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Abstract

Selecting good conference keywords is important be-
cause they often determine the composition of review
committees and hence which papers are reviewed by
whom. But presently conference keywords are gener-
ated in an ad-hoc manner by a small set of conference
organizers. This approach is plainly not ideal. There
is no guarantee, for example, that the generated key-
word set aligns with what the community is actually
working on and submitting to the conference in a given
year. This is especially true in fast moving fields such as
AI. The problem is exacerbated by the tendency of or-
ganizers to draw heavily on preceding years’ keyword
lists when generating a new set. Rather than a select
few ordaining a keyword set that that represents AI at
large, it would be preferable to generate these keywords
more directly from the data, with input from research
community members. To this end, we solicited feed-
back from seven AAAI PC members regarding a previ-
ously existing keyword set and used these ‘community-
sourced constraints’ to inform a clustering over the ab-
stracts of all submissions to AAAI 2013. We show that
the keywords discovered via this data-driven, human-in-
the-loop method are at least as preferred (by AAAI PC
members) as 2013’s manually generated set, and that
they include categories previously overlooked by orga-
nizers. Many of the discovered terms were used for this
year’s conference.

1 Introduction
When submitting a paper for peer review to keyword-
dependent conferences such as AAAI, authors must choose
the keywords that best represent their paper from a fixed
list. The senior program committee (SPC) is chosen to rep-
resent the high-level keywords and then they are asked to
suggest PC members in their subfield, who are assigned pa-
pers for review by the author-selected keywords (sometimes
indirectly by conference software that narrows down the ab-
stracts that a PC member examines during the paper bidding
period). Additionally, the conference co-chairs often use
the high-level keywords to populate the program committee,
and community members sometimes use them to identify
papers of interest. Keywords thus play an important role in

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

shaping conferences. Yet usually only a small set of confer-
ence organizers are responsible for generating the keyword
list, and they typically draw heavily on the previous year’s
keywords. As a result, the keyword set may not accurately
represent the distribution of papers currently being submit-
ted to the conference; e.g., the keywords may lag behind
the papers that they are intended to represent due to concept
drift.

In contrast, a completely data driven approach to finding
keywords would be to cluster the previous year’s submis-
sions and then derive (manually or automatically) a keyword
for each cluster. This approach of gleaning keywords di-
rectly from submitted papers would allow one to find words
that best fit the submissions, thus sidestepping problems of
concept drift, but it may not produce a set of keywords that
best reflects the conferences’ needs. For example, data-
derived keywords may not be able to account for some of
the social or legacy factors in conference keyword determi-
nation. Indeed, it is important that keywords are guided by
the community at large to align with a priori shared pref-
erences regarding topics of interest; significant knowledge
and effort have gone into expert-defined keywords over the
years and we would like to leverage this information. In
this paper, we outline our experience in attempting to take
a data-driven, human-guided approach to defining a new set
of keywords for AAAI 2014.

A broad overview to the strategy we took is as follows.
Our dataset comprises the papers submitted to the AAAI
2013 main track. For each paper we have the abstract, ti-
tle and one or more high-level keywords selected by the
authors during submission from a fixed list (see column 1
in Table 2). We apply constraint-based clustering to the
abstracts of these submitted papers, where the constraints
are defined between AAAI 2013 keywords and reflect the
preferences of the research community. (Recall that we
know which keywords are associated with each 2013 sub-
mission.) More specifically, we elicited preferences regard-
ing the 2013 keywords from seven PC members – a larger,
more diverse group than relying on the current co-chairs
– in order to weight the keyword-level constraints. These
community-sourced constraints were elicited both with re-
spect to both individual keywords (e.g., “natural language
processing is too broad and should be broken up”) and pairs
of keywords (“knowledge-based systems could be merged
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with knowledge representation and reasoning”).
To leverage these preferences to inform our cluster-

ing, we incorporated keyword-level constraints via a semi-
supervised clustering method (Preston et al. 2010) that used
class labels (in our case keywords) to form probabilistic
(soft) must and cannot-link constraints between pairs of in-
stances (abstracts). These constraints induced a clustering
that attempts to balance (1) the fit to the observed data
and (2) agreement with community opinion concerning key-
words. Next we manually derived keywords from the result-
ing clusters. We then crowdsourced our evaluation to the
AAAI 2014 PC to compare the old and the new keywords.
Finally, the results were given to this year’s program chairs
who created a final list of keywords, many of which were
terms generated by this data-driven process.

