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Abstract

We consider the task of grouping doctors with respect
to communication patterns exhibited in outpatient vis-
its. We propose a novel approach toward this end in
which we model speech act transitions in conversa-
tions via a log-linear model incorporating physician
specific components. We train this model over tran-
scripts of outpatient visits annotated with speech act
codes and then cluster physicians in (a transformation
of) this parameter space. We find significant correla-
tions between the induced groupings and patient survey
response data comprising ratings of physician commu-
nication. Furthermore, the novel sequential component
model we leverage to induce this clustering allows us
to explore differences across these groups. This work
demonstrates how statistical AI might be used to better
understand (and ultimately improve) physician commu-
nication.

Introduction and Motivation
Physician-patient communication is a critical component of
health-care (Ong et al. 1995). There is evidence that the re-
lationship between the physician and the patient, and specif-
ically the degree of patient-centeredness in communication,
affects patient enablement, satisfaction, and burden of symp-
toms (Little et al. 2001). Several studies have reported an as-
sociation between metrics of physician-patient communica-
tion quality and health outcomes (Epstein and Street 2007;
Kaplan, Greenfield, and Ware Jr 1989; Oates, Weston, and
Jordan 2000). Furthermore, a systematic review of studies
investigating physician-patient communication found sev-
eral verbal behaviors to be significantly associated with
health outcomes (Beck, Daughtridge, and Sloane 2002).

To analyze, evaluate and improve physician communica-
tion skills, investigators have proposed annotation schemas
that capture salient properties of physician-patient interac-
tions (Roter and Larson 2002; Laws et al. 2011a). Here we
use the Generalized Medical Interaction Analysis System
(GMIAS) (Laws 2013), which is explicitly based in speech
act theory (Searle 1969; Habermas 1984; Austin 1955).
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Roughly, speech acts capture the social acts embodied in ut-
terances, such as promising or asking a question.

Insofar as they capture salient communication patterns in
consultations, such annotations may permit the development
of evidence based interventions to improve communication
quality. Ultimately, we would like to use quantitative meth-
ods to better understand how physicians differ in interaction
styles and what makes for effective clinical communication.
Toward this end, we propose a novel approach to grouping
physicians with respect their communication styles, specifi-
cally as a function of how they use speech acts. The hope is
that discovering latent communication types will allow us to
link attributes of communication to clinically relevant out-
comes; this may in turn inform interventions aimed at im-
proving physician communication. The induced groupings
might also be used prospectively, e.g. by assigning new (pre-
viously unobserved) physicians to existing groups and then
targeting their training accordingly.

Our approach relies on a novel additive sequential compo-
nent model that extends our recent work in this vein (Wal-
lace et al. 2013) to incorporate physician specific compo-
nents into the transition probability model. These capture,
e.g., doctor tendencies to deviate from baseline dialogue pat-
terns. We then represent physicians by estimates of these
parameters, and cluster them in a reduced-dimensionality
transformation of this space. Ideally, induced groupings of
physicians would correlate with measures of care, including
patient satisfaction regarding physician communication. To
assess if this is the case, we perform a hierarchical regression
analysis to test for correlation between physician cluster as-
signments and survey data comprising patient assessments
of physician communication.

The specific contributions of this work as follows.
• So far as we are aware, this is the first work to incorpo-

rate interlocutor-level terms in a sequential (Markovian)
model of conversation.

• We propose to use (estimates) of these terms to subse-
quently induce groupings of speakers (physicians). We
show that this novel strategy discovers clusters of physi-
cians that significantly correlate with patient ratings.

• We present clinically interesting model output regarding
characteristics of physician-patient interactions, thereby
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demonstrating that the proposed additive sequential com-
ponent model can be used to interpret differences between
these groups with respect to communication patterns.

Physician-Patient Communication
Recognizing the pressing need to better understand clini-
cal interaction processes, health sciences researchers have
recently begun to investigate physician-patient communica-
tion at a granular level. Specifically, this has been accom-
plished with systems that annotate utterances comprising
transcribed physician-patient interactions with codes that
capture clinically meaningful properties of speech, thereby
affording new insights into clinical communication (Roter
and Larson 2002; Wilson et al. 2010; Laws et al. 2011a;
2011b; 2012). Until recently, outpatient visit coding systems
tended to focus on the topical content of utterances (Roter
and Larson 2002), ignoring sociolinguistic constructs such
as speech acts (our focus here). The Generalized Medical
Interaction Analysis System (GMIAS) (Laws et al. 2011a;
Laws 2013) described below was designed to incorporate
this information.

