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Abstract

Due to recent empirical success, machine learning algo-
rithms have drawn sufficient attention and are becoming
important analysis tools in financial industry. In particu-
lar, as the core engine of many financial services such as
private wealth and pension fund management, portfolio
management calls for the application of those novel al-
gorithms. Most of portfolio allocation strategies do not
account for costs from market frictions such as transac-
tion costs and capital gain taxes, as the complexity of
sensible cost models often causes the induced problem
intractable. In this paper, we propose a doubly regular-
ized portfolio that provides a modest but effective so-
lution to the above difficulty. Specifically, as all kinds
of trading costs primarily root in large transaction vol-
umes, to reduce volumes we synergistically combine
two penalty terms with classic risk minimization mod-
els to ensure: (1) only a small set of assets are selected
to invest in each period; (2) portfolios in consecutive
trading periods are similar. To assess the new portfo-
lio, we apply standard evaluation criteria and conduct
extensive experiments on well-known benchmarks and
market datasets. Compared with various state-of-the-art
portfolios, the proposed portfolio demonstrates a supe-
rior performance of having both higher risk-adjusted re-
turns and dramatically decreased transaction volumes.

Introduction
Academic research in portfolio management and allocation
has had a remarkable impact on many aspects of the financial
services industry, from mutual fund management to asset
pricing and insurance to corporate risk management. Most
applications build upon the pathbreaking work of Markowitz
(Markowitz 1952), which provides optimal rules of allocat-
ing wealth across assets by estimating means and covari-
ances of asset returns in a single static period. However,
due to the inaccurate estimation of parameters this mean-
variance framework is notorious for producing extreme port-
folio weights that fluctuate substantially over time and per-
form poorly under out-of-sample settings (Michaud 1989).
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Typically, the mean-variance portfolios aim at maximiz-
ing expected returns for a given level of risk tolerance or
minimizing the investment risk while achieving a target re-
turn. The trade-off between these two critical factors, i.e. risk
and return, plays a central role in the Markowitz portfolio
theory. Generally, portfolio allocation with an explicit mea-
sure of risk-adjusted returns rather than gross growth has
been highlighted in finance. One of the common standard
criteria for measuring the risk-adjusted return is called the
Sharpe ratio (Sharpe 1966).

Meanwhile, the rapid growth of globalized markets urges
the implementation of advanced data analysis tools in fi-
nance. Recently, machine learning algorithms have been
identified as important technical analysis tools and have
called intensive attention. Different from the perspectives
of finance community, machine learning researchers rely
more on the real time data stream to design optimal port-
folio strategies (Blum and Kalai 1999; Borodin, El-Yaniv,
and Gogan 2004; Agarwal et al. 2006; Györfi, Lugosi, and
Udina 2006; Li and Hoi 2012; Li et al. 2012). For example,
one recent paper (Li and Hoi 2012) estimates on-line mov-
ing average reversion from sequential market data and then
maximizes expected returns to achieve optimal portfolio se-
lection rules. This approach and many other papers mainly
depend upon the effectiveness of the growth optimal port-
folio (GOP) strategy (Thorp 1971). However, the principal
drawbacks of GOP (Samuelson 1969), such as high return
volatility along the investment horizon and extremely long
time realization, inevitably appear in those data-driven GOP
strategies. Moreover, due to the complexity of cost mod-
els characterizing market frictions such as transaction costs,
market impacts and capital gain taxes (Cvitanic 2001), many
papers either ignore costs or only subtract ad hoc costs af-
terward. Therefore, huge rebalancing volumes, substantial
changes of asset allocation and extreme high asset turnover
rates can often be observed across all the investment periods.
Admittedly, incorporating a full-fledged cost model is diffi-
cult. It should involve the factors related to financial rules,
policy and specific trading activities, such as commission
rules for different asset classes and investors, taxation policy
for different institutions and investment periods, and implicit
costs from the real trading implementation given a strategy.
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In order to overcome those limitations, in this paper, we
propose a doubly regularized portfolio allocation strategy
to bridge the gap between return chasing and cost reduc-
tion. Specifically, we take advantage of the classic mean-
variance portfolio framework to control volatility risk and
impose two regularization terms on the portfolio structure to
reduce trading volumes thus implicitly mitigating the costs
from market frictions. The first regularization term is moti-
vated from structured sparsity (Huang, Zhang, and Metaxas
2009), where we aim to determine portfolio weights that are
allocated across assets sparsely. In other words, only a small
number of assets are considered to form a low-risk portfo-
lio. The second regularization term underlines a consistent
allocation, where we ensure portfolio weights between con-
secutive investment periods are similar. Those two regular-
ization terms help to control trading volumes such that costs
from market frictions can be implicitly reduced. Besides,
they represent typical concerns of individual investors in
private wealth management. To validate the proposed strat-
egy, we utilize a battery of standard finance metrics, includ-
ing Sharpe ratios, cumulative wealth, turnovers and volatil-
ity to measure the performance from various perspectives.
Our extensive empirical studies and comparisons over sev-
eral well-known financial benchmarks and real-world mar-
ket data clearly illustrate the superiority of the new strategy.

