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Abstract

Feature selection plays an important role in many ma-
chine learning and data mining applications. In this pa-
per, we propose to use L2,p norm for feature selection
with emphasis on small p. As p → 0, feature selection
becomes discrete feature selection problem. We provide
two algorithms, proximal gradient algorithm and rank-
one update algorithm, which is more efficient at large
regularization λ. We provide closed form solutions of
the proximal operator at p = 0, 1/2. Experiments on
real life datasets show that features selected at small p

consistently outperform features selected at p = 1, the
standard L2,1 approach and other popular feature selec-
tion methods.

Introduction

Feature selection is important in a lot of machine learning
tasks. It is aiming at selecting a subset of a large number
of features, and is one of the most important techniques for
dealing with high-dimensional data. A lot of machine learn-
ing models for classification, clustering, and other tasks such
as those in bioinformatics need to deal with high dimen-
sional data. Using high dimensional data in these applica-
tions directly will cause higher computational cost, and fea-
tures those are irrelevant and redundant may also harm the
performance of classification and clustering.

There are many research work on feature selection these
years. Roughly, those feature selection methods can be cat-
egorized into 3 categories: wrapper methods (Kohavi and
John 1997), filter methods (Langley 1994) and embedded
methods. Previous research work on wrapper methods in-
cludes correlation-based feature selection (CFS) (Hall and
Smith 1999) and support vector machine recursive feature
elimination (SVM-RFE) (Guyon et al. 2002), etc. Research
work on second category includes reliefF (Kira and Ren-
dell 1992) (Kononenko 1994) (Kong et al. 2012), F-statistic
(Ding and Peng 2003), mRMR (Peng, Long, and Ding 2005)
and information gain (Raileanu and Stoffel 2000), etc. The
goal of embedded methods is to maximize the margins be-
tween different classes, such as SVM-recursive feature elim-
ination (Guyon et al. 2002), in which, features are removed
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iteratively based on some criteria. Embedded feature selec-
tion methods embed the selection process in the training pro-
cess. Feature selection can be applied to both supervised and
unsupervised learning, we focus here on the problem of su-
pervised learning (classification). Methods mentioned above
often have good performance, but also with high computa-
tional cost.

Sparsity regularization techniques recently have drawn a
lot of attention in the studies of feature selection. For ex-
ample, Bradley et al. (Bradley and Mangasarian 1998) and
Fung et al. (Fung and Mangasarian 2000) proposed L1-SVM
method to do feature selection using L1-norm regulariza-
tion. Ng (Ng 2004) proposed logistic regression with L1
norm regularization to do feature selection. Another pro-
posed method uses both L1-norm and L2-norm to form
a more structured regularization in (Wang, Zhu, and Zou
2007). Obozinsky et al.(Obozinski and Taskar 2006) and
Argyriou et al.(Argyriou, Evgeniou, and Pontil 2007) devel-
oped a model with L2,1-norm regularization to select features
shared by multi tasks. Nie et al. (Nie et al. 2010) employed
joint L2,1-norm minimization on both loss function and reg-
ularization. There are also some other research work, such
as (Kong and Ding 2013) (Chang et al. 2014).

In this paper, we propose to use L2,p-norm regularization
for feature selection with emphasis on small p. As p → 0,
feature selection becomes discrete feature selection prob-
lem. We provide two algorithms, proximal gradient algo-
rithm and rank-one update algorithm to solve this discrete
selection problem. The rank-one update algorithm is more
efficient at large regularization λ. Experiments on real life
datasets show that features selected at small p consistently
outperform features selected by standard L2,1 norm and other
popular feature selection methods.

Feature Selection

In many applications, linear regression is used as the classi-
fication method. Using this method, feature selection can be
done in many studies and experiments indicates that features
selected using this approach work well using other classifi-
cation methods (Obozinski and Taskar 2006) (Argyriou, Ev-
geniou, and Pontil 2007) (Nie et al. 2010) (Naseem, Togneri,
and Bennamoun 2010).