Existing explorations of annotated interactions have pre-
dominantly relied on simple analyses of codes, such as cal-
culating the proportion of time spent on a given topic (or the
percent of utterances of a specific speech act type) during
visits. While this sort of analysis can be informative (Laws
et al. 2011a), it is rather limited: e.g., existing approaches do
not explicitly model physician variation in communication
patterns. Here we propose a model to accomplish this aim.
This work thus represents an important step toward quantita-
tively analyzing transcripts of physician-patient interactions.

Dataset
Our data comprises transcripts manually segmented and an-
notated according to the General Medical Interaction Anal-
ysis System (GMIAS) (Laws et al. 2011a; Laws 2013).
Briefly, the GMIAS segments conversations into utterances
and then assigns each utterance a speech act code. (The
GMIAS also annotates each utterance with a contextualiz-
ing topic, but in this work we focus on speech acts.) Speech
acts are rooted in sociolinguistic theory (Searle 1969; Haber-
mas 1984; Austin 1955) and capture the social acts embod-
ied in utterances, such as promising, issuing a directive or
asking a question. An excerpt from a transcript annotated
with GMIAS speech act codes is shown in Table 1.

The 10 high-level speech act types codified in the
GMIAS are: ask question, commissive, continuation, con-
versation management, directive, empathy, give informa-
tion, humor/levity, missing/other, and social-ritual. These
are summarized as follows (Wallace et al. 2013). Ask ques-
tion is self-explanatory. Utterances in which the speaker
makes a promise or resolves to take action are commissives.
A continuation refers to the completion of a previously in-
terrupted speech act (these are rare). Conversation manage-
ment describes utterances that facilitate turn-taking or guide
discussion (‘talk about talk’). Directives refer to statements
that look to control or influence the behavior of the interlocu-
tor. Utterances that express responses to emotions, concerns

Speaker Utterance Speech act
P Um, my pain medication Give information
D Ummhmm. Conv. management
D Ok. Conv. management
P Ok? I want the full amount

for this last time.
Directive

D Well, we know you talked
about forty for one month

Give information

D and then come down to
twenty.

Give information

P Yeah... Conv. management
P but I want the forty for this

last time.
Give information

D And then you’re gonna, and
then you want

Ask question

P To cut it Give information
D to cut it cold turkey? Ask question
P I’m gonna cut it, I’m gonna

cut it.
Commissive

Table 1: An excerpt of an interaction annotated with GMIAS
speech act codes.

or feelings are coded under empathy. Communication of
(purported) facts falls under give information. Humor/levity
captures jokes and jovial conversation. Missing/other is the
same as for topics. Finally, social-ritual utterances represent
formalities (e.g., “thank you”).

Inter-annotator agreement has been observed to be high
for the task of coding utterances with speech acts (kappa
ranging from 0.81 to 0.95). Details on operational label-
ing criteria are provided elsewhere (Laws 2013). For this
work, we experiment with 360 physician-patient visits anno-
tated with GMIAS speech act codes. In total, these comprise
41 doctors, hence we have an average of 7 annotated visits
per physician with corresponding range (1, 15). The median
visit length in the corpus is 605 utterances.

In addition to the annotated transcripts, for each visit we
have survey data from a follow-up questionnaire issued to
patients. Specifically, this includes responses to questions
pertaining to physician communication. We list these in Ta-
ble 2 (we place this table near the results to assist interpre-
tation). All responses are on an ordinal (Likert) scale com-
prising integer values 1 (excellent) to 5 (poor), inclusive. We
note that in practice, however, respondents (patients) rarely
provide ratings of worse than 2 (and practically never worse
than 3).

Grouping Physicians by Communication Style
We now present our strategy for identifying physician com-
munication styles from annotated data, which comprises two
steps: (1) postulating (and estimating the parameters of) a
model of patient-physician outpatient communication, and,
(2) clustering the physician specific parameter estimates
(one such vector per physician) comprising said model to
induce a grouping of physicians. We depict this approach
schematically in Figure 1.

We perform the feature-space reduction step primarily to
reduce noise and to facilitate visualization and interpreta-
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empirical transition probabilitiesFigure 2: Left: discovered physician clusters (and mean patient responses from sessions involving doctors therein). Right:
coefficients and 95% CI’s from a regression of patient survey data on cluster assignments.

given the speech act of the preceding utterance st�1 and the
doctor d is proportional to an additive (on the exponential
scale) combination of (1) the log baseline probability of st,
which we denote by ⇡st

, (2) the general (across physicians)
influence or correlation due to st�1 preceding st (�st�1,st

),
and, (3) the relative frequency with which the transition from
st�1 to st tends to be observed in visits specifically involv-
ing the doctor d (�d

st�1,st
). In sum:

P (st|st�1, d) / exp{⇡st + �st�1,st + �d
st�1,st

} (2)

A normalizing factor is necessary to ensure a valid probabil-
ity.