Mean-Variance Portfolio
We briefly review one of the most representative port-
folio frameworks, i.e., Mean-Variance Portfolio (MVP),
which is a cornerstone of Markowitz’s modern portfolio
theory (Markowitz 1952). The fundamental assumption of
MVP is that investors are risk averse, which means that they
tend to choose the portfolio with a lower risk if profits are the
same. Accordingly, the only way to achieve a higher profit
is to take more risk. Since MVP characterizes the risk by the
variance of asset returns and models the profits by the ex-
pected asset returns, investors will optimize their investment
by selecting mean-variance efficient portfolios. In particu-
lar, assume at time t the covariance matrix of asset returns is
⌃t and the expected net return is denoted by a column vector
rt. The MVP weight !t is obtained by solving the following
optimization problem:

!⇤
t = argmin

!t

!t
>⌃t!t � ⌫r>t !t (1)

s.t. !t
>1 = 1,

where !t indicates the proportion of the invested wealth
across all assets, and ⌫ > 0 is a risk tolerance factor. The
above cost function that has two components, the variance
of portfolio returns !t

>⌃t!t and the expected return r>t !t,
captures the aforementioned risk-return tradeoff.

Since the ingenious work by Markowitz, many variants
of MVP have been developed (Brandt 2010). Among them,
without considering estimating means, minimum-variance
portfolios often perform stronger than mean-variance port-
folios for out-of-sample tests (Jagannathan and Ma 2003).
That is because it is more difficult to accurately estimate
means than covariances of asset returns (Merton 1980) and

Table 1: Summary of key notations
Symbol Definition

N Number of assets
T Number of investing periods
t Index of investment periods
!t Portfolio weight vector
!t� Re-normalized portfolio before rebalancing
!(j)t Portfolio weight on the jth asset at time t
S(j)t Price of the jth asset at time t
R(j)t Gross return of the jth asset at time t
r!(j)t Trade of the jth asset at time t
⌃̂t Estimated covariance matrix at time t

errors in estimates of means have a larger impact on portfo-
lio weights than those in covariances. In addition, portfolio
performances could be improved when a shrinkage estima-
tor or a one factor model is applied for covariance matrix es-
timation (Ledoit and Wolf 2003). The recent papers (Brodie
et al. 2009; DeMiguel et al. 2009; Fan, Zhang, and Yu 2012)
show superior portfolio performances when various types of
norm regularities are combined in the MVP framework.

Methodology
We first briefly introduce the notations and financial terms
used in this paper. Investment time is modeled as discrete
and indexed as t = 0, ..., T , with t = 0 the initial period
and t = T the terminal period. The investment over a set
of assets in the tth time period is denoted by a column vec-
tor representing portfolio weights !t = {!(j)t}Nj=1, where
N is the number of assets. Since !(j)t specifies the per-
centage of invested wealth over the jth asset, the sum of
all the allocated portfolio weights always equals one, i.e.
!>

t 1 =
PN

j=1 !(j)t = 1. In addition, the value !(j)t > 0

indicates that investors take a long position of the jth asset,
and !(j)t < 0 means that they take a short sale position. A
short sale position means investors borrow an asset to sell
and then invest its liquidation on other assets. A negative
sign of the short sale weight indicates investors will suffer
a loss if the price of this asset starts to mount. We also de-
note Rt = {R(j)t}Nj=1 as the asset gross returns from t� 1

to t. The gross return R(j)t for the jth asset is computed
as R(j)t = S(j)t/S(j)t�1

