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Abstract
Higher-order tensors are becoming prevalent in many
scientific areas such as computer vision, social network
analysis, data mining and neuroscience. Traditional ten-
sor decomposition approaches face three major chal-
lenges: model selecting, gross corruptions and compu-
tational efficiency. To address these problems, we first
propose a parallel trace norm regularized tensor de-
composition method, and formulate it as a convex op-
timization problem. This method does not require the
rank of each mode to be specified beforehand, and can
automatically determine the number of factors in each
mode through our optimization scheme. By considering
the low-rank structure of the observed tensor, we ana-
lyze the equivalent relationship of the trace norm be-
tween a low-rank tensor and its core tensor. Then, we
cast a non-convex tensor decomposition model into a
weighted combination of multiple much smaller-scale
matrix trace norm minimization. Finally, we develop
two parallel alternating direction methods of multipli-
ers (ADMM) to solve our problems. Experimental re-
sults verify that our regularized formulation is effective,
and our methods are robust to noise or outliers.

Introduction
The term tensor used in the context of this paper refers to
a multi-dimensional array, also known as a multi-way or
multi-mode array. For example, if X ∈ RI1×I2×I3 , then
we say X is a third-order tensor, where order is the num-
ber of ways or modes of the tensor. Thus, vectors and ma-
trices are first-order and second-order tensors, respectively.
Higher-order tensors arise in a wide variety of application ar-
eas, such as machine learning (Tomioka and Suzuki, 2013;
Signoretto et al., 2014), computer vision (Liu et al., 2009),
data mining (Yilmaz et al., 2011; Morup, 2011; Narita et
al., 2012; Liu et al., 2014), numerical linear algebra (Lath-
auwer et al., 2000a; 2000b), and so on. Especially, with
the rapid development of modern computer technology in
recent years, tensors are becoming increasingly ubiquitous
such as multi-channel images and videos, and have become
increasingly popular (Kolda and Bader, 2009). When work-
ing with high-order tensor data, various new computational
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challenges arise due to the exponential increase in time and
memory space complexity when the number of orders in-
creases. This is called the curse of dimensionality. In prac-
tice, the underlying tensor is often low-rank, even though
the actual data may not be due to noise or arbitrary errors.
Essentially, the major component contained in the given ten-
sor is often governed by a relatively small number of latent
factors.

One standard tool to alleviate the curse is tensor de-
composition. Decomposition of high-order tensors into
a small number of factors has been one of the main
tasks in multi-way data analysis, and commonly takes two
forms: Tucker decomposition (Tucker, 1966) and CANDE-
COMP/PARAFAC (CP) (Harshman, 1970) decomposition.
There are extensive studies in the literature for finding the
Tucker decomposition and the CP decomposition for higher-
order tensors (Kolda and Bader, 2009). In those tensor de-
composition methods, their goal is to (approximately) re-
construct the input tensor as a sum of simpler components
with the hope that these simpler components would reveal
the latent structure of the data. However, existing tensor de-
composition methods face three major challenges: rank se-
lection, outliers and gross corruptions, and computational
efficiency. Since the Tucker and CP decomposition meth-
ods are based on least-squares approximation, they are also
very sensitive to outliers and gross corruptions (Goldfarb
and Qin, 2014). In addition, the performance of those meth-
ods is usually sensitive to the given ranks of the involved ten-
sor (Liu et al., 2009). To address the problems, we propose
two robust and parallel higher-order tensor decomposition
methods with trace norm regularization.

Recently, much attention has been drawn to the low-rank
tensor recovery problem, which arises in a number of real-
word applications, such as 3D image recovery, video in-
painting, hyperspectral data recovery, and face reconstruc-
tion. Compared with matrix-based analysis methods, tensor-
based multi-linear data analysis has shown that tensor mod-
els are capable of taking full advantage of the high-order
structure to provide better understanding and more preci-
sion. The key idea of low-rank tensor completion and recov-
ery methods is to employ matrix trace norm minimization
(also known as the nuclear norm, which is the convex surro-
gate of the rank of the involved matrix). In addition, there are
some theoretical developments that guarantee reconstruction
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of a low-rank tensor from partial measurements or grossly
corrupted observations via solving the trace norm minimiza-
tion problem under some reasonable conditions (Tomioka et
al., 2011; Shi et al., 2013). Motivated by the recent progress
in tensor completion and recovery, one goal of this paper
is to extend the trace norm regularization to robust higher-
order tensor decomposition.