This is similar to recently proposed additive, genera-
tive models of text (Eisenstein, Ahmed, and Xing 2011;
Paul 2012), except that here we are extending such mod-
els to sequential tasks. We note that we have proposed a
variant of this additive sequential model (though exclud-
ing doctor specific terms) for modeling topics and speech
acts jointly in work currently under review. We then take the

(doctor-specific) �d
st�1,st

terms as our ✓̂
d

values. By lever-
aging physician specific components, we directly capture the
relative differences in speech act transition tendencies across
doctors. We fix the ⇡ to the log of the observed frequency
of the respective speech acts, and we fit the other model
components with a standard Newton-based gradient descent
method, similar to (Eisenstein, Ahmed, and Xing 2011).

2
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✓̂1,0 ✓̂1,1 · · · ✓̂1,M

...
...

. . .
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3
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Related Work
To our knowledge, this is the first attempt to use natural lan-
guage processing to cluster doctors with respect to how they
communicate with their patients. We also believe this is the

first work on clustering speakers with respect to speech act
usage in conversation. However there has been work on re-
lated tasks that look to cluster speakers with respect to ob-
served patterns in conversations. Grothendieck et al. (2009),
e.g., showed that individuals can be meaningfully clustered
by their conversational turn-taking behavior, insofar as the
discovered clusters correlate with population traits.

Elsewhere, Mairesse et al. (2006; 2007) argue that per-
sonality type (e.g., extraversion) affects language produc-
tion, and show that these types can be recognized via lan-
guage cues, in line with other work in this direction (Ober-
lander and Gill 2006). Other efforts have focussed on clus-
tering and/or segmenting speakers in multi-party conver-
sations based primarily on auditory signals (e.g., (Jin and
Schultz 2004)); there has also been previous work on mod-
eling (and predicting) speech acts in conversations (Stolcke
et al. 2000).

Results
We show clustering results using the proposed log-linear
component model in Figure 2. On the left, we show the
identified clusters in the PCA-reduced space; mean average
patient responses to the questions in Table ?? provided af-
ter sessions involving doctors assigned to the ‘gray’ cluster
(upper left) were 1.57; for physicians in the ‘blue’ (lower
right) cluster, the analogous aggregate summary response
was 1.73. The difference in means is meant only to be illus-
trative; we also performed a more rigorous regression anal-
ysis of the cluster assignments.

Specifically, to assess the association between cluster as-
signments and patient feedback regarding physician com-
munication, we used a two-level linear mixed effects model
(Rabe-Hesketh and Skrondal 2008) with a random intercept
to account for the nesting of patients within doctors. This
random intercept represents the combined effects of omitted
doctor characteristics and heterogeneity that is unexplained
by the clustering. Note that this is a more ‘conservative’ ap-
proach than a model that treats patients that visit a given
physician as being independent.

The right-hand side of Figure 2 shows the estimated cor-
relation coefficients for each of the 12 questions in Table
?? and the p-values corresponding to the hypothesis that the

Figure 1: The proposed approach to clustering providers. We
represent each physician via estimates of the M doctor spe-
cific parameters defined by the proposed component tran-
sition model (Equation 2). We then cluster physicians in a
reduced dimensionality projection of this space.

tion. A sensitivity analysis carried out subsequent to the
main evaluation showed that clustering in the ‘raw’ (unre-
duced) parameter space produces comparable results.

Modeling Doctor Specific Conversational
Attributes via JAS
Our aim is to estimate parameters from annotated data that
capture physician-level communication characteristics with
respect to speech act usage. To this end we extend the joint,
additive, sequential (JAS) model we have previously pro-
posed (Wallace et al. 2013). This model assumes that transi-
tion probabilities (here, probabilities of one speech act fol-
lowing another) are log-linear with respect to separate com-
ponents corresponding, e.g., to background speech act fre-
quencies. Here we focus only on speech acts and ignore
the topical annotations also present in the GMIAS. Ignoring
physicians for the moment, this gives rise to the following
simple transition model:

P (st|st−1) ∝ exp{πst + σst−1,st} (1)

Where we are denoting the speech act at time t by st, the log
of background speech act frequencies by π, and terms cor-
responding to effects due to correlations between adjacent
speech acts by σst−1,st . We fix the πst terms to the observed
frequencies of the respective speech acts in the data. Here
we have dropped the normalizing term necessary to ensure a
valid probability. Next we will extend this simple model to
include physician-level terms.

We will denote the set of doctors by D and individual
physicians by dr. We first add a component that corresponds
to doctor specific deviations from the baseline (mean) fre-
quencies of speech acts, πdr. Hence there are |D| such com-
ponents. Second, we include a component to capture de-
viations from mean transition probabilities, σdrs , for each
speech act s and doctor dr. Third, to account for turn-taking
effects, we include terms that capture the ‘speaker transition
pattern’ and its correlation with speech act types. We denote
speaker transition patterns by ρ. An example of a speaker
transition pattern is ‘d→ d’, which denotes “doctor to doc-
tor”, i.e., that the corresponding utterance was spoken by the
doctor (rather than the patient) and so too was the utterance
that preceded it. We add four such components, one for each
possible speaker pattern: ‘p → p’ (“patient to patient”), ‘p

Speech 
Actt-1

Speech 
Actt

ρt-1 ρt

... ...

will extend this simple model to include physician-specific
attributes.