, where S(j)t and S(j)t�1
are the

prices of the jth asset at time t and t � 1, respectively. Ac-
cordingly, the portfolio net return µt from time t to t+1 can
be easily calculated as µt = !>

t Rt+1 � 1. We will use
the term “return” to represent “gross return” in the sequel.
Table 1 summarizes the key notations in the paper.

Formulation

We consider investors who operate portfolio management in
a market containing N assets with the return Rt at time t.
According to the change of the portfolio weights between
consecutive rebalancing periods, the trades at time t are
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computed by:

r!t = !t � !t� =
⇥
r!(1)t · · ·r!(N)t

⇤>
, (2)

where r!(j)t = !(j)t � !(j)t�
indicates the trades of

rebalancing the jth asset at the tth time period; !t� de-
notes the re-normalized portfolio weight before the rebal-
ancing at time t. Specifically, investors buy more asset j if
r!(j)t > 0, and sell asset j if r!(j)t < 0. After a trad-
ing period, the portfolio weights have changed due to the
asset price fluctuation. Thus, we need to calculate the re-
normalized portfolio weight !t� as

!t� =
!t�1 �Rt

!>
t�1Rt

, (3)

where the symbol � denotes the Hadamard product and
!>

t�1Rt represents the portfolio return at time t.
By the principle of risk minimization, we derive the dou-

bly regularized portfolio, where the objective is to choose
a limited set of assets to invest and control the changes of
the asset positions. The changes of the positions during each
rebalancing period are directly related to transaction costs,
market impacts and taxes, while the number of selected as-
sets is related to management costs. In particular, the reg-
ularization term on the position changes is denoted by the
`2-norm as

||!t � !t�k22 =
NX

j=1

h
!(j)t � !(j)t�

i2
. (4)

The sparse selection of assets is realized through imposing
the `1 regularization term as

||!t||1 =
NX

j=1

|!(j)t |. (5)

Then the doubly regularized portfolio allocation is formed
as

min
!t

!>
t ⌃̂t!t + �1||!t||1 + �2||!t � !t� ||22 (6)

s.t. !>
t 1 = 1.

The core component in the above objective function is the
minimization of the portfolio variance !>

t ⌃̂t!t, where ⌃̂t 2
RN⇥N is the estimated covariance matrix of asset returns
from historical data at time t. Besides the unit constraint of
the sum of the portfolio weights, we impose two additional
regularization terms weighted by two coefficients �1 and �2.
The first regularization with an `1-norm enforces structured
sparsity to portfolio weights (Huang, Zhang, and Metaxas
2009) so that !t will only have a few non-zero elements,
which indicates only a small set of assets are selected. In ad-
dition, the sparsity regularization term prohibits any extreme
holding of long or short-sale positions of a particular asset.
The second regularization with an `2-norm ||!t�!t� ||22 im-
poses the consistency of portfolio weights before and after
each rebalance. Hence, the `2 regularization term implicitly
reduces turnover rates and trading costs by moderately con-
straining the changes of asset positions. In summary, with

Algorithm 1 Doubly Regularized Portfolio (DRP)
Input: Asset returns data points {R�⌧+1, · · · ,RT },
Initialization:
Investment period t = 0;
Initial portfolio weight vector !0;
for t = 1! T � 1 do

Estimate the covariance matrix of asset returns:

⌃̂t  {R�⌧+t+1, · · · ,Rt}

Renormalize the portfolio weight vector !t� using
Equation (3);
Compute the optimal portfolio weight vector !t by
solving Equation (6);
Perform rebalancing !t � !t� ;

end for
Output:
The portfolio weight vectors {!t}T�1

t=0 and the portfolio
returns {µt}T�1

t=0 .

the core component of minimum-variance and the two struc-
ture regularizations, we can derive the doubly regularized
portfolio (DRP) with risk minimization.