Different from existing tensor decomposition methods,
we first propose a parallel trace norm regularized tensor de-
composition method, which can automatically determine the
number of factors in each mode through our optimization
scheme. In other words, this method does not require the
rank of each mode to be specified beforehand. In addition,
by considering the low-rank structure of the observed tensor
and further improving the scalability of our convex method,
we analyze the equivalent relationship of the trace norm be-
tween a low-rank tensor and its core tensor. Then, we cast
the non-convex trace norm regularized higher-order orthog-
onal iteration model into a weighted combination of multiple
much-smaller-scale matrix trace norm minimization. More-
over, we design two parallel alternating direction methods of
multipliers (ADMM) to solve the proposed problems, which
are shown to be fast, insensitive to initialization and robust
to noise and/or outliers with extensive experiments.

Notations and Related Work
We first introduce the notations, and more details can be seen
in Kolda and Bader (2009). An N th-order tensor is denoted
by a calligraphic letter, e.g., T ∈ RI1×I2×···×IN , and its
entries are denoted by ti1···in···iN , where in ∈ {1, · · · , In}
for 1 ≤ n ≤ N . Fibers are the higher-order analogue of
matrix rows and columns. The mode-n fibers are vectors
ti1···in−1in+1···iN that are obtained by fixing the values of
{i1, · · · , iN}\in.

The mode-n unfolding, also known as matricization, of an
N th-order tensor T is denoted by T(n) ∈ RIn×Πj 6=nIj and
arranges the mode-n fibers to be the columns of the result-
ing matrix T(n) such that the mode-n fiber becomes the row
index and all other (N − 1) modes become the column in-
dices. The tensor element (i1, i2, · · · , iN ) is mapped to the
matrix element (in, j), where

j = 1 +
N∑

k=1,k 6=n

(ik − 1)Jk with Jk =
k−1∏

m=1,m6=n

Im.

The inner product of two same-sized tensors
A ∈ RI1×I2× ···×IN and B ∈ RI1×I2×···×IN is
the sum of the product of their entries, < A,B >=∑
i1,···iN ai1···iN bi1···iN . The Frobenius norm of an N th-

order T is defined as:

‖T ‖F :=

√√√√ I1∑
i1=1

· · ·
IN∑
iN=1

t2i1···iN .

Let A and B be two matrices of size m × n and p × q,
respectively. The Kronecker product of two matrices A and
B, denoted by A⊗B, is an mp× nq matrix given by:

A⊗B = [aijB]mp×nq.

Figure 1: Illustration of the Tucker decomposition of a third-
order tensor.

The n-mode matrix product of a tensor T with a matrix U ∈
RJ×In , denoted by T ×n U ∈ RI1×···In−1×J×In+1×···×IN ,
is defined as:

(T ×n U)i1···in−1jin+1···iN =

In∑
in=1

ti1i2···iNujin .

Tensor Decomposition
We will review two popular models for tensor decompo-
sition, i.e., the Tucker decomposition and the CANDE-
COMP/PARAFAC (CP) decomposition. It is well known
that finding the CP decomposition with the minimum ten-
sor rank is a hard problem, and there is no straightforward
algorithm for computing the rank for higher-order tensors
(Hillar and Lim, 2013). The Tucker decomposition decom-
poses a given tensor T into a core tensor multiplied by a
factor matrix along each mode as follows:

T = G ×1 U1 ×2 · · · ×N UN , (1)
where Un ∈ RIn×Rn are the factor matrices, which can be
thought of as the principal components in each mode, and
the entries of the core tensor G ∈ RR1×R2···×RN show the
level of interaction between the different components. Since
the decomposition rank Rn (n = 1, · · · , N) is in general
much smaller than In (n = 1, · · · , N), the core tensor G can
be thought of as a low-rank version of T (e.g., the Tucker de-
composition of a third-order tensor is illustrated in Figure 1).
In this sense, the storage of the Tucker decomposition form
can be significantly smaller than that of the original tensor.
Moreover, unlike the rank of the tensor,Rn, i.e., the mode-n
rank (n = 1, · · · , N), is the rank of the mode-n unfold-
ing, and is clearly computable. Hence, we are particularly
interested in extending the Tucker decomposition for tensor
analysis.