In this work we have leveraged existing techniques and
methods to generate a data-driven, community-sourced set
of keywords within a constrained budget of time. We have
made several practical decisions in our choice of methods,
which could no doubt be refined and made more principled.
We view this exercise as a novel demonstration of the poten-
tial that hybrid data-driven/community-sourced approaches
have in terms of generating informative conference key-
words; our key contribution is to argue for adopting such an
approach in place of the outmoded practice of a completely
manual process, and to provide a methodological starting
point to this end. Another contribution of this case study is
the elucidation of challenges to adopting such an approach.

2 Constraint Elicitation
Our aim is to jointly leverage last year’s submissions, exist-
ing keywords and community opinion to generate a new set
of keywords. As an operational realization of ‘community
opinion,’ we solicited class-level constraint matrices with
respect to last year’s keywords directly from seven AAAI
community members, several of whom were program chairs
of previous AI conferences. By acquiring multiple sets of
constraints we were able to downweight individual contrib-
utor bias (e.g., due to possible myopia stemming from his
or her research focus). Ideally, even more preference sets
would be collected, but practical time constraints – we had
fewer than three months from the receipt of the data until the
new set of keywords was needed for AAAI 2014 – precluded
this possibility here.

We asked participating individuals to provide feedback
for each of the 2013 keywords (column 1 of Table 2). Specif-
ically, we asked if they thought each keyword was: (a) too
general (and hence should be broken up into multiple key-
words), or (b) coherent as-is. Respondents could also (c)
express indifference, i.e., say “let the data speak for itself, I
have no opinion.” Additionally, we solicited pairwise con-
straints between keywords. Thus for every pair, respon-
dents were asked to express whether the constituent key-
words were likely to occur for the same paper (or if he or
she had no opinion either way). We requested that all re-
sponses be mapped to an arbitrarily defined numerical scale
between -1 and 1. See Figure 1 caption for details.

One benefit to acquiring multiple constraint sets is that
they afford insight into agreement concerning existing key-
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1.   Applications
2.   Constraints
       and satisfiability
3.   Heuristic search and
      optimization
4.   Knowledge−based systems
5.   Knowledge representation
      and reasoning
6.   Machine learning
7.   Multiagent systems
8.   Multidisciplinary topics
9.   Natural language processing
10. Reasoning about plans,
      processes and actions
11. Reasoning under uncertainty
12. Robotics

Figure 1: Histograms of the pairwise constraint values for
twelve AAAI 2013 keywords as provided by seven domain
experts. The x-axis captures the elicited preference from
{−1,−0.5, 0, 0.5, 1}; the y-axis represents the respondent
count ([0,7]). For pairwise constraints (i 6= j), -1 indicates
that the corresponding pair should not be grouped together,
0 expresses indifference, and 1 indicates that the pair should
be grouped together. For the diagonal (grey) elements, -1
indicates that the corresponding topic is too broad, 0 com-
municates indifference, and 1 suggests that the keyword is
good as-is. Note that ±0.5 are less confident versions of
±1.

words. Figure 1 shows a histogram plot of the pairwise
constraint values in the constraint matrix C for each indi-
vidual keyword and for each pair of keywords. The level
of agreement regarding pairwise constraints varies widely.
For example, in the case of constraint entry C3,10 (heuris-
tic search and optimization and reasoning about plans,
processes and actions), there is near-complete agreement
amongst all seven respondents that these should be merged.
By contrast, there is a uniform distribution in responses
concerning cell C3,6 (heuristic search and optimization and
machine learning), indicating that there is no consensus of
opinion. Similarly, agreement regarding values on the diag-
onal also varies. For example, respondents were either neu-
tral or believed that multidisciplinary topics (C8,8) could be
split across clusters. By contrast, there is a strong consensus
that all papers with the keyword robotics (C12,12) should be
clustered together, i.e., that robotics is a coherent keyword.