Specifically, we add the following components. First, a
component that corresponds to doctor specific deviations
from the baseline frequencies of speech acts, ⇡dr. Second,
deviations from mean transition probabilities, �dr

s , for each
speech act s. Third, to account for turn-taking effects, we
include terms that capture the ‘speaker transition pattern’
and its correlation with speech act types. We denote speaker
transition patterns by ⇢. An example of a speaker transition
pattern is ‘d ! d’, which denotes “doctor to doctor”, i.e.,
that the corresponding utterance was spoken by the doctor
(rather than the patient) and so too was the utterance that
preceded it. We add four such components, one for each
possible speaker pattern: ‘p ! p’ (“patient to patient”), ‘p
! d’, ‘d ! d’ and ‘d ! d’. Each of these gets a compo-
nent �dr

⇢ , again with dimensionality equal to the number of
speech acts.

P (st|st�1, dr, ⇢) =

1

Z
exp{⇡st

+ ⇡dr
st

+ �dr
⇢,st

+ �st�1,st
+ �dr

st�1,st
} (2)

Here Z is a normalizing term factoring in the conditioning
terms st�1, d and ⇢:

Z =
X

s0

exp{⇡s0 + ⇡dr
s0 + �dr

⇢,s0 + �st�1,s0 + �dr
st�1,s0} (3)

Where we are summing over all speech acts s0. We fit this
model via gradient descent (specifically, Newton optimiza-
tion), as outlined elsewhere (Eisenstein, Ahmed, and Xing
2011; Wallace et al. 2013). Ideally, we would also incor-
porate �dr

⇢,s,s0 terms corresponding to speech act transitions
crossed with speaker string patterns (⇢). However, inclusion
of such terms would result in an impracticably large num-
ber of parameters, especially because we have limited anno-
tated data. We therefore use the factorization in Equation 2.
Even this model gives rise to a large number (thousands) of
parameters; we therefore placed priors on all physician spe-
cific terms (⇡dr, �dr

s and �dr
⇢ ) ⇠ Normal(0, 0.5) (recall

that this is on the exponential scale). We continued descent
until likelihood ceased to increase or a maximum number of
iterations was reached (here, 100).

This component-based approach is attractive because it
allows us to isolate different factors in speech-act usage
across physicians. For example, the �dr

⇢ terms capture
physician-specific differences in speech-act use with respect
to different turn-taking patterns, and the �dr

st�1
terms capture

differences in the relative frequencies with which speech-act
transitions occur.

Such fine-grained parameters are crucial to interpreting
the output. It is not enough to cluster physicians via some
black-box mechanism, even if such clusters are found to cor-
relate with outcome metrics: a useful model in this case must
expose differences in communication styles between clus-
ters. We will return to this point in Section , highlighting
specific parameters of interest between physician groups.

How is the provider who takes care of your HIV at ...
Overall

Q1 explaining the results of tests in a way that you understand?
Q2 giving you facts about the benefits and risks of treatment?
Q3 telling you what to do if certain problems or symptoms occur?
Q4 demonstrating caring, compassion, and understanding?
Q5 understanding your health worries and concerns?

HIV-specific
Q6 talking with you about your sex life?
Q7 asking you about stresses in your life that may affect your
health?
Q8 asking about problems with alcohol?
Q9 asking about problems with street drugs like heroin and co-
caine?

Adherence
Q10 giving you information about the right way to take your an-
tiretroviral medicines?
Q11 understanding the problems you have taking your antiretro-
viral medicines?
Q12 helping you solve problems you have taking your antiretro-
viral medicines the right way?

Table 2: Survey questions regarding provider (physician)
communication that patients were asked following visits.
Responses were provided on an ordinal scale from 1 (ex-
cellent) to 5 (poor).

Clustering Physicians

To cluster physicians, we construct a matrix of row-vectors
representing physicians. Each row corresponds to a doctor
and is composed of their corresponding physician-specific
parameter estimates. Hence we construct a row correspond-
ing to a specific doctor (dr) as: {⇡dr,�dr

s ,�dr
⇢ }. However

we drop ⇢ terms corresponding to p ! p turns, as (presum-
ably), they don’t directly reflect on physician communica-
tion attributes. We stack 41 of these (one per physician) to
create a design matrix. We reduce the dimensionality of this
matrix via PCA and project the vector representation of each
physician into this space.