Note that the above doubly regularized quadratic loss
in Equation (6) can be linked to existing learning frame-
works in both machine learning and statistics. For example,
if �1 + �2 = 1, the doubly regularized form becomes the
so called elastic-net penalty, a convex combination of the
lasso and ridge penalty (Zou and Hastie 2005). A similar
regularization framework has also been combined with the
hinge loss to derive the doubly regularized support vector
machine (Wang, Zhu, and Zou 2006).

Optimization and Analysis
In the above formulation of DRP, we need to estimate the co-
variance matrix of asset returns ⌃̂t. Instead of using a sam-
ple covariance matrix, we apply a factor model (Fan, Fan,
and Lv 2008), which has been shown effective for estimat-
ing high-dimensional covariance matrices. Besides, differ-
ent from the focus of growth optimal portfolio research (Li
and Hoi 2012), we do not rely on any prediction of portfo-
lio returns in the procedure of designing portfolio allocation
rules. It is well-known that the prediction of future returns
is extremely challenging (Merton 1980; Rapach and Zhou
2012). In addition, we notice that a proposed gross-exposure
constrained (GEC) MVP also achieves a sparse selection of
assets (Fan, Zhang, and Yu 2012). However, since the con-
sistency of consecutive portfolios has not been considered,
there is no guarantee that the GEC portfolio can reduce as-
set trading volumes and the corresponding costs from market
frictions. Hence, the uniqueness of the proposed DRP port-
folio lies in the advantages of minimizing investment risks
and meanwhile reducing trading costs. We discuss the opti-
mization strategy of the DRP portfolio below.

Without considering the `1-norm regularization term in
the objective function, the optimization problem defined in
Equation (6) is a standard convex quadratic problem (QP).
Sparsity-inducing norms have often been adapted in vari-
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Table 2: Summary of the tested datasets
Dataset Frequency Time Period # of data N

FF25 Monthly 07/01/1963 - 12/31/2004 498 25
FF48 Monthly 07/01/1963 - 12/31/2004 498 48
FF100 Monthly 07/01/1963 - 12/31/2004 498 100
ETF Weekly 01/01/2008 - 10/30/2012 252 139
INDEX Weekly 02/15/2008 - 10/30/2012 246 26
EQUITY Weekly 01/01/2008 - 10/30/2012 252 181

ous machine learning problems if the given a priori knowl-
edge supports such assumptions (Bach et al. 2011), similar
to our formulation for the sparse portfolio allocation. With-
out considering the constraint !>

t 1 = 1, problem (6) can
be viewed as an `1-norm regularized least squares problem,
which is known as Lasso (Tibshirani 1996) in statistics and a
sparse recovery problem in compressed sensing (Candès and
Tao 2006). Many efficient algorithms have been proposed
for solving lasso or `1 sparse recovery problems. To name
just a few, these methods include FISTA (Beck and Teboulle
2009), FPC (Hale, Yin, and Zhang 2008), TFOCS (Becker,
Candès, and Grant 2011), etc. When both the `1-norm and
the constraint !>

t 1 = 1 are present, the problem is much
harder than QP and Lasso. Although it is possible to imple-
ment an efficient first-order algorithm based on the projected
proximal gradient method (Boyd and Vandenberghe 2004)
or the alternating direction method of multipliers (Boyd et
al. 2011), we use a commercial software toolbox TOM-
LAB/SNOPT developed by the Stanford Systems Optimiza-
tion Laboratory (SOL) for simplicity.