If the factor matrices of the Tucker decomposition are
constrained orthogonal, the decomposition form is re-
ferred to as the higher-order singular value decomposi-
tion (HOSVD, Lathauwer et al., 2000a) or higher-order
orthogonal iteration (HOOI, Lathauwer et al., 2000b),
where the latter leads to the estimation of best rank-
(R1, R2, . . . , RN ) approximations while the truncation of
HOSVD may achieve a good rank-(R1, R2, . . . , RN ) ap-
proximation but in general not the best possible one (Lath-
auwer et al., 2000b). Therefore, HOOI is the most widely
used tensor decomposition method (Kolda and Bader, 2009),
and takes the following form

min
G,Un

‖T − G ×1 U1 ×2 · · · ×N UN‖2F ,

s.t., UTn Un = IRn , n = 1, · · · , N.
(2)
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Convex Tensor Decomposition Method
Convex Tensor Decomposition Model
Given a tensor T , our goal is to find a low-rank tensor X , in
order to minimize the Frobenius norm of their difference as
follows:

min
X

1

2
‖X − T ‖2F . (3)

Different from the matrix case, the low-rank tensor esti-
mation problem (3) is in general hard to solve (Narita et al.,
2012). Following the progress in tensor completion, we cast
it into a (weighted) trace norm minimization problem:

min
X

N∑
n=1

‖X(n)‖tr +
λ

2
‖X − T ‖2F , (4)

where ‖X(n)‖tr denotes the trace norm of the unfolded ma-
trix X(n), i.e., the sum of its singular values, λ > 0 is a
regularization parameter. For handling the unbalanced target
tensor, we briefly introduce the preselected weights αn ≥ 0
(satisfying

∑
n αn = 1) to the trace norm term in (4).

Parallel Optimization Algorithm
Due to the interdependent matrix trace norm terms, the pro-
posed tensor decomposition model (4) is very difficult to
solve. Thus, we introduce some auxiliary variablesMn into
the model (4) and reformulate it into the following equiva-
lent form:

min
X ,{Mn}

N∑
n=1

‖Mn,(n)‖tr +
λ

2
‖X − T ‖2F ,

s.t.,Mn = X , n = 1, · · · , N.

(5)

In the following, we will design a parallel alternating di-
rection method of multipliers (ADMM) for solving the prob-
lem (5). The algorithm decomposes the original problem
into smaller subproblems and solves them individually in
parallel at each iteration. The parallel ADMM for the prob-
lem (5) is derived by minimizing the augmented Lagrange
function Lµ with respect to (X , {Mn}) in parallel, and
then updating the multiplier tensor Yn. But the paralleliza-
tion is likely to diverge, therefore, it is necessary to mod-
ify the common algorithm in a certain way to guarantee its
convergence. Several variants of parallel ADMM have been
proposed in He (2009) and Deng et al., (2013) by taking ad-
ditional correction steps at every iteration. Similar to Deng
et al., (2013), we add some proximal terms to each subprob-
lems and attach a relaxation parameter γ > 0 for the update
of the penalty parameter µ > 0.

Computing {Mk+1
n , n = 1, · · · , N}: By keeping all

other variables fixed, the optimalMk
n is the solution to the

following problem:

min
Mn

‖Mn, (n)‖tr +
µ

2
‖Mn −X k + Ykn/µ‖2F

+
τn
2
‖Mn −Mk

n‖2F ,
(6)

Algorithm 1 Solving problem (5) via parallel ADMM
Input: Given T , λ, and µ.
Initialize: M0

n = X 0 = Y0
n = 0, ∀n ∈ {1, · · · , N}.

1: while not converged do
2: for n = 1, · · · , N do
3: UpdateMk+1

n by (7),

where UnSnV Tn =
µXk(n)−Y

k
(n)+τnM

k
(n)

µ+τn
.

4: end for
5: Update X k+1 by (9).
6: for n = 1, · · · , N do
7: Yk+1

n = Ykn + γµ(Mk+1
n −X k+1).

8: end for
9: Check the convergence condition,

‖X k+1 − T ‖F < Tol.
10: end while
11: G = X k+1 ×1 U

T
1 · · · ×N UTN .