To induce groupings in this space, we simply use k-means
(Hartigan and Wong 1979). Because we have only 41 doc-
tors in total, we set k=2. Very crudely, we might thus hope to
find one group of ‘good’ communicators and another group
of comparatively ‘poor’ communicators. We next present
results from this analysis that suggests that the discovered
clusters indeed correlate with patient response data. We then
show how group distributions of the physician-specific pa-
rameters comprising our JAS model can provide insights into
differences between these groups.

T dr
n

Ndr

dr
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+ ⇡dr
st

+ �dr
⇢,st

+ �st�1,st
+ �dr

st�1,st
} (2)

Here Z is a normalizing term factoring in the conditioning
terms st�1, d and ⇢:

Z =
X

s0

exp{⇡s0 + ⇡dr
s0 + �dr

⇢,s0 + �st�1,s0 + �dr
st�1,s0} (3)

Where we are summing over all speech acts s0. We fit this
model via gradient descent (specifically, Newton optimiza-
tion), as outlined elsewhere (Eisenstein, Ahmed, and Xing
2011; Wallace et al. 2013). Ideally, we would also incor-
porate �dr

⇢,s,s0 terms corresponding to speech act transitions
crossed with speaker string patterns (⇢). However, inclusion
of such terms would result in an impracticably large num-
ber of parameters, especially because we have limited anno-
tated data. We therefore use the factorization in Equation 2.
Even this model gives rise to a large number (thousands) of
parameters; we therefore placed priors on all physician spe-
cific terms (⇡dr, �dr

s and �dr
⇢ ) ⇠ Normal(0, 0.5) (recall

that this is on the exponential scale). We continued descent
until likelihood ceased to increase or a maximum number of
iterations was reached (here, 100).

This component-based approach is attractive because it
allows us to isolate different factors in speech-act usage
across physicians. For example, the �dr

⇢ terms capture
physician-specific differences in speech-act use with respect
to different turn-taking patterns, and the �dr

st�1
terms capture

differences in the relative frequencies with which speech-act
transitions occur.

Such fine-grained parameters are crucial to interpreting
the output. It is not enough to cluster physicians via some
black-box mechanism, even if such clusters are found to cor-
relate with outcome metrics: a useful model in this case must
expose differences in communication styles between clus-
ters. We will return to this point in Section , highlighting
specific parameters of interest between physician groups.

Clustering Physicians
To cluster physicians, we construct a matrix of row-vectors
representing physicians. Each row corresponds to a doctor
and is composed of their corresponding physician-specific
parameter estimates. Hence we construct a row correspond-
ing to a specific doctor (dr) as: {⇡dr,�dr

s ,�dr
⇢ }. However

we drop ⇢ terms corresponding to p ! p turns, as (presum-
ably), they don’t directly reflect on physician communica-
tion attributes. We stack 41 of these (one per physician) to
create a design matrix. We reduce the dimensionality of this
matrix via PCA and project the vector representation of each
physician into this space.

To induce groupings in this space, we simply use k-means
(Hartigan and Wong 1979). Because we have only 41 doc-
tors in total, we set k=2. Very crudely, we might thus hope to
find one group of ‘good’ communicators and another group
of comparatively ‘poor’ communicators. We next present
results from this analysis that suggests that the discovered
clusters indeed correlate with patient response data. We then
show how group distributions of the physician-specific pa-
rameters comprising our JAS model can provide insights into
differences between these groups.

T dr
n

Ndr

dr
|D|

Results
Our aim here is to evaluate the clustering induced using
the approach outlined above. The relevant question is: do
measurements of individual physician communication qual-
ity correlate with cluster assignments? To address this, we
leverage patient feedback provided in response to the ques-
tions shown in Table 2. (Recall that this feedback was pro-
vided following each visit.)

Specifically, to assess the association between physician
cluster assignments and patient feedback regarding commu-
nication, we used a two-level linear mixed effects model
(Rabe-Hesketh and Skrondal 2008) with a random inter-
cept to account for the nesting of patients within doctors.
This random intercept represents the combined effects of
omitted doctor characteristics and heterogeneity that is un-
explained by the clustering. We assume that ‘cluster’ ef-
fects vary across the three sets of questions shown in Ta-
ble 2. That is, we assume physician groupings will exhibit
different degrees of correlation with questions around com-
munication addressing overall, HIV-specific and adherence
issues. These questions were structured in this way by the
domain experts who formulated them.

We denote the question number (1-12) by k, the physician
by j and the visit (equivalently, the patient) by i (recall that
we have more than one visit for most physicians). Further,
we define the function g(k) which maps questions into the

Figure 2: Graphical representation of the model realized by
Equation 2. The ρ terms are speaker role indicators (patient
or doctor). We have Ndr sessions for each dr ∈ D; T drn de-
notes the length of the nth session for a given dr. Parameters
inside the box implicitly depend on the physician term.