3 Constraint-Based Clustering
We now describe how we leveraged the elicited constraints
just described to inform our clustering (and hence the gen-
erated keyword set). In short, we used a variant of (soft)
constraint-based clustering.

As illustrated in Figure 1, in some cases reviewers do
not form a consensus. Instead of giving equal sway to con-
straint contributions that effectively cancel out, we propose
a method for downweighting constraints on which the do-
main experts disagree. To emphasize the constraints about
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which PC members agreed, we weighted constraint values
inversely proportional to the uniformity in respondent agree-
ment. Operationally, we accomplished this via (the absolute
value of) skewness, a measure of the degree of asymmetry
of a distribution around its mean (Doane and Seward 2011),
as calculated in Equation 1, where x̄ is the mean and σ is the
standard deviation of the data set S = {x1, x2, . . . , xn}.

n

(n− 1)(n− 2)
Σni=1

(
xi − x̄
σ

)3

(1)

3.1 Multilabel Data
Most constraint-based clustering work focuses on singly-
labeled data, which would correspond in our case to one
keyword per submission. Under this assumption, the appli-
cation of constraints to a given pair of instances is trivial:
for a paper di with keyword ki and a paper dj with keyword
kj , look up the cell (ki, kj) in the constraint matrix (Cki,kj ).
This value can then be used to modify the distance between
instances di and dj during clustering.

However, conference papers are often associated with
multiple keywords. Furthermore, the constraints between
the various pairs of keywords belonging to any two doc-
uments di and dj may not agree: some of these pairwise
constraints may be positive and others negative. We can al-
low these to cancel out, but this would overlook the fact that
not all keywords are likely to be equally representative of a
given paper.

To calculate constraints representative of the topics in a
document, we must therefore move from binary labels to
probabilistic keyword assignments. Thus instead of a value
∈ {0,1} indicating the presence (or absence) of keyword m
on a document di, we instead assume di comprises a mixture
over keywords ki,m such that Σni

m=1ki,m = 1, where ni is
the number of keywords associated with di.

As a practical means of accomplishing this, we estimated
document-keyword mixture weights from the original la-
beled data via a Naı̈ve Bayes model (Rish 2001), treating
each label independently. That is, we trained a separate clas-
sifier for each of the twelve labels (one-vs-all) and used 10-
fold cross validation to predict the probability that each (held
out) document was labeled with each keyword. For a docu-
ment di, its unnormalized value for the label ki,m was taken
as the predicted probability that this document belonged to
ki,m as opposed to all other classes. We then normalized the
probabilities of the keyword assignments across all twelve
labels for each document such that they summed to 1, which
we call pi,m for the probability that the keyword km belongs
to document di.

We can then calculate the total pairwise con-
straint ti,j between any two documents di with key-
words {ki,1, ki,2 . . . , ki,ni

} and dj with keywords
{kj,1, kj,2 . . . kj,nj

} as follows.

ti,j =Σni
m=1Σ

nj

l=1wki,m,kj,lCki,m,kj,lpi,mpi,l (2)

where Ci,j ∈ [−1, 1] and wi,j is the skew weight for con-
straintCi,j (Equation 1). Intuitively, this crude topic mixture

estimation provides a mechanism with which to weight the
‘constraint contributions.’ A more elegant approach would
be to explicitly model documents as an ad-mixture of topics
and is a topic for future work.

3.2 Clustering
Spectral Clustering Algorithm We chose a spectral clus-
tering approach for two reasons: its handling of high-
dimensionality feature spaces and its amenability to addi-
tional constraints. Briefly, spectral clustering methods oper-
ate on the similarity matrix of a dataset in lieu of the original
feature space (Ng et al. 2002; Von Luxburg 2007). The sim-
ilarity matrix S is an n × n matrix, where n is the number
of instances, and Sij represents some measure of “similar-
ity” between instances i and j. This similarity can be a dis-
tance measure (such as the Euclidean distance between in-
stances), a measure of text similarity (such as cosine similar-
ity), or any arbitrary encoding of pairwise instance similar-
ity (Strehl, Ghosh, and Mooney 2000). In spectral clustering
one partitions the eigenvalues of the similarity matrix, e.g.,
via a normalized cuts algorithm (Dhillon, Guan, and Kulis
2004). Here we leveraged the Meila-Shi algorithm (Meila
and Shi 2001) to take the eigenvectors with the k largest
eigenvalues of the matrix P = D−1S, and then clustered
points in this space using k-means.