Sequential Portfolio Allocation

In order to perform the process of sequential portfolio allo-
cation, we first need to choose a time window ⌧ over which
to perform the estimation of ⌃̂t. To avoid overfitting, we split
the entire dataset into two parts. The first ⌧ data points, de-
noted as {R�⌧+1, · · · ,R0}, are used as the training data to
estimate the initial covariance matrix. The sequential port-
folio allocation starts from t = 0 and lasts a total number
of T time periods. We apply the “rolling-horizon” proce-
dure (DeMiguel et al. 2009) to sequentially perform port-
folio allocation and evaluate the performance. Specifically,
we shift the estimation window along the time axis by in-
cluding the data point of the next period and dropping the
data point of the earliest period. This “rolling-horizon” pro-
cedure is repeated until the end of the dataset. At the end
of this process, we will have T portfolio vectors derived for
each strategy, denoted as {!t}T�1

t=0 . The portfolio allocation
at the last point t = T is excluded due to the lack of future
data for performance evaluation. For calculating the initial
portfolio !0, we can either choose a simple heuristics such
as an equally-weighted portfolio, or derive the optimal solu-
tion of the problem defined in Equation (6) without the con-
sistency regularization. The algorithm chart 1 summarizes
the sequential procedure of the proposed DRP strategy.

Table 3: Portfolio Sharpe ratios (%) with p-values
Method FF25 FF48 FF100 ETF INDEX EQUITY

EW 26.58 24.30 26.97 6.01 5.98 9.03
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

VW 28.53 23.37 29.76 5.85 5.74 8.95
(0.01) (0.22) (0.00) (0.22) (0.60) (0.86)

OLMAR 21.50 24.48 23.60 7.61 15.80 12.15
(0.01) (0.93) (0.22) (0.44) (0.06) (0.27)

FMMV 39.71 27.34 45.94 11.51 22.54 13.86
(0.02) (0.60) (0.00) (0.16) (0.14) (0.07)

GEC 39.85 30.34 46.44 17.87 22.69 13.84
(0.01) (0.13) (0.00) (0.12) (0.15) (0.07)

DRP 41.67 30.37 48.27 19.64 23.33 13.88
(0.00) (0.13) (0.00) (0.15) (0.12) (0.05)

Experiment
In this section, we will report the results of our empirical
studies using several real-world benchmarks.

Data
In the experiments, two types of datasets are chosen for
performance validation and comparison. The first type of
datasets is from the well-known academic benchmarks
called Fama and French datasets (Fama and French 1992).
Briefly speaking, based on the data sampled from the U.S.
stock market, the benchmarks were formed for different fi-
nancial segments. For example, FF48 contains monthly re-
turns of 48 portfolios representing different industrial sec-
tors, and FF100 includes 100 portfolios formed on the
basis of size and book-to-market ratio. Fama and French
datasets have been recognized as standard testbeds and heav-
ily adopted in finance research because of its extensive cov-
erage to asset classes and very long historical data series.
The second type of datasets represents three popular finan-
cial asset classes, exchange-traded funds (ETF), major world
stock market indices (INDEX), and individual equities sam-
pled from the large-cap segment of the Russell 200 index
(EQUITY). The data of the prices are all crawled from Ya-
hoo! Finance in a weekly base from 2008 to 2012. They rep-
resent the commonly chosen investment opportunity sets by
investors. For example, ETFs that have the advantage over
conventional mutual funds of low costs, tax efficiency, and
stock-like features have been highlighted in both the indus-
try and academia. The 26 major stock market indices cover
all the mature world wide financial markets. The selected
stocks pool of the large-cap segment of the U.S. stock mar-
ket measure the performance of the 200 largest U.S. compa-
nies and cover 63% of total market capitalization.1

Table 2 summarizes those benchmark datasets used in
our experiments. Note that these two types of datasets pro-
vide different prospectives for performance evaluation. The
Fama and French datasets essentially emphasize the long-
term performance of the proposed strategy, as results of such
long historical datasets introduce limited selection bias and

1After removing those with incomplete historical data, for
which the assets did not exist at the beginning of the chosen trading
periods, finally we have 181 stocks in the EQUITY dataset.
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Table 4: Cumulative wealth
Method FF25 FF48 FF100 ETF INDEX EQUITY

EW 98.06 54.77 123.92 1.20 1.12 1.30
VW 137.05 48.06 198.32 1.19 1.22 1.29
OLMAR 33.56 42.34 57.74 1.21 1.24 1.34
FMMV 246.35 46.78 523.47 1.05 1.30 1.38
GEC 225.37 53.64 496.01 1.22 1.30 1.38
DRP 266.32 54.74 646.91 1.27 1.31 1.38

are difficult to be manipulated. The experiments on the real
world short-term datasets underline the robustness of the
proposed portfolio with respect to the high volatility envi-
ronment after the recent financial crisis.