Output: X k, G, and Un, n = 1, · · · , N .

where τn > 0 is a constant for the proximal term ‖Mn −
Mk

n‖2F . Following (Cai et al., 2010), we obtain a closed-
form solution to the problem (6) via the following proximal
operator of the trace norm:

Mk+1
n = refold(prox 1

µ+τn
(
µX k(n) − Y

k
(n) + τnMk

(n)

µ+ τn
)),

(7)
where refold(·) denotes the refolding of the matrix into a
tensor, i.e., the reverse process of unfolding.

Computing X k+1: The optimal X k+1 with all other vari-
ables fixed is the solution to the following problem:

min
X

λ

2
‖X − T ‖2F +

N∑
n=1

µ

2
‖Mk

n −X + Ykn/µ‖2F

+
τN+1

2
‖X − X k‖2F ,

(8)

where τN+1 > 0 is a constant for the proximal term
‖X −X k‖2F . Since the problem (8) is a smooth convex opti-
mization problem, it is easy to show that the optimal solution
to (8) is given by

X k+1 =

∑N
n=1(µMk

n + Ykn) + λT + τN+1X k

Nµ+ λ+ τN+1
. (9)

Based on the description above, we develop a paral-
lel ADMM algorithm for the convex tensor decomposition
(CTD) problem (5), as outlined in Algorithm 1. In Algo-
rithm 1, we use a Jacobi-type scheme to update (N + 1)
blocks of variables, {M1, · · · ,MN} and X . By the defini-
tion f(M1, · · · ,MN ) :=

∑N
n=1 ‖Mn,(n)‖tr and g(X ) :=

λ
2 ‖X − T ‖

2
F , it is easy to verify that the problem (5) and

Algorithm 1 satisfy the convergence conditions in Deng et
al., (2013).

Theorem 1 Let τi > µ( N
2−γ − 1), i = 1, . . . , N + 1. Then

the sequence {Mk
1 , · · · ,Mk

N ,X k} generated by Algorithm
1 converges to an optimal solution {M∗1, · · · ,M∗N ,X ∗} of
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the problem (5). Hence, the sequence {X k} converges to an
optimal solution to the low-rank tensor decomposition prob-
lem (4).

Our convex Tucker decomposition method employs ma-
trix trace norm regularization and uses the singular value de-
composition (SVD) in Algorithm 1, which becomes a little
slow or even not applicable for large-scale problems. Moti-
vated by this, we will propose a scalable non-convex low-
rank tensor decomposition method.

Non-Convex Tensor Decomposition Method
Several researchers (Keshavan et al., 2010; Wen et al., 2012)
have provided some matrix rank estimation strategies to
compute some good values (r1, r2, . . . , rN ) for the N-rank
of the involved tensor. Thus, we only set some relatively
large integers (R1, R2, . . . , RN ) such that Rn ≥ rn, n =
1, · · · , N .

Theorem 2 Let X ∈ RI1×I2×···×IN with N -rank= (r1, r2,
· · · , rN ) and G ∈ RR1×R2×···×RN satisfy X = G ×1

U1 · · · ×N UN , and UTn Un = IRn , n = 1, 2, · · · , N , then

‖X(n)‖tr = ‖G(n)‖tr, n = 1, 2, · · · , N. (10)

The proof of Theorem 2 can be found in the supplemen-
tal material. According to the theorem, it is cleat that al-
though the core tensor G of size (R1, R2, · · · , RN ) has
much smaller sizes than the original tensor X (usually,
Rn � In, n = 1, 2, · · · , N ), their trace norm is identical.
In other words, each unfolding G(n) ∈ RRn×Πj 6=nRj of the
core tensor G has much smaller sizes than that of the origi-
nal tensor, X(n) ∈ RIn×Πj 6=nIj . Therefore, we use the trace
norm of each unfolding of the core tensor to replace that of
the original tensor.

Generalized HOOI Model with Trace Norm
Penalties
According to the analysis above, our trace norm regularized
HOOI model is formulated into the following form:

min
G,{Un}

N∑
n=1

‖G(n)‖tr +
λ

2
‖T − G ×1 U1 · · · ×N UN‖2F ,

s.t., UTn Un = IRn , n = 1, 2, · · · , N.
(11)

The core tensor trace norm regularized HOOI model (11),
also called Generalized HOOI, can alleviate the SVD com-
putational burden of large unfolded matrices involved in the
convex Tucker decomposition problem (4). Furthermore, we
use the trace norm regularization term in (11) to promote the
robustness of the rank selection, while the original Tucker
decomposition method is usually sensitive to the given ranks
(R1, R2, · · · , RN ) (Liu et al., 2009). Due to the interde-
pendent matrix trace norm terms, we apply the variable-
splitting technique and introduce some auxiliary variables
Gn ∈ RRn×Πj 6=nRj into our model (11), and then reformu-

late the model (11) into the following equivalent form:

min
G,{Un,Gn}

N∑
n=1

‖Gn‖tr +
λ

2
‖T − G ×1 U1 · · · ×N UN‖2F ,

s.t., Gn = G(n), U
T
n Un = IRn , n = 1, 2, · · · , N.