Feature Representation Our documents (abstracts of the
submissions to AAAI 2013) included titles, abstracts, and
author-specified free-text keywords. We encoded these us-
ing a standard bag of words representation, including un-
igrams and bigrams (Tan, Wang, and Lee 2002). Tokens
from the titles and author-specified keywords were included
as separate features. We used an English stoplist and re-
moved terms that occurred fewer than 5 times in the corpus
or were shorter than three characters. In total we used 3,275
unique features.

We experimented with six different feature representa-
tions: counts-based bag of words, binary bag of words, and
topic modeling representations with 25, 50, 75, and 100 top-
ics.1 To choose the best representation, we clustered our
documents using each candidate feature space and then at-
tempted to rediscover these cluster labels using an SVM.
The feature space with the fewest misclassifications was the
counts-based bag of words.

Adding Constraints Spectral clustering provides a con-
venient method for injecting constraints via the aforemen-
tioned similarity matrix. First, we scaled all feature values
to the [0,1] interval. Then each entry in the similarity matrix
can be calculated as follows.

Ŝi,j = Si,j + λti,j (3)

where Si,j is a distance measure between documents di and
dj , λ is a parameter than controls the relative weight given to

1We used the counts-based bag of words representation as input
to Latent Dirichlet Allocation (Blei, Ng, and Jordan 2003) and then
encoded each document via the inferred proportions of each topic.
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the constraints, and ti,j is the aggregate pairwise constraint
value between di and dj (Equation 2).

In practice, λ is a multiplier for each constraint value
added to the similarity matrix. Thus a higher λ places more
emphasis on the constraints and less emphasis on the dis-
tances between points. We set λ using the data by selecting
a value that maximized the estimated log-likelihood of held-
out documents under a simple generative model. For the
purpose of setting λ we make a simplifying assumption that
each document belongs to a single cluster (the cluster cor-
responding to the keyword with the highest probability in
the feature space). Specifically, we assumed a mixture over
multinomials wherein each cluster corresponds to a mix-
ture component. We estimated the parameters of each com-
ponent’s corresponding multinomial using maximum likeli-
hood. We calculated the log-likelihood of a given clustering
Z by summing the estimated log likelihood of each docu-
ment di given its most likely keyword/cluster zdi and asso-
ciated multinomial parameter estimates. Thus we have:

L L (Z|D) = Σdlog(Pr(d|Z)) + log(Pr(Z))

= Σd[log(Pr(d|zd)) + log(Π̂zd)]

= Σd[Σw∈dlog(Θ̂zd
w ) + log(Π̂zd)]

(4)

where Π̂zd is the maximum likelihood estimate for the prob-
ability of the cluster (component) containing document d
and Θ̂zd

w is the estimate for the probability of word w in
document d given the dominant cluster zd. We therefore
selected λ to maximize this estimated log likelihood, i.e.,:

λ∗ = arg maxλ L L (Z|D) (5)

Under this simple model, we calculated the average log
likelihood of held out documents for values of λ in the range
[0, 5] across clusterings including [15, 22] components. Both
of these ranges were deemed as a priori ‘reasonable’ (see
the following section for a discussion regarding the num-
ber of components, i.e., keywords). The best value under
this criterion for λ was 2. This value for λ was not sensi-
tive to the number of components. Note that because set-
ting λ = 0 ignores constraints, the higher log likelihood for
λ > 0 demonstrates empirically the benefit of incorporating
constraints.

Choosing the Number of Clusters Selecting the number
of clusters (components in a mixture model) is generally a
tricky problem (Milligan and Cooper 1985; Sugar and James
2003). However, here we have domain expertise to aid us
in narrowing down our options to a suitable range (e.g.,
clearly having hundreds of keywords would not be helpful to
conference participants or PC members; having 2 would be
equally unhelpful). The authors (including Dr. Brodley, who
has chaired or co-chaired large CS conferences, and thus
has relevant domain expertise) selected reasonable bounds
for the number of keywords. We started with the baseline
of the previous year’s number of keywords (12) and added
a bit to this in light of the observation that elicited prefer-
ences suggested that many keywords be broken up. This

resulted in selecting a lower bound of 15. An upper bound
of 22 was then chosen, somewhat arbitrarily but reflecting
intuition that more than 22 keywords would start to get un-
wieldy.