Suppose X = {x1, x2, · · · , xn} is the original dataset with
d features for n data points, with associated class labels Y =
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{y1, y2, · · · , yn}, and there are c classes. The feature selection
problem is to select q features, i.e., q rows of X denoted as
Xq, such that

J0(Xq) = min
W

�Y−W
T

Xq�2F = Tr
�
Y

T
Y−Y

T
YX

T

q
(XqX

T

q
)−1

Xq

�

(1)
is minimized. We call J0(Xq) as residual of the selected fea-
tures.

Clearly, this is a discrete optimization problem. Let D =
{1, 2, · · · , d} denote the dimensions. we select a subset q ⊂ D

of discrete dimensions with the desired dimension such that
the residual is minimized:

min
q⊂D

J0(Xq). (2)

This type of discrete optimization needs to search C
q

d
=

d!/q!(d − q)! feature subsets, which is in general NP-hard
problem. [Here to simplify the notation, q denotes either a
subset of dimensions D, or the size of the selected subset.]

Instead of solving the discrete selection problem, we solve
the following regularized problem,

min
W

�Y −W
T

X�2
F
+ λ�W�p2,p (3)

where L2,p norm on W is defined as

�W�2,p =
� d�

i=1

� c�

j=1

W
2
i j

�p/2�1/p
=
� d�

i=1

�wi�p
�1/p

(4)

where w
i is the i-th row of W, d is the dimension of data and

c is the number of classes in the problem. L2,p norm is the
generalization of L2,1-norm first introduced in (Ding et al.
2006).

Feature selection is achieved by increasing λ to certain
value such that most of the rows of the optimal solution W

∗

become zeros. Clearly, if i-th row of W
∗ is zero, then the en-

tire i-th row of X is not used in �Y −W
T

X�2
F

. This means the
i-th feature is eliminated. In other words, the nonzero rows
of W indicate that these rows of X are selected as Xq. Thus
the regularized formulation of Eq.(3) solves the discrete fea-
ture selection problem of Eq.(2).

In this paper, we investigate feature selection at different
p values: 0 ≤ p ≤ 1. The p = 1 case is the standard L2,1
norm. As p → 0, �W�p2,p approaches the number of nonzero
rows in W. Thus at small p, �W�p2,p is more appropriate for
feature selection.

One drawback of this approach is that �W�p2,p(p < 1) is
non-convex, so that we can not always find the exact global
optimal solution. But in experiments, good local optimal so-
lution can be computed and the selected features perform
better than those selected at p = 1. This is a key finding of
this paper (see detailed discussion in experiment section).

In the following of this paper, we present two computa-
tional algorithms - proximal gradient algorithm and rank-
one update method to solve Eq.(3), and perform experiments
on several real life datasets to demonstrate that �W�p2,p at
small p is a more effective feature selection method.

To validate the effectiveness of the selected q features, one
measure is to utilize J0(Xq). If the selected q features are

good, J0(Xq) should be small. Our experiments on several
real life data indicates that features selected at p = 0.7, p
= 0.5, p = 0.1 and p = 0, always have a smaller J0(Xq) as
compared to features selected at p = 1. This indicates the
validity of the proposed model of Eq.(3).

Proximal Gradient Algorithm

In this section, we apply the proximal gradient algorithm to
solve our optimization problem in Eq.(3),

min
W

J(W) = f (W; X) + λ�W�p2,p
where X is the input data and f is supposed to be a convex
function and its gradient is Lipschitz continuous. The gradi-
ent of f is Lipschitz continuous if �∇ f (W1) − ∇ f (W2)�F ≤
η�W1 − W2�F , for any W1,W2 ∈ Rd×c, where η is a con-
stant. More detailed introduction of proximal methods can
be found in (Jenatton et al. 2010; Ji and Ye 2009; Nesterov
2007).