→ d’, ‘d→ d’ and ‘d→ p’. Each of these gets a component
for each doctor λdrρ , again with dimensionality equal to the
number of speech acts.1

Putting these terms together, we have the following model
for the probability of speech act st conditioned on the pre-
ceding speech act, the speaker pattern and the participating
physician (see also Figure 2):

P (st|st−1, ρt, dr) =
1

Z
exp{πst + πdrst + λdrρt,st + σst−1,st + σdrst−1,st} (2)

Here Z is a normalizing term factoring in the conditioning
terms st−1, dr and ρt:

Z =
∑

s′

exp{πs′ +πdrs′ +λdrρt,s′ +σst−1,s′ +σ
dr
st−1,s′} (3)

Where we are summing over all speech acts s′. Ideally,
we would also incorporate σdrρt,s,s′ terms corresponding to
speech act transitions crossed with speaker turn-taking pat-
terns (ρ terms). However, inclusion of such terms would re-
sult in an impracticably large number of parameters, espe-
cially because we have limited annotated data. We there-
fore use the factorization in Equation 2. We fit this model
via gradient descent (specifically, Newton optimization), as
outlined elsewhere (Eisenstein, Ahmed, and Xing 2011).
Because even this factorization gives rise to a large num-
ber (thousands) of parameters, we place Gaussian priors
on all physician specific terms (πdr, σdrs and λdrρ ) ∼
Normal(0, 0.25) (recall that this is on the log scale). We
continued descent until likelihood ceased to increase or a
maximum number of iterations was reached (here, 100).

1A reviewer helpfully pointed out that care should be taken
here to ensure model identifiability. Here, e.g., the σdr

s components
are potentially problematic because they can be absorbed into the
‘baseline’ σs’s. This is mitigated by our strong ridge priors, how-
ever. Further, subsequent analyses verified that the results remain
qualitatively unchanged under a suitable recoding.
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This component-based approach is attractive because it
allows us to isolate different factors in speech act usage
across physicians. For example, the λdrρ terms capture physi-
cian specific differences in speech act usage with respect to
different turn-taking patterns, while the σdrst−1

terms capture
differences in the relative frequencies with which speech act
transitions occur in visits involving different physicians.

Such fine-grained parameters are crucial to interpreting
model output. It is not enough to cluster physicians via some
black-box mechanism, even if such clusters are found to cor-
relate with outcome metrics: a useful model in this case must
expose differences in communication styles between clus-
ters. We will return to this point in the Results selection,
highlighting specific parameters of interest between physi-
cian groups.

Clustering Physicians
To cluster physicians, we construct a matrix of row-vectors
representing physicians. Each row corresponds to a doctor
and is composed of their corresponding physician specific
parameter estimates. Hence we construct a row correspond-
ing to a specific doctor (dr) as: {πdr,σdrs ,λdrρ }. However
we drop ρ terms corresponding to p → p turns, as (presum-
ably) they don’t directly reflect on physician communication
attributes. We stack 41 of these (one per physician) to create
a design matrix. We reduce the dimensionality of this ma-
trix via PCA – keeping the first two dimensions – and then
project the vector representation of each physician into this
space.

To induce groupings in this space, we simply use k-means
(Hartigan and Wong 1979). Because we have only 41 doc-
tors in total, we set k=2. Very crudely, we might thus hope to
find one group of ‘good’ communicators and another group
of comparatively ‘poor’ communicators. This is obviously
an over-simplification, but seems a reasonable aim given
limited data. We next present results from this analysis that
suggests that the discovered clusters indeed correlate with
patient response data. We then show how group distributions
of the physician specific parameters comprising our model
can provide insights into differences between these groups.

Results
Our aim here is to evaluate the clustering induced using
the approach outlined above. The relevant question is: do
measurements of individual physician communication qual-
ity correlate with cluster assignments? To address this, we
leverage patient feedback provided in response to the ques-
tions shown in Table 2. (Recall that this feedback was pro-
vided following each visit.)

Specifically, to assess the association between physician
cluster assignments and patient feedback regarding commu-
nication, we used a three-level linear mixed effects model
(Rabe-Hesketh and Skrondal 2008) to account for the nest-
ing of patients within doctors and the multiple questions an-
swered by each patient. This random intercept represents the
combined effects of omitted doctor characteristics and het-
erogeneity that is unexplained by the clustering. We assume
that ‘cluster’ effects vary across the three sets of questions

How is the provider who takes care of your HIV at ...
Overall

Q1 explaining the results of tests in a way that you understand?
Q2 giving you facts about the benefits and risks of treatment?
Q3 telling you what to do if certain problems or symptoms occur?
Q4 demonstrating caring, compassion, and understanding?
Q5 understanding your health worries and concerns?