Because we were able to designate a rather narrow range
for the number of keywords (clusters), we did not experi-
ment with nonparametric methods (Teh et al. 2006) to se-
lect the number of components (keywords). Instead, as a
practical strategy we opted to select a number within this
range that maximized the likelihood of held out data under
the simple mixture of multinomials model described above.
Specifically, we conducted cross-validation, holding out a
subset of the data with which to calculate the log likelihood
of each held-out document given the clustering. (Again we
assigned each test point to its dominant cluster.) We per-
formed five-fold cross validation five times for each value
of k in the identified range and averaged the log likelihoods
for the held-out documents. This procedure suggested 21 as
best value for k within the range of interest.

3.3 Summary of Approach
To briefly recapitulate: for the constraint matrix input to the
clustering algorithm, we used the means of the community-
informed constraints weighted by their (absolute) skews.
To calculate the pairwise constraints between documents
(which are associated with multiple keywords), we used
Naı̈ve Bayes to infer a distribution over keywords (i.e., a
mixture) for each document. Finally, for the parameters of
the spectral clustering algorithm (λ and k), we used the val-
ues determined above: λ=2 and k=21.

4 From Clusters to Keywords
Using the above approach, we induced a clustering over all
abstracts submitted to AAAI 2013 (both accepted and re-
jected).2 The output of this clustering approach is a hard
assignment of documents to clusters. Our assumption was
that these clusters map to (new) keywords. We acknowledge
that this violates the reality of the situation; i.e., that articles
will often span multiple topics. Our assumption here is that
forcing a hard assignment will result in abstracts being as-
signed to clusters corresponding to the most dominant topics
therein. Furthermore, such a hard assignment makes the next
step – mapping clusters to keywords – an easier process.

Specifically, one needs to map clusters (or the papers
comprising them) to keywords. This was by far the most
manual step in our keyword generation process. Two of the
authors collaboratively determined this mapping, using the
following information to select cluster names:

• The top 20 words appearing in the titles and keywords of
all di ∈ zj ;
• The top 20 topics3 assigned to all di ∈ zj ;

2This set excluded the “special track” papers from Artificial In-
telligence and the Web, Cognitive Systems, Senior Members, Com-
putational Sustainability and Artificial Intelligence, Robotics, and
AI Subarea Spotlights.

