have a big weight.

The third type of methods uses various robust optimiza-
tion methods or robust estimation methods to bound the in-
fluence of each data point, such that the model behaves sta-
ble despite of the existence of few outliers with incorrect la-
bels. (Wu and Liu 2007) and (Biggio, Nelson, and Laskov
2011) respectively propose to use truncated hinge loss or
kernel matrix correction to improve the robustness of SVM
against label noise. Recently, (Natarajan et al. 2013) pro-
poses a method which modifies any given surrogate loss
function so that it becomes a label noise robust one, and
(Scott, Blanchard, and Handy 2013) studies the problem of
under what conditions that consistent classification with la-
bel noise is possible.

Despite the above development, surprisingly few works
investigate this problem in the context of distance metric
learning. In (Yang, Jin, and Jain 2010) a kernel logistic re-
gression method is proposed to deal with the problem when
the side information used for distance learning is noisy. Our
method is different to (Yang, Jin, and Jain 2010) in that we
do not rely on pairwise side information for distance learn-
ing, and we adopted a non-parametric way instead of a para-

1This mechanism of relaxation in SVM helps to improve its
robustness against perturbation of data points, which is also an im-
portant problem and is not addressed in this paper.

metric model to deal with the label noise problem. Detailed
account will be given later after an introduction to the NCA.

A Brief Introduction to NCA
Neighbourhood components analysis (NCA)(Goldberger et
al. 2004), (Blitzer, Weinberger, and Saul 2005) is a method
of distance metric learning that maximizes the performance
of KNN classification. For a training set containing n data
from k classes, that is: {(x1, y1), (x2, y2), ..., (xn
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The NCA algorithm begins by constructing a complete
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where 1(·) is an indicator function with output 1 if the input
condition is satisfied and 0 otherwise, and C
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= k} is the set in which all data belong to class k. This
can also be understood as the probability for point x
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The object of NCA is then to learn a linear transformation

A such that the log likelihood that all data select the points
within its same category as neighbours is maximized, i.e.,
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Differentiating f with respect the transformation matrix
A yields the gradient which can be used for learning (denote
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To gain further understanding of the NCA algorithm, let
us denote the two terms in the gradient (E.q.(4)) as C

E

and
C

I

, respectively,
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We see that,
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Intuitively, the C
E

term denotes the total scatter matrix of
the data points lying on the manifold induced by A and C

I

is
the corresponding intra-class scatter matrix. E.q.(7) reveals
that, up to a constant matrix, in each step the NCA algo-
rithm tries to seek a better linear transformation such that
after projection the total covariance becomes ’larger’ while
the intra-class covariance becomes ’smaller’. In other words,
the NCA aims to learn a distance transformation with the
following two goals, i.e., to keep the total energy of whole
data set while clustering data points within the same class
more tighter.

The Proposed Method
The analysis above shows that the key to the success of NCA
relies on the accurate estimation of intra-class scatter matrix
C

I

on the manifold. However, when the class labels are in-
accurate or noisy, the estimation of C

I

tends to be inaccurate
(the C

E

will be not influenced by this). To address issue, we
introduce a latent variable y, to represent the true label, and
the observed (noisy) label will be denoted as ŷ from then on.
We model the true conditional probability as the following:
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It can be easily checked that this is a valid probability
measure. E.q. (8) says that the probability of instance x

i

belonging to class k depends on its neighbors’ probability
being class k given their observed labels, no matter what
the observed label of x
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is. Note that this is still a non-
parametric model with the parameters ✓ = {A, �
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Optimizing the Parameters
The log-likelihood objective function of our model takes the
form of:
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But considering that the model tends to be complex under
the situation of label noise, we regularize this log-likelihood
function to prevent overfitting, i.e.,
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where the r(A) is the regularizer of some form. Several op-
tions can be considered here, such as the trace norm and the

LogDet divergence (Davis et al. 2007). In this work, we take
the simple Frobenius norm, i.e., r(A) = ||A||2

F

.
To determine each p(ŷ
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, ✓) we must marginalise the as-
sociated latent variable y, which can done through an EM
algorithm (Dempster, Laird, and Rubin 1977). By introduc-
ing an unknown posterior Q on the true class label y

i

, we
have the following lower bound of the likelihood function,
which will be used as our objective function for parameter
estimation,
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where � is a parameter for model selection and has to be
tuned using cross validation in practice. This bound becomes
an equality if Q(y
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i

, ✓). By assuming a
uniform distribution on p(y = k), and using the notations
defined above, Q can be estimated as follows,

Q(y

i

= k|x
i

, ŷ
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where p
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i

is the discriminative model defined in E.q.(8).
The EM algorithm can be understood as a self-taught al-

gorithm: first we use the current model (with its parameter
vector denoted as ✓t) to estimate the true label of each data
point (E-step), then we optimize the model again based on
the estimated true labels (M-step). For the M-step, we first
rearrange our objective function according to the parameters
of interest (below we temporally drop the regularizer term
for clearness), discarding those items irrelevant, as follows,
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Note that the gradient of regularizer term ��A should be
added on to E.q.(16) before feeding this into a conjugate gra-
dients optimizer.