HIV-specific
Q6 talking with you about your sex life?
Q7 asking you about stresses in your life that may affect your
health?
Q8 asking about problems with alcohol?
Q9 asking about problems with street drugs like heroin and co-
caine?

Adherence
Q10 giving you information about the right way to take your an-
tiretroviral medicines?
Q11 understanding the problems you have taking your antiretro-
viral medicines?
Q12 helping you solve problems you have taking your antiretro-
viral medicines the right way?

Table 2: Survey questions regarding provider (physician)
communication that patients were asked following visits.
Responses were provided on an ordinal scale from 1 (ex-
cellent) to 5 (poor).

shown in Table 2. That is, we assume physician groupings
will exhibit different degrees of correlation with questions
around communication addressing overall, HIV-specific and
adherence issues. These questions were structured in this
way by the domain experts who formulated them.

We denote the question number (1-12) by k, the physi-
cian by j and the visit (equivalently, the patient) by i (recall
that we have more than one visit for most physicians). Fur-
ther, we define the function g(k) which maps questions into
the three groupings shown in Table 2. For example, g(10)
= 3, as question 10 belongs to the third (Adherence) set of
questions. Finally, we introduce the cluster indicator c0(j),
which is 1 if and only if physician j has been assigned to
cluster 0 (obviously the cluster ‘numbering’ is arbitrary).
Putting these terms together, we model patient response to
question k after visit i involving physician j, ykij , as follows

ykij = βkj + βg(k)c0 c0(j) (4)

Where

βkj ∼ Normal(µk, σjk) (5)

We fit this model via gradient-based optimization to esti-
mate coefficients and associated standard errors. We are pri-
marily interested in the βg(k)c0 terms; if these are non-zero, it
implies that the clusters discovered from the data correlate
with patient assessments of physician communication.

We show the induced clustering in Figure 3 (a), and in
Figure 3 (b) we show the coefficient estimates and associated
95% confidence intervals for patient responses to questions
concerning physicians in the two induced clusters. Rows
correspond to question groupings (Table 2). We report p-
values for each group of questions (recall that we assume
a different correlation for each, as per Equation 4) with re-
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Figure 3: Discovered groups of physicians (a) and estimated differences between them (b), with respect to patient responses to
questions surrounding physician communication. For the latter we show estimates and 95% confidence intervals for coefficients
corresponding to the two induced clusters (Equation 4). Rows correspond to the three sets of questions in Table 2. Due to space
constraints we do not show Q5 here (it is very similar to Q4). We report corresponding p-values for each of set of questions
(first plot in each row). Physicians in the blue (circles) cluster receive consistently higher scores (worse reviews) than those in
the gray (triangles) cluster, across all questions. We have omitted a single member of the latter group (far to the right of all
plotted points) to ease visualization. This difference is significant (p < .05) for questions regarding communication around
HIV-specific issues, and it is suggestive for the two other sets of questions.

Overall
Q Blue ( ) cluster mean Gray (N) cluster mean

Q1 1.50 (1.40, 1.60) 1.42 (1.30, 1.54)
Q2 1.57 (1.47, 1.66) 1.49 (1.37, 1.61)
Q3 1.68 (1.55, 1.81) 1.60 (1.46, 1.74)
Q4 1.48 (1.38, 1.59) 1.41 (1.28, 1.53)
Q5 1.56 (1.44, 1.68) 1.49 (1.35, 1.62)

HIV-specific
Q Blue ( ) cluster mean Gray (N) cluster mean

Q6 2.12 (1.93, 2.30) 1.91 (1.70, 2.13)
Q7 1.97 (1.81, 2.13) 1.77 (1.57, 1.96)
Q8 1.98 (1.82, 2.15) 1.78 (1.58, 1.98)
Q9 1.93 (1.76, 2.11) 1.73 (1.52, 1.94)

Adherence
Q Blue ( ) cluster mean Gray (N) cluster mean

Q10 1.50 (1.38, 1.63) 1.43 (1.27, 1.58)
Q11 1.64 (1.52, 1.75) 1.56 (1.41, 1.71)
Q12 1.61 (1.49, 1.74) 1.53 (1.38, 1.69)

Table 3: Means and confidence intervals of patient responses
to questions involving physicians comprising the respective
clusters. Physicians in the gray cluster (N) receive consis-
tently better (lower) marks from patients.

spect to the null hypothesis that mean patient responses are
the same between clusters for these questions.

A clear pattern emerges: physicians in the blue ( ) group
consistently receive less favorable reviews than those in the
gray (N) group (recall that lower is better here). This differ-
ence is particularly pronounced for questions around HIV-
specific communication (p < .05). For the other two sets

of questions, the difference is consistent and the p-value is
suggestive, though not significant. Thus the discovered clus-
ters correlate with patient feedback. But what is different
between these groups that might account for this difference?