3Topics are the second tier of more fine-grained, conference-
defined keywords also selected by authors.
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Clusters
AAAI 2013 Keyword 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Applications 0.9 1.2 7.9 0.0 14.1 0.5 0.2 0.0 1.6 0.0 1.0 0.0 3.3 5.8 4.0 1.1 2.1 0.8 0.0 0.6 5.4
Constraints . . . 0.0 0.9 0.3 0.0 0.3 0.4 0.0 0.0 1.3 9.9 1.9 0.0 0.0 0.0 0.8 1.1 0.9 8.9 0.4 2.2 1.0
Heuristic Search . . . 0.3 2.6 1.4 0.0 0.3 2.0 0.0 0.5 11.4 0.0 2.3 0.0 0.3 0.4 0.8 2.5 1.2 8.6 0.6 2.6 0.4
Knowledge Based . . . 0.0 0.2 0.0 0.0 0.2 1.0 0.0 0.0 0.0 0.3 0.4 0.0 11.2 0.0 0.0 0.1 11.0 0.0 0.0 0.0 0.8
Knowledge Representation 1.7 0.4 0.0 0.0 0.6 1.3 0.0 0.0 0.0 8.2 2.3 0.0 0.3 1.5 0.3 1.2 7.7 0.5 3.4 3.1 3.2
Machine Learning 4.2 6.4 2.1 23.0 8.5 2.4 0.5 5.8 7.3 0.0 3.0 22.0 4.5 2.7 2.4 0.7 2.1 0.0 6.4 1.4 2.5
Multiagent Systems 3.5 1.4 5.9 0.0 3.6 1.4 29.0 0.3 0.8 0.7 1.7 0.0 0.5 7.4 4.8 3.4 1.4 0.3 1.7 2.9 4.2
Multidisciplinary Topics 0.6 2.3 0.2 0.0 0.5 0.5 0.0 0.0 0.0 0.1 0.9 0.0 1.5 14.4 0.0 0.5 3.6 0.0 1.3 0.0 3.4
NLP 0.4 0.0 0.3 0.0 2.0 1.8 0.0 17.3 0.6 0.5 0.9 0.0 5.0 2.7 0.4 0.3 3.9 0.6 0.5 0.3 0.7
Reasoning about Plans . . . 0.0 1.0 0.2 0.0 0.6 0.7 0.0 0.0 0.7 0.7 1.1 0.0 0.4 1.4 0.7 5.6 1.1 0.2 0.5 15.3 1.5
Reasoning under . . . 11.5 0.0 2.8 0.0 0.3 5.4 0.3 0.0 0.9 0.5 1.8 0.0 0.8 0.9 3.9 1.2 1.1 0.9 0.4 2.7 1.3
Robotics 0.0 3.5 0.0 0.0 0.0 0.4 0.0 0.0 6.5 0.1 0.7 0.0 0.3 0.7 0.0 0.3 0.9 0.3 2.7 0.0 0.6
Total number of papers 23.0 20.0 21.0 23.0 31.0 18.0 30.0 24.0 31.0 21.0 18.0 22.0 28.0 38.0 18.0 18.0 37.0 21.0 18.0 31.0 25.0
Entropy 1.5 2.0 1.6 0.0 1.5 2.2 0.2 0.7 1.7 1.2 2.4 0.0 1.7 1.8 1.8 2.0 2.1 1.3 1.9 1.7 2.2

Table 1: A matrix showing the occurrences of AAAI 2013 keywords in each of the new clusters, as calculated from the Naive
Bayes keyword proportion estimates described in Section 3.1. Highest-occurring keywords for each cluster shown in bold.

• The top 20 user-chosen keywords assigned to all di ∈ zj ;
• A matrix of the occurrences of the old (AAAI 2013) key-

words in each cluster, as shown in Table 1; and

• The titles of each di ∈ zj .

The authors inspected the above information associated
with each cluster individually and ascribed to it the most rep-
resentative keyword they could. (Mappings from the clusters
to keywords can be seen below in Table 2, with cluster num-
bers in parentheses after each new keyword.) If a cluster did
not seem to have a coherent theme, it was determined to be
a “junk” cluster and was assigned no keyword. From the 21
original clusters, we ended up with 18 named clusters and
three “junk” clusters (clusters 1, 6 and 11 in Table 1). The
data supports the impressionistic determination of these as
“junk” clusters, as they are among the highest-entropy clus-
ters with respect to the old keywords.

The authors did their utmost to faithfully interpret the
data, i.e., to assign keywords that matched the papers in each
cluster. But we readily acknowledge that having a few indi-
viduals manually map clusters of article submissions to key-
words is not ideal, as in some cases it required a fair amount
of “reading the tea leaves.” Methods have been proposed
to automatically label topics (Mei, Shen, and Zhai 2007;
Lau et al. 2011; Hulpus et al. 2013), but these are not yet
mature enough (in our view) for the present application.

The effects of the constraint matrix can be seen in the final
clustering. For example, recall that PC members strongly
agreed that both applications and multidisciplinary topics
should be merged; in the resulting clustering, these are in-
deed combined into one application cluster. Similarly, PC
members agreed that machine learning ought to be multi-
modal (i.e., was too broad), and that topic was split here into
two clusters. Furthermore, robotics, which individuals ex-
pressly did not want merged with any other cluster, did not.
Machine learning and NLP had a consensus “merge” signal

4Reasoning about plans, processes, & actions.

and a joint cluster indeed emerged. By contrast, there was no
consensus on whether NLP was multimodal; as a result, the
data spoke for itself and three large NLP clusters emerged.