Comparing E.q.(16) with E.q.(4), we see that the former is
a natural relaxation to that of NCA. Actually, the coefficient
of the intra-class scatter term can be shown to be,
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This can be understood as the strength of the belief that point
i and point j have the same true labels2.
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ik

would be,

L

c

(�

ik

) =

NX

i=1

KX

k=1

Q(y

i

= k|x
i

, ŷ
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By taking the partial derivative and set it to zero, we have,
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observed labels are k.

Implementation
The prediction on the true label y in the E-step (see E.q.(12))
is inherently uncertain, even when the noise level is rela-
tively low - while in this case most of the observed labels ŷ
are reliable. This inspires us to take a conservative strategy
for low-level label noise, by first making an empirical esti-
mation of the probability that the label of x

i

is k based on
the observations:
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ik
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1 if k = ŷ
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then updating the estimation of ↵
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as follows,
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where ⌘ is a mixing parameter with value in [0, 1]. When
⌘ = 1, our model reduces to a soft version of NCA. How to
set this value properly will be discussed in the experimental
section, although in general we can use the cross validation
technique for this.

We summarize the proposed method in Algorithm. 1.

Experiments and Analysis
The Behavior of the Proposed Method
First, three experiments are conducted on the toy data to in-
vestigate the behavior of the proposed method.

2In implementation, we have found that one can first find the
k

⇤ so that k⇤
= argmaxk Q(yi = k|xi, ŷi), and then estimate

the coefficient as ↵ik⇤ ·�jk⇤

pk
⇤

i
. This robust estimator usually leads to

better performance when the noise level is relatively high.

Algorithm 1 Robust Neighbourhood Components Analysis.
Input:

Training set: {(x
i

, ŷ

i

)| i = 1, 2, ..., N} ;
Test set: {(x

i

)| i = 1, 2, ..., N} ;
Parameters: the regularization parameter �, mixing pa-
rameter ⌘,the maximal EM iteration steps T ;

Output:
The prediction y of the test data x

—————- Training Stage
1: Initialisation: set ↵

ik

and �

ik

according to the number
of observations for ŷ

i

= k, otherwise use uniform dis-
tribution for ŷ

i

6= k.
2: Run NCA to initialize the linear transform A.
3: while t  T

4: M-step: optimize the model parameters A and � ac-
cording to E.q.(16) and E.q.(19), respectively.

5: E-step: re-estimate p

k

i

according to E.q.(8) and then
↵

ik

using E.q.(21).
—————- Test Stage

6: Use KNN to make the prediction for the test data using
the learnt distance measure (parametered by A);

Visualizing the influence of label noise on distance learn-
ing We first constructed a small toy dataset by sampling
400 points from two 2D unit normal distributions centered at
(0,0) and (4,0) respectively, with 200 points from each distri-
bution. Then we added three types of label noise artificially
on this dataset: 1) symmetric random noise, i.e., a propor-
tion of points are randomly selected and their corresponding
class labels are flipped; 2) asymmetric label noise, i.e., flip-
ping the labels of randomly chosen points only in one class
of data; and 3) random label noise occurred in some partic-
ular regions (e.g., the boundary between two classes). The
noise level added is about 15% in each case.

Fig. 1 illustrates the respective projection directions learnt
by NCA and our method along with the one using true la-
bels. It can be seen that in all the three cases, the proposed
distance learning method consistently shows better tolerance
against label noise compared to the NCA method.

The effect of mixing parameter ⌘ We study this on the
Balance dataset of UCI database. Fig. 2 shows the system’s
accuracy as a function of ⌘ value. It can be seen that adding
the empirical term (E.q.(20)) is beneficial to the performance
when the noise level is less than 20%. In practice, the mix-
ture weight (⌘) should be set according to the current label
noise level - a relatively large value (0.6 ⇠ 1.0) is advised
if most labels are known to be reliable, otherwise we should
set ⌘ to be a very small value (0.001 or simply 0).