To explore this, we can consider specific parameter value
distributions over the physicians comprising the respec-
tive clusterings. One phenomenon that might result in pa-
tient dissatisfaction is that of “advising without permis-
sion” (Gaume et al. 2009; Moyers, Miller, and Hendrickson
2005), in which physicians offer unsolicited advice. Relat-
edly, physicians may promise to take action (e.g., run a test)
without first discussing it with the patient. In our model,
such tendencies would manifest in the λdrd→d,commissive and
λdrd→d,directive terms, which express the relative likelihood of
the corresponding physician issuing commissives and direc-
tives (respectively), within a single ‘turn’ (i.e., not directly
in response to a patient utterance). In Figure 4 we show his-
tograms of these parameter values for the physicians com-
prising the two clusters, with the same color coding as in
Figure 3. We have fit independent normals to the data from
the respective clusters, denoted by the solid and dotted lines
for the gray (N) and blue ( ) clusters, respectively.

The parameters are indeed different between physician
groups, as we would expect under the hypothesis that ad-
vising without patient permission negatively correlates with
patient satisfaction around communication. Indeed, for both
d → d, commissive and the d → d, directive, a t-test be-
tween group values suggests a difference with p < .001).2
And the difference is in the expected direction: physicians

2We recognize the assumption of normality is not necessarily
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Figure 4: Histograms (and fitted normals) for model parameter estimates across the physicians comprising the two induced
clusters of physicians. See text for discussion.

who seem to advise (or make decisions) without patient in-
put receive poorer marks from patients. Interestingly, how-
ever, the trend is reversed when we consider the the param-
eter corresponding to the transition from Ask Q to Directive
(i.e., σdrask q, directive; Figure 4c). That is, directives – most of
which are issued by physicians – follow questions more of-
ten in interactions involving doctors that belong to the fa-
vored gray (solid line) cluster. We might speculate that pa-
tients appreciate instruction (or action) when consulted, but
not when unsolicited.

Related Work
To our knowledge, this is the first attempt to use natural lan-
guage processing to cluster doctors with respect to how they
communicate with their patients. We also believe this is the
first work on clustering interlocutors with respect to speech
act usage in conversation. However in interesting recent re-
lated work Howes et al. (2013) found that patterns of con-
servational topics seem to correlate with patient satisfaction
and that features from dialogue transcripts may predict treat-
ment adherence.

More generally, there has been related work on clustering
speakers with respect to observed patterns in conversations.
Grothendieck et al. (2009) clustered speakers by their turn-
taking behavior and found that clusters correlate with popu-
lation traits. Mairesse et al. (2006; 2007) argue that person-
ality type affects language use, and show that these types
can be recognized (see also (Oberlander and Gill 2006)).
Other efforts have focussed on clustering and/or segment-
ing speakers in multi-party conversations based on auditory
signals (e.g., (Jin and Schultz 2004)).

There has also been some work on modeling (and pre-
dicting) speech acts in conversations (Stolcke et al. 2000).
Our own prior work has specifically considered doing
so for physician-patient interactions (Wallace et al. 2013;
2014). And others have explored visual structures of patient-
provider interactions to qualitatively assess communication
(Cretchley et al. 2010; Angus et al. 2012). However, these
works did not look to subsequently identify groups of physi-
cians with respect to observed conversational patterns.

warranted here, but this provides a crude measure of difference.

Discussion, Future Directions and Limitations
We have introduced novel model of speech act use in
physician-patient visits that factorizes the probability of a
given speech act into shared and physician specific terms.
We used estimates of this model’s parameters to represent
physicians, and then clustered these representations. We
found that the induced clusters significantly correlated with
patient survey response data regarding physician communi-
cation. And we found (tentative) quantitative evidence for
the hypothesis that the practice of ‘advising without permis-
sion’ correlates negatively with patient ratings of physician
communication quality. In future work we hope to explore
this and related phenomena more carefully. Eventually we
hope such investigations lead to evidence-based interven-
tions targeted at improving patient care.

We acknowledge that the model we have presented is lim-
ited in that it still makes the naı̈ve first-order Markov as-
sumption regarding dialogue, when in reality conversation
exhibits longer-range and non-linear contingencies (e.g.,
conversational threads). However we believe even this sim-
ple model captures the most salient properties of conversa-
tion (and indeed, that we find correlations with patient marks
would seem to support this). Moreover, while we have in-
corporated physician specific terms for speaker dyads (the ρ
terms) and speech acts, we do not have terms that capture
the interaction between physician, speaker and transition, as
this would result in an unwieldy number of parameters. This
means that even though we exclude the p→ p speaker terms
when we induce clusters, some of the signal we pick up on
may still be due to differences in patient populations rather
than to the physician.
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