5 Crowd-Sourced Evaluation

The premise of our evaluation is that new keywords are ‘bet-
ter’ than existing keywords insofar as the community prefers
them. To assess this, we solicited community input the eval-
uation much as we did with the constraints, though from a
much larger pool of respondents. We asked the 497 mem-
bers of the AAAI 2014 PC (including the SPC) to evaluate
the new set of keywords, compared to the existing set, under
the blind headings of “List 2” and “List 1”, respectively.

Evaluation 1: We asked half of the PC to choose the list of
keywords that would best help them narrow down the papers
for choosing their bids. We provided them with the previous
year’s list of keywords (12) and our new list of keywords re-
sulting from this experiment (18). The email was as follows.

“As an SPC/PC member which of these two sets of key-
words would be best for helping you narrow down the
papers that you would like to examine in order to deter-
mine your bids?”

Evaluation 2: We asked the other half of the PC to rank
the top three keywords from a provided list that they think
would best represent their last submission to AAAI (or IJ-
CAI). This list was the union of the old and new keywords
for a total of 27 (due to an overlap of three keywords be-
tween the two lists). The request was as follows.

“If you were to submit a paper on your research this
year or last to AAAI (or IJCAI) which keyword(s)
would you choose from this list that best represents the
topic of your paper? Please choose only 3 and provide
the ranking.”
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2013 Keywords 1 2 3
∑

Proposed Keywords 1 2 3
∑

2014 Keywords
Applications 5 7 15 27 Applications (21) 5 7 15 27 AI & the Web*
Constraints & satisfiability 3 5 3 11 Cognitive modeling (19) 7 3 4 14 Applications
Heuristic search & optimiz. 11 7 5 23 Computational social choice (7) 5 0 2 7 Cognitive modeling
Knowledge-based systems 2 8 1 11 Game theory (3) 8 7 2 17 Cognitive systems*
Knowledge rep. & reasoning 5 6 10 31 Heuristic search & optimization (9) 11 7 5 23 Computational sustainability & AI*
Machine learning 26 23 16 65 Humans & AI (14) 9 9 10 28 Game theory & economic paradigms
Multiagent systems 10 16 4 30 Knowledge rep. & constraint satisf. (10) 3 2 2 7 Heuristic search & optimization
Multidisciplinary topics 0 1 7 8 Matrix fact. & semi-supervised ML (12) 3 1 1 5 Human computation & crowd-sourcing*
Natural-language processing 4 1 2 7 Machine learning (methods) (4) 26 23 16 65 Humans & AI
Reasoning about plans . . . 4 3 9 5 17 Multiagent planning (16) 2 6 3 11 Knowledge rep. & reasoning
Reasoning under uncertainty 7 10 7 24 Multiagent reinforcement learning (15) 0 3 3 6 Machine learning applications
Robotics 11 4 9 24 Networks (5) 2 0 6 8 Multiagent systems

NLP & knowledge representation (17) 2 2 1 5 NLP & knowledge representation
NLP & machine learning (8) 2 4 0 6 NLP & machine learning
NLP & text mining (13) 1 0 6 7 NLP & text mining
Planning methods (20) 9 9 9 27 Novel machine learning algorithms
Search & constraint satisfaction (18) 4 3 10 17 Planning & scheduling
Vision & robotics (2) 2 6 1 9 Reasoning under uncertainty

Robotics
Search & constraint satisfaction

Totals: 97 97 84 278 Totals: 101 92 96 289 Vision

Table 2: AAAI 2013 keywords; the proposed keywords (number in parentheses is the associated cluster in Table 1); and the
final list of keywords as determined from the results by the 2014 program chairs. Keywords with an asterisk are from previous
year’s special tracks, which are part of the main track of AAAI 2014. The numbers after the 2013 keywords and the proposed
keywords are the results of part of the crowd-sourced evaluation described in Section 5.

5.1 Results
Evaluation 1: There were 170 respondents, 86 of which
(50.5%) chose the AAAI 2013 list and 84 (49.5%) of which
chose our proposed list. We followed up with a second
survey asking those who selected the AAAI 2013 list why
they preferred it. The question and answers were as follows,
where List 1 refers to the AAAI 2013 list and List 2 refers
to our proposed list.