Experimental Settings
We set the length of the estimation window as ⌧ = 120
(DeMiguel et al. 2009), which means that the previous 120
data points are used to make the current decisions of portfo-
lio allocation. For the parameters in DRP such as �1 and
�2, cross validation is applied to determine the optimal
values. For the comparison study, we consider the follow-
ing methods: a) equally-weighted portfolio (EW); b) value-
weighted portfolio (VW); c) factor model based minimum-
variance portfolio (FMMV) (Fan, Fan, and Lv 2008); d)
gross-exposure constrained (GEC) portfolio (Fan, Zhang,
and Yu 2012); e) on-line moving average reversion (OL-
MAR) based portfolio (Li and Hoi 2012); f) the proposed
doubly regularized portfolio (DRP). The first four portfo-
lios typify those in finance. For example, the EW port-
folio is a naive approach yet has been empirically shown
to mostly outperform 14 models across seven empirical
datasets (DeMiguel, Garlappi, and Uppal 2009). VW mim-
ics a market portfolio. The FMMV portfolio adopts a fac-
tor model to estimate high-dimensional covariance matrices
and has shown a large performance improvement over MVP.
The GEC portfolio shows better results than MVP by simply
imposing a sparsity constraint. The OLMAR portfolio that
is based on GOP represents a more data-driven approach
developed by machine learning researchers and has been
shown robust and outperforms 12 different portfolio strate-
gies across five datasets. For all the compared approaches,
we follow the recommended parameter settings in the corre-
sponding studies.

Performance Metrics
We compare the out-of-sample performance of the portfo-
lios using four standard criteria in finance (Brandt 2010):
(i) Sharpe ratios; (ii) cumulative wealth; iii) turnovers; (iv)
volatility. These four evaluation metrics represent different
focuses on measuring portfolio performance. The Sharpe
ratio (SR) measures the reward-to-risk ratio of a portfolio
strategy, which is computed as the portfolio return normal-
ized by its standard deviation:

SR =
µ̂

�̂
, µ̂ =

1

T

T�1X

t=0

µt, �̂ =

vuut 1

T

T�1X

t=0

(µt � µ̂)2. (7)

Table 5: Portfolio turnovers (%)
Method FF25 FF48 FF100 ETF INDEX EQUITY

OLMAR 36.88 26.22 32.23 17.22 14.96 15.55
FMMV 43.11 27.39 55.23 99.72 7.60 10.99
GEC 36.80 6.05 46.49 13.23 7.56 10.77
DRP 12.75 4.23 20.42 4.78 5.01 9.62

where µ̂ is the mean of portfolio net returns and �̂ represents
the standard deviation of portfolio net returns.

The cumulative wealth of a portfolio measures the total
profit yield from the portfolio strategy across investment pe-
riods without considering any risks and costs. By starting
with one dollar, the cumulative wealth (CW) is computed by

CW =
T�1Y

t=0

!>
t Rt+1. (8)

The portfolio turnover indicates the frequency of trading
activities and the volumes of rebalancing. It has been recog-
nized as an important performance metric for portfolio man-
agement, since a high turnover inevitably generates high ex-
plicit and implicit trading costs thus degenerating the real
return. The portfolio turnover rate is calculated as an aver-
age absolute value of the rebalancing trades across all the
assets and over all the trading periods:

Turnover =
1

T � 1

T�1X

t=1

||!t � !�
t ||1, (9)

where T � 1 indicates the total number of the rebalancing
periods and !�

t is the re-normalized portfolio weight vector
before rebalance.

Finally, the volatility represents a quantitative measure-
ment of investment risk, which is computed as the standard
deviation of returns. To achieve a fair comparison of the
portfolios with the different rebalancing periods, we com-
pute the annualized volatility by

p
M �̂, where M is the

frequency of the rebalance each year, where �̂ is computed
as (7). For the monthly and weekly rebalancing frequency,
M = 12 and M = 52, respectively.