Visualizing the learning process: To visualize how our
estimation of true label (p(y|ŷ, x, A)) evolves during the
training process, we sampled 100 points from two unit 3D
Gaussian distributions and add the random label noise at a
noise level of 20% and run our RNCA algorithm. Figure.3
gives the results. It clearly shows that, as expected, with the
iteration of the EM algorithm, the ’weights’ of the samples
with true labels increase gradually while the weights of those
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Figure 1: Comparison of the projection directions learnt by our method and the NCA on the toy data, where the data point with
label noise is highlighted with a green circle. The three types of label noise are (from left to right): (a) symmetric random label
noise; (b) asymmetric random label noise; (c) label noise occurs on the boundary between two classes. (noise level: 15%).
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Figure 3: Illustration of the evolving of the weight of each point after 4 iterations of the EM algorithm. The size of point is
proportional to its weight, and the data point with label noise is highlighted with a green circle.
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Figure 2: The effect of mixture coefficient ⌘ on the perfor-
mance with different noise level (10% ⇠ 30%). The dash
line is the corresponding baseline performance (i.e., ⌘ = 0)
at each noise level.

with noisy labels shrink. By ”weight” we mean the confi-
dence of the model’s estimation concerning the true label of
each point (see E.q.(12)).

Robustness Against Simulated Label Noise
To compare our method with other distance learning meth-
ods in the presence of label noise, we use 6 datasets from
the UCI database, with 3 multi-class datasets (i.e., Iris, bal-
ance and wine) and 3 datasets with binary labels (i.e., Heart,
vote and ionosphere). Two types of label noise with different
levels (ranging from 0% to 30%) are simulated: asymmet-
ric noise is added to the multi-class datasets and symmetric
noise to the binary-label datasets. Besides NCA, we com-
pare our method with two classic distance learning meth-

ods as well, i.e., ITML(Information-Theoretic Metric Learn-
ing, (Davis et al. 2007)) and LMNN (Large Margin Near-
est Neighbors,(Blitzer, Weinberger, and Saul 2005)), and
use the KNN without distance learning as the baseline. All
the parameters involved in these methods are either chosen
through 5 cross validation or using the default settings.

Fig. 4 gives the results. It can be seen that the performance
of all the methods declines with the increasing of noise
level. However, our RNCA method performs best consis-
tently over all the datasets. Especially when the noise level is
relatively high (30%), our method significantly outperforms
other distance learning methods without taking label noise
into account, such as NCA, ITML and LMNN.

Evaluation on Real World Dataset
To demonstrate the effectiveness of our approach on real
world dataset with unknown label noise patterns, we con-
structed a database ’Horseface’3 quickly and cheaply by
searching for images using keyword ’horse face’ and ’not
horse face’4, respectively. This results in 600 weakly labeled
images with 300 images for each class. Suppose that we
want to train a classifier to distinguish an image of horse
face from other type of images using these. However, as il-
lustrated in Fig. 5, images provided by the search engine are
somewhat unreliable and we do not know exactly the pat-
terns of label noise as well.

To evaluate the performance we relabel all the 600 images

3Collected by Google image search engine: available on request
4We use the query without the quotes and remove some portion

of false positive samples manually to satisfy the noise level needed.
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Figure 4: Comparison of the performance of our method with other distance learning methods in the present of label noise.
(a-c) symmetric random label noise; (d-e) asymmetric label noise.

to provide a ground truth - an image will be labeled as ’horse
face’ (positive) only if there is at least one whole horse face
shown in it, otherwise it is labeled as negative. Totally, there
are 38 false positive images (i.e., with label noise) and 63
false negative images in the dataset.

For feature representation, we first resize each image to
100 ⇥ 100 without alignment or cutting. Then we extract
a bag of SIFT features from each image by partitioning it
into 400 overlapped grids with size 20⇥ 20 in pixels. A dic-
tionary with 200 atoms is then constructed using these. So
each image is encoded as a 200 dimensional vector. Besides
comparing with several distance learning algorithms such as
NCA, ITML, and LMNN, we also compare our algorithm
with the SVM classifier with histogram intersection kernel
(HIK), which is a widely used in object classification.

Figure.6 gives the performance with 5-folds cross valida-
tion. It can be seen that although the HIK method, which is
specially designed for object classification, performs better
than other distance learning algorithms such as ITML and
LMNN, it may still be influenced by the label noise. On the
other hand, our robust NCA distance learning algorithm per-
forms best among the compared ones.

Conclusions
Noisy labels are almost inevitable in current machine learn-
ing applications, and they may result in suboptimal projec-
tion directions for similarity computation. We propose a ro-
bust distance learning algorithm in the presence of label
noise based on the Neighbourhood Components Analysis
method and demonstrate its effectiveness in both simulated
data and a real world application with unknown label noise.

Figure 5: Illustration of typical images in the Horseface
dataset harvested from the Web. (a) images in the positive
category and (b) images with negative labels, where images
with noisy labels are marked with a red square.
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Figure 6: Comparison of classification performance of vari-
ous algorithms on the Horseface dataset with label noise.
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