Starting with W0, W is updated through iterations of
W1,W2, · · · ,Wt. The important building block of proximal
gradient algorithm is to solve the proximal operator equa-
tion

Wt+1 = arg min
W

1
2η
�W − A�2

F
+ λ�W�p2,p (5)

where A = Wt − η∇ f (Wt) represents the attempted update of
Wt. Let w

i be the i-th row of W and Let a
i be the i-th row of

A. It is easy to see the RHS of Eq.(5) can be written as
d�

i=1

�1
2
�wi − a

i�2 + β�wi�p� (6)

where β = ηλ. Thus different rows of W can be indepen-
dently computed. The optimization problem becomes solv-
ing the vector optimization problem

min
w

1
2
�w − a�2 + β�w�p (7)

where w ∈ Rd, a ∈ Rd.
One contribution of this paper is to study the optimal so-

lution of this problem with 0 ≤ p ≤ 1. (When p > 1 this
problem is differentiable and easy to solve.)

(A) Since sparsity of the solution is a key issue, we de-
rive the conditions for the optimal solution to be completely

sparse, i.e., every components of the d-dimensional vector
w is zero.
Theorem 1 The optimal solution of the proximal operator

optimization of Eq.(7) is completely sparse (i.e., w = 0)

when

β ≥ 1
p

(1 − p)(1−p)

(2 − p)(2−p) �a�
2−p, 0 < p ≤ 1. (8)

In particular, we have

p = 1 : β ≥ �a� (9)

p = 1
2 : β ≥

�
16/27�a�3/2 (10)

p = 0 : β > (1/2)a2
1 (11)

where a1 is the largest absolute value element of a.
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The proof of Eq.(8) is provided in supplementary mate-
rial (Zhang, Ding, and Zhang 2014) due to space limit.
Proofs for the special cases Eqs.(9,10,11) are given in this
paper.

(B) This optimization has closed form solutions at 3 spe-
cial cases of Eqs.(9-11). The detailed analysis and computa-
tional algorithm of these closed form solutions are given in
section 4. Eqs.(9-11) are proved there. One can easily verify
that Eqs.(9,10) are the same as Eq.(8). We also present com-
putational algorithm in section 4 when p is not one of these
3 cases.

The proximal gradient algorithm of this section is one ap-
proach to solve the feature selection problem Eq.(3). Here
the proximal operator optimization of Eq.(5) (which reduces
to Eq.(7)) is the critical step.

The rank-one update algorithm presented in next section
is another approach to solve the feature selection problem
Eq.(3). The proximal operator optimization of Eq.(7) dis-
cussed here is also the critical step in solving the rank-one
update algorithm.

A Rank-one Update Algorithm

Another contribution of this paper is to introduce here a
rank-one update algorithm to solve the feature selection
problem of Eq.(3).

A problem with proximal gradient descent algorithm is
that it converges slowly at large λ. This is an critical issue
because in the feature selection problem, the desired opti-
mal solution of W contains mostly zero rows because the
selected features are typically much smaller than the num-
ber of original features. This occurs at large λ.

For example in the DNA and gene expression data, the
number of features (genes) are typically 2000-4000, while
we typically select 10 genes. This means that out of several
thousands of rows of W, only 10 rows are nonzero. This hap-
pens at large λ values.

In this section, we propose a new algorithm - a rank-
one update algorithm to solve the regularized formulation
of Eq.(3). This algorithm is particularly efficient at large λ.