To measure the statistical significance of the difference
between the volatility and the Sharpe ratio for two compar-
ing portfolios, we report the p-values under the correspond-
ing results in Tables 3 and 6. To compute the p-values for the
case of no i.i.d. returns, we adopt the studentized circular
block bootstrapping methodology (Ledoit and Wolf 2011).
We test the statistical significance by using the EW portfolio
as the benchmark, 1000 bootstrap resamples, a 95% signifi-
cance level, and a block size equal to 5.

Results
Tables 3, 4, 5 and 6 summarize portfolio performance eval-
uated by the Sharpe ratios, cumulative wealth, turnovers
and volatility for all the tested benchmarks, respectively.
Among the comparisons of various methods, the values in
bold denote the winners’ performance. The proposed DRP
strategy achieves the best performance in most of the cases.
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Figure 1: The curves of cumulative wealth across the investment periods for different portfolios on a) FF25, b) FF48, c) FF100,
d) ETF, e) INDEX, and f) EQUITY datasets.

In Table 3, where we report the annualized Sharpe ratios
in percentage, DRP generates consistent higher Sharpe ra-
tios than the rest, which indicates that it achieves higher
risk-adjusted returns. The GEC portfolio archives approx-
imately as high Sharpe ratios, as its strategy embodies a
similar idea of risk minimization and sparse portfolio selec-
tion. Even for the portfolio returns measured by cumulative
wealth, DRP is among of the top performers in most of the
cases, as shown in Table 4. In addition, Table 5 illustrates
that DRP has dramatically lower turnover rates, reduced by
10.7% ⇠ 66.2% compared with GEC. The reduction of the
turnover rates is attributed to the unique consistency regular-
ization in the DRP formulation. Accordingly, DRP not only
improves risk-adjusted returns but also ensures much less
trading costs. VW has a zero turnover rate by definition and
EW incurs the equal portfolio allocation thus having negligi-
ble trading volumes. Hence we exclude these two heuristic
portfolios and only report the results from the other port-
folios in Table 5. Finally, Table 6 unsurprisingly illustrates
that the DRP strategy has the lowest volatility risk in most of
the cases. Although FMMV is designed to create a minimal
variance portfolio, without having constraints or regularities
on the portfolio structure its out-of-sample variance cannot
be ensured minimal.

Furthermore, in order to compare the trend and dynamics
of the return growth, Figure 1 illustrates the curves of the cu-
mulative wealth over the investment periods for the different
datasets. Apparently, DRP outperforms the others with the
visible margins on four of the tested datasets in most of the
time periods, as shown in Figures 1(a), 1(c), 1(d) and 1(f).
Those figures show DRP grows more steadily together with
a reduced volatility across most of the investment periods.

Table 6: Portfolio volatilities (%) with p-values
Method FF25 FF48 FF100 ETF INDEX EQUITY

EW 17.66 16.97 18.33 21.98 13.32 18.34
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

VW 17.32 16.76 18.10 21.79 13.04 18.00
(0.23) (0.16) (0.05) (0.02) (0.00) (0.00)

OLMAR 16.97 15.49 17.66 16.12 7.21 14.42
(0.32) (0.01) (0.14) (0.00) (0.00) (0.00)

FMMV 13.42 13.86 13.42 2.51 6.80 13.62
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

GEC 13.42 13.05 13.1 6.29 6.79 13.61
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DRP 12.96 12.82 12.77 6.92 6.85 13.61
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Conclusion

We have presented a novel doubly regularized portfolio
strategy through leveraging structure regularization, i.e.
sparsity and consistency, to the conventional minimum-
variance portfolio framework. In particular, the sparsity reg-
ularization enforces to choose a small set of assets with a
minimum risk and the consistency regularization produces
similar asset positions in consecutive investment periods.
Extensive experiments and comparisons on both long-term
and short-term financial benchmarks and real-world market
datasets are conducted. The experimental results show that,
by virtue of the synergistic combination of the classic risk
minimization framework and the novel structure regulariza-
tion, the proposed portfolio constantly achieves higher risk-
adjusted returns with much lower implied costs measured by
turnover rates. Our future work includes appropriately incor-
porating market friction models into the studied framework,
such as capital gain taxes and market price impacts.
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