“What is the top reason you chose List 1 over List 2?
1. List 1 had more uniform granularity than List 2
2. The formatting of List 2 was messed up in my email
3. I thought List 1 was overall more representative of

the entire field of AI
4. My first choice topic for bidding was not in List 2
5. I was familiar with List 1
6. Other (please explain)”
Of those contacted, 40 (46.5%) responded. A majority

(55%) responded (1), while about a quarter (22.5%) selected
(3). Of the remainder, 7.5% chose (4), 5% chose (5), and
10% chose (6), with the reason being similar to (4) or (3).

Evaluation 2: We received 160 responses; the complete
breakdown of responses, including keyword counts per rank,
can be seen in Table 2. 163 (36%) of the keywords cho-
sen came exclusively from AAAI 2013 list, 174 (38.5%)
came exclusively from our proposed list, and 115 (25.5%)
belonged to both lists. Note that this is with the machine
learning and machine learning methods merged after many
respondents commented that there was no distinction.

5.2 Determining the Final List
Ultimately, keyword selection is not only about data but
also inclusiveness and history. The final list, shown as

“2014 Keywords” in Table 2 was selected by the 2014 pro-
gram chairs. They elected to keep the most popular key-
words from each of the two lists with respect to Evalua-
tion 2 also taking into consideration the size of their cor-
responding clusters. For example, NLP garnered 7 total
votes, whereas NLP and knowledge representation, NLP and
machine learning, and NLP and text mining garnered a to-
tal of 18 votes all together and the size of each of the lat-
ter three clusters was 37, 24, and 28 respectively. Given
the small size of the stand-alone NLP cluster, the program
chairs chose to keep Machine Learning and NLP bundled
together. They also elected not to keep keywords with few
votes such as computational social choice and matrix factor-
ization and semi-supervised ML, which were likely unpopu-
lar as PC members found them to be too narrow and elected
for broader keyword choices such as machine learning to
describe their papers. Some 2013 keywords were far more
popular than the new keywords, e.g., knowledge representa-
tion and reasoning was a more popular than knowledge rep-
resentation and constraint satisfaction. In addition the pro-
gram chairs chose to rename some clusters, e.g., planning
methods was renamed planning and scheduling and game
theory was renamed game theory and economic paradigms.

6 Conclusions
We have described a first attempt at taking a data-driven,
community-sourced approach to generating keywords for
conferences such as AAAI. Using crowd-sourced con-
straints concerning last year’s keywords and human-in-the-
loop guidance in drawing up the results, we generated a set
of keywords that are at least as popular with AAAI PC mem-
bers as last year’s set was, and that included some terms that
were apparently overlooked in past years. Indeed, based
on the results of our crowd-sourced evaluation, a number
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of our keywords made their way into the AAAI 2014 set,
and we are optimistic that this improved the bidding pro-
cess. Thus we were able to demonstrate the value of aug-
menting more traditional, historically-based keyword gen-
eration with a data-driven, crowd-sourced strategy. Addi-
tionally, this case study uncovered two new challenges for
class-level, constraint-based clustering: how to handle mul-
tilabel data and how to incorporate constraints when there is
no expert consensus.

The approach taken here provides what we view as a
promising proof of concept for a more data-driven and
community-engaged process. But the methods we leveraged
can certainly benefit from a number of refinements. Specif-
ically, we would like to explore a more holistic approach
using a fully generative mixture model that directly incor-
porates constraints. Another potential extension would be to
specify a nonparametric model, thus providing a means to
select the number of keywords in a more principled fashion.

This work also reveals further potentially avenues for
community participation in the keyword selection process.
For example, the process of deriving keyword names from
the clusters of papers took two hours of expert time, which
may have been insufficient. We believe we can effectively
leverage the community’s expertise in titling the clusters in
the future to produce a more consensus-driven set of key-
words.

Data
We have placed the 2013 and 2014 data in the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/). Note
that due to privacy reasons the 2013 data includes only the
accepted abstracts, titles, and keyword information from the
main track, whereas the experiments in this paper were con-
ducted on all papers submitted to the main track in 2013.
The 2014 data includes the accepted abstracts titles and key-
word information for all tracks (the main track and the spe-
cial tracks). More information about these datasets can be
found at the repository.
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