This can be explained fairly easily using the concrete ex-
ample of multi-class feature selection.

min
W

�Y −W
T

X�2
F
+ λ�W�p2,p (12)

Let the column vector x
i contains the i-th row of X: X

T =
(x

1 · · · xd). We can decompose W
T

X =
�

d

i=1 w
i
x

iT and
�W�p2,p =

�
d

i=1 �wi�p. We can thus write the first term of
Eq.(12) as

�Y −W
T

X�2
F
= �(Y −

�

i�r

w
i
x

iT ) − w
r
x

rT �2
F
= �Yr − w

r
x

rT �2
F

(13)

Thus the updating of r-th row of W can be written as

min
wr
�Yr − w

r
x

rT �2
F
+ λ�wr�p (14)

This optimization can be reduced to the proximal operator
of Eq.(7). We have the following proposition
Proposition 2 The optimization of Eq.(14) is identical with

the optimization of Eq.(7) with the correspondence:

w = w
r, b = Y

T

r
x

r/�xr�2, β = λ/(2�xr�2). (15)

Proof. We expand

�Yr − w
r
x

rT �2
F
= Tr(x

r
w

rT
w

r
x

rT − 2Y
T

r
w

r
x

rT + Y
T

r
Yr)

= Tr(x
rT

x
r
w

rT
w

r − 2(Yr x
r)T

w
r + Y

T

r
Yr)

= �xr�2�wr − b�2 − �xr�2�b�2 + �Yr�2

with b given in Eq.(15). Ignoring the last 2 terms which are
independent of w

r, we have

�Yr−w
r
x

rT �2
F
+λ�wr�p = 2�xr�2�1

2
�wr−b�2+β�wr�p� (16)

where with β given in Eq.(15). The positive constant �xr�2
drops out in the optimization. This completes the proof. �–

The complete algorithm for rank-one update is presented
in Algorithm 1, and updating a single row of W will be
solved in section 4.1 - 4.3.

Algorithm 1 Rank-one Update Algorithm
Input: X, Y , W0

parameters λ, p in L2,p norm
Output: W

Procedure:

1: W = W0

2: while W not converged do

3: for r = 1 to d do

4: Yr = Y −�i�r w
i
x

iT

5: b = Y
T
r

x
r/�xr�2

6: β = λ/(2�xr�2)
7: w

r ←− arg min
wr

1
2 �wr − b�2 + β�wr�p

8: switch p

9: case 1: p = 1, standard L2,1 norm
10: case 2: p = 0.5, solve w

r using Eq.(23)
11: case 3: p = 0, solve w

r using Eq.(20)
12: case 4: 0 < p < 1, p � 0.5, solve w

r using Eq.(25)
13: end for

14: end while

15: Output W

This technique is called rank-one update technique, and
popularly used in matrix computation.

Analysis of Proximal Operator

Solving the proximal operator equation Eq.(7) is the key
step in both the proximal gradient algorithm (section 2) and
the rank-one update algorithm (section 3). In this section,
we present detailed analysis of the optimization problem of
Eq.(7) for various cases of p.

First we transform the vector optimization problem of
Eq.(7) into a scalar optimization problem. We have

Proposition 3 The solution of Eq.(7) can be formulated as

w = za, z ∈ R, z ≥ 0

and z is obtained by solving

min
z≥0

f (z) =
1
2

(z − 1)2 + σz
p (17)

where σ = β�a�p−2 = ηλ�a�p−2
.

1357



Proof. Let w = (w1 · · ·wd) and a = (a1 · · · ad). From Eq.(7),
it is clear that components of w must has the same sign as
components of a. Second, if we express w as an unit direc-
tion ŵ multiplying the magnitude �w�, i.e., w = ŵ�w�, the
unit direction ŵ must be in the same direction of a; this is
because the penalty term �w�p is independent of the unit di-
rection ŵ, and the first term �w − a�2 is minimized when
ŵ = â ≡ a/�a�. This implies wi = zai, i = 1 · · · d. Substitut-
ing w = za into Eq.(7) leads to

min
z

1
2
�a�2(z − 1)2 + ηλ�a�pz

p (18)

which is identical to Eq.(17). �–
Therefore, to solve the proximal operator Eq.(7) is re-

duced to solve Eq.(17).
In the following, we solve the proximal operator in Eq.(7)

or Eq.(17) when 0 ≤ p ≤ 1, which is identical to solve
Eq.(14) in rank-one update algorithm.