(12)

Parallel Optimization Procedure
In this part, we will also propose a parallel ADMM algo-
rithm to solve the problem (12).

Updating {Gk+1, Uk+1
1 , · · · , Uk+1

N }: The optimization
problem with respect to G and {U1, · · · , UN} is formulated
as follows:

min
G,{Un}

N∑
n=1

µ

2
‖G(n) −Gkn + Y kn /µ‖2F

+
λ

2
‖T − G ×1 U1 · · · ×N UN‖2F .

(13)

Following (Lathauwer et al., 2000b), it is sufficient to deter-
mine the matrices {U1, · · · , UN} for the optimization of the
problem (13). For any estimate of these matrices, the optimal
solution with respect to G is given by the following theorem.

Theorem 3 For given matrices {U1, · · · , UN}, the optimal
core tensor G to the optimization problem (13) is given by

Gk+1 =
λ

λ+Nµ
T ×1 (Uk1 )T · · · ×N (UkN )T

+
µ

λ+Nµ

N∑
n=1

refold(Gkn − Y kn /µ).

(14)

The proof of Theorem 3 can be found in the supplemental
material. In the following, we design a generalized higher or-
der orthogonal iteration scheme for solving {U1, · · · , UN}
that is an alternating least squares (ALS) approach to solve
the rank-(R1, . . . , RN ) problem. Analogous with Theorem
4.2 in Lathauwer et al., (2000b), we first state that the mini-
mization problem (13) can be formulated as follows.
Theorem 4 Assume a real N th-order tensor T ∈
RI1×I2×...IN . Then the minimization of the problem (13)
over the matrices U1, . . . , UN having orthonormal columns
is equivalent to the maximization of the following problem

h(U1, . . . , UN ) = 〈T , G ×1 U1 · · · ×N UN 〉. (15)

The proof of Theorem 4 can be found in the supplemental
material. According to the theorem, a generalized higher-
order orthogonal iteration scheme is proposed to solve the
problem (15) that solves Un, n = 1, . . . , N by fixing other
variables Uj , j 6= n in parallel. Imagine that the matrices
{U1, . . . , Un−1, Un+1, . . . , UN} are fixed and that the op-
timization problem (13) is thought of as a quadratic ex-
pression in the components of the matrix Un that is being
optimized. Considering that the matrix having orthonormal
columns, we have

h = trace((Uk+1
n )TT(n)W

T
n ), (16)
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where trace(A) denotes the trace of the matrix A, and

Wn = G(n)[(U
k
1 )T · · · ⊗ (Ukn−1)T

⊗ (Ukn+1)T · · · ⊗ (UkN )T ].
(17)

This is actually the well-known orthogonal procrustes prob-
lem (Nick, 1995), whose global optimal solution is given by
the singular value decomposition of T(n)W

T
n , i.e.,

Uk+1
n = Ûn(V̂n)T , (18)

where Ûn and V̂n are obtained by SVD of T(n)W
T
n . Repeat-

ing the procedure above in parallel for different modes leads
to an alternating least squares scheme for solving the maxi-
mization of the problem (15).

Updating {Gk+1
1 , · · · , Gk+1

N }: By keeping all other vari-
ables fixed, Gk+1

n is updated by solving the following prob-
lem:

min
Gn
‖Gn‖tr +

µ

2
‖Gn−Gk(n)−Y

k
n /µ‖2F +

τn
2
‖Gn−Gkn‖2F .

(19)
Similar to the problem (6), it is easy to obtain a closed-form
solution to the problem (19):

Gk+1
n = prox1/(µ+τn)(

µGk(n) + Y kn + τnG
k
n

µ+ τn
). (20)

From (20), it is clear that only some smaller sized matrices
(µGk(n) + Y kn + τnG

k
n)/(µ + τn) ∈ RRn×Πj 6=nRj need to

perform SVD. Thus, our non-convex trace norm regularized
method has a significantly lower computational complex-
ity with O(

∑
nR

2
n ×Πj 6=nRj), while the computational

complexity of our convex algorithm for the problem (4) is
O(

∑
n I

2
n ×Πj 6=nIj) at each iteration.

Based on the analysis above, we develop a parallel
ADMM algorithm for solving the low-rank non-convex ten-
sor decomposition (NCTD) problem (11), as outlined in
Algorithm 2. Our algorithm is essentially a Jacobi-type
scheme of ADMM, and is well suited for parallel and dis-
tributed computing and hence is particularly attractive for
solving certain large-scale problems. Moreover, the update
strategy of Gauss-Seidel version of ADMM is easily im-
plemented. This algorithm can be accelerated by adaptively
changing µ. An efficient strategy (Lin et al., 2011) is to let
µ0 = µ (initialized in Algorithm 1 and Algorithm 2) and
increase µk iteratively by µk+1 = ρµk, where ρ ∈ (1.0, 1.1]
in general and µ0 is a small constant. Moreover, the stability
and efficiency of our NCTD method can be validated in the
experimental section.

Complexity Analysis
We now discuss the time complexity of our NCTD al-
gorithm. For the problem (11), the main running time of
our NCTD algorithm is consumed by performing SVD for
the proximal operator and some multiplications. The time
complexity of performing the proximal operator in (20) is
O1 := O(

∑
R2
nΠj 6=nRj). The time complexity of some

multiplication operators is O2 := O(
∑
InRnΠj 6=nIj +∑

RnΠj 6=nIjRj) and O3 := O(
∑
R2
nIn). Thus, the total

time complexity of our NCTD method is O(T (O1 + O2 +
O3)), where T is the number of iterations.

Algorithm 2 Solving problem (11) via Parallel ADMM
Input: T , the tensor ranks (R1, R2, · · · , RN ), and λ.
Initialize: Y 0

n = 0, G0
n = 0, U0

n = rand(In, Rn), µ0 =
10−4, µmax = 1010, ρ = 1.05, and Tol = 10−5.

1: while not converged do
2: Update Gk+1 by (14).
3: for n = 1, · · · , N do
4: Update Uk+1

n by (18);
5: Update Gk+1

n by (20);
6: Update the multiplier Y k+1

n by
Y k+1
n = Y kn + γµk(Gk+1

(n) −G
k+1
n ).

7: end for
8: Update µk+1 by µk+1 = min(ρµk, µmax).
9: Check the convergence condition,

max{‖Gk+1
(n) −G

k+1
n ‖F , n = 1, · · · , N} < Tol.

10: end while
Output: G and Un, n = 1, · · · , N .

Experimental Results
In this section, we evaluate both the effectiveness and ef-
ficiency of our methods for solving tensor decomposition
problems using both synthetic and real-world data. All ex-
periments were performed on an Intel(R) Core (TM) i5-4570
(3.20 GHz) PC running Windows 7 with 8GB main memory.

Synthetic Data
In this part, we generated a low-rank N th-order tensor
T ∈ RI1×I2···×IN , which was used as the ground truth
data. The tensor data followed the Tucker model, i.e., T =
G ×1 U1 · · · ×N UN , where the core tensor G ∈ Rr×r···×r
and the factor matrices Un were generated with i.i.d. stan-
dard Gaussian entries. The order of the tensors varied from
three to four, and the rank r was set to {5, 10, 20}. Finally,
we decomposed the input tensor T + δ∆ by our CTD and
NCTD methods and the state-of-the-art algorithms including
HOSVD (Vannieuwenhoven et al., 2012), HOOI (Lathauwer
et al., 2000b), Mixture (Tomioka et al., 2013) and ADMM
(Gandy et al., 2011), where ∆ is a noise tensor with inde-
pendent normally distributed entries, and δ is set to 0.02.

We set the tensor ranks Rn = b1.2rc, n = 1, . . . , N and
Tol = 10−5 for all these algorithms. We set the regulariza-
tion parameter λ = 100 for our methods. Other parameters
of Mixture, ADMM, HOSVD and HOOI are set to their de-
fault values. The relative square error (RSE) of the estimated
tensorX is given by RSE = ‖X −T ‖F /‖T ‖F . The average
experimental results (RSE and time cost) of 50 independent
runs are shown in Table 1, where the order of tensor data
varies from three to four. From the results shown in Table
1, we can see that our methods can yield much more accu-
rate solutions, and outperform their individual competitors,
HOSVD, HOOI, Mixture and ADMM, in terms of both RSE
and efficiency.

A phase transition plot uses greyscale colors to depict how
likely a certain kind of low-rank tensors can be recovered
by these algorithms for a range of different given ranks and
noise variances δ. Phase transition plots are important means
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Table 1: Performance comparison of estimation accuracy (RSE) and running time (seconds) on the synthetic data:
(a) Tensor size: 200× 200× 200

HOSVD HOOI Mixture ADMM CTD NCTD

Rank RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time

5 3.27e-02 19.46 3.27e-02 570.85 1.46e-02 4792.74 1.47e-02 2946.27 6.52e-03 88.74 6.52e-03 16.50

10 3.33e-02 20.36 3.32e-02 468.65 1.47e-02 4567.61 1.48e-02 2512.85 6.59e-03 85.62 6.60e-03 15.25

20 3.34e-02 21.02 3.33e-02 380.87 1.47e-02 4235.65 1.48e-02 2230.64 6.61e-03 72.69 6.62e-03 13.74

(b) Tensor size: 60× 60× 60× 60

HOSVD HOOI Mixture ADMM CTD NCTD

Rank RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time

5 3.89e-02 25.14 3.87e-02 964.26 1.63e-02 5175.79 1.64e-02 3378.06 7.16e-03 105.01 7.17e-03 20.35

10 3.91e-02 23.94 3.90e-02 607.17 1.64e-02 4971.15 1.64e-02 3280.32 6.30e-03 101.30 6.30e-03 18.89

20 3.92e-02 22.81 3.91e-02 415.43 1.65e-02 4773.66 1.65e-02 3031.54 5.67e-03 98.45 5.67e-03 17.63

to compare the performance of different tensor estimation
methods. If the relative error RSE ≤ 10−2, the estimation is
regarded as successful. Figure 2 depicts the phase transition
plots of HOSVD, HOOI, CTD and NCTD on the third-order
tensor data with the rank r = 10, where the given tensor
ranks Rn, n = 1, 2, 3 varied from 10 to 50 with increment
4 and δ from 0 to 0.05 with increment 0.005. For each set-
ting, 50 independent trials were run. From the experimental
results shown in Figure 2, we can see that CTD and NCTD
perform significantly better than HOSVD and HOOI.

(a) HOSVD (b) HOOI

(c) CTD (d) NCTD

Figure 2: Phase transition plots for different methods on
third-order low-rank tensors with Gaussian random noise,
where white denotes perfect estimation in all experiments,
and black denotes failure for all experiments.

MRI Data
This part compares our CTD and NCTD methods, HOSVD
and HOOI on a 181×217×181 brain MRI data used in (Liu
et al., 2009). This data set is approximately low-rank: for the
three mode unfoldings, the numbers of singular values larger

than 1% of the largest one are 17, 21, and 17, respectively.
Figure 3 shows the average relative errors and running times
of ten independent trials for each setting of the given ranks.
From the results, we see that our CTD and NCTD methods
consistently attain much lower relative errors than those by
HOSVD and HOOI. Moreover, our NCTD method is usually
faster than the other methods.
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Figure 3: Comparison of HOSVD, HOOI, CTD and NCTD
in terms of estimation accuracy (RSE) and time cost (in the
logarithmic scale) on the brain MRI data set.

Conclusions
In this paper we first proposed a convex trace norm regular-
ized tensor decomposition method, which can automatically
determine the number of factors in each mode through our
optimization scheme. In addition, by considering the low-
rank structure of input tensors, we analyzed the equivalence
relationship of the trace norm between a low-rank tensor
and its core tensor. Then, we cast the non-convex tensor
decomposition model into a weighted combination of mul-
tiple much-smaller-scale matrix trace norm minimization.
Finally, we developed two efficient parallel ADMM algo-
rithms for solving the proposed problems. Convincing ex-
perimental results demonstrate that our regularized formu-
lation is reasonable, and our methods are robust to noise or
outliers. Moreover, our tensor decomposition methods can
handle some tensor recovery problems, such as tensor com-
pletion, and low-rank and sparse tensor decomposition.
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