At p = 1, from Eq.(17), the KKT complementarity slack-
ness condition (∂J/∂z)z = 0 gives (z − 1 + σ)z = 0. Thus
the solution is z = max(1−σ, 0). This also proves the sparse
condition in Theorem 1. This result is known in earlier stud-
ies.

We present closed form solutions at p = 0, p = 1/2 below.
To our knowledge, these results are not known previously.

Closed Form Solution at p = 0
When p = 0, we solve the optimization problem of Eq.(7),
which is written as the following,

min
w

J(w) =
1
2
�w − a�2 + β�w�0 (19)

where �w�0 means the number of nonzero elements in vector
w and β = ηλ.

Theorem 4 The solution of Eq.(19) is the following,

1) First, sort the absolute value of a in descending order,

such that |a1| > |a2| > · · · > |an|, suppose there are n ele-

ments in a;

2) The optimal solution of w is given by w
∗
,

w
∗ =




a, if β <
1
2

a
2
n

(a1, · · · , ak−1, 0, · · · , 0), if
1
2

a
2
k
< β <

1
2

a
2
k−1

(0, 0, · · · , 0), if β >
1
2

a
2
1

(20)

Proof. In the following proof, we use wk to denote a solu-
tion where the number of nonzero elements in the vector w

is k. This is because once we know the number of nonzero
elements in w, Eq.(19) is trivial to solve.

When β = 0, obviously w
∗ = wn = a, and J(wn) = 0 + βn.

If β = ∞, w
∗ = w0 = 0. Thus we let β increases from 0,

which causes the number of nonzero elements in solution w
∗

decrease; we find the corresponding condition on β to have
the correct number of nonzero elements in the solution.

As β increases slightly from β = 0, the number of nonzero
elements in w

∗ will drop to n − 1 from n, i.e., w
∗ = wn−1 =

(a1, a2, · · · , an−1, 0) and and J(wn−1) = 1
2 a

2
n
+ β(n − 1). For

wn−1 to be the optimal solution, we need J(wn−1) ≤ J(wn).
This condition leads to the first condition in Eq.(20).

As β keeps increasing, the number of nonzero elements
in w

∗ keeps decreasing. Because that given the number of
nonzero elements in w

∗, we can find the optimal solution to
Eq.(19), we have the following useful recursion relation

J(wr) − J(wr−1) =
1
2

a
2
r
− β.

So when 1
2 a

2
k
< β < 1

2 a
2
k−1, we assert that w

∗ = wk−1. This is
because this condition implies

1
2

a
2
n
< · · · < 1

2
a

2
k+1 <

1
2

a
2
k
< β <

1
2

a
2
k−1 < · · · <

1
2

a
2
1.

From this, use the above recursion relation, we have

J(wn) > · · · > J(wk) > J(wk−1) < J(wk−2) < · · · < J(w1).

Thus J(wk−1) is the lowest value.
As we further increase β to the condition β > 1

2 a
2
1, we

have w
∗ = (0, 0, · · · , 0), which proves the sparse condition

in Theorem 1. This completes the proof of Theorem 4. �–
Illustration of the proof. We now demonstrate the 3 cases
of the above proof using one simple example. Let a =
(6, 5, 4, 3, 2, 1) in Eq.(19). We seek optimization at differ-
ent β. For simplicity, a has been properly sorted. Note a1 =
6, a2 = 5, · · · , a6 = 1. The optimal solutions are:
(a) β = 0.1. In this case β < 1

2 a
2
6 = 0.5, w

∗ = a =
(6, 5, 4, 3, 2, 1);
(b) β = 5. In this case, 4.5 = 1

2 a
2
4 < β <

1
2 a

2
3 = 8,

w
∗ = (6, 5, 4, 0, 0, 0);

(c) β = 19. In this case, β > 1
2 a

2
1 = 18, w

∗ = (0, 0, 0, 0, 0, 0).
All these cases can be easily verified by direct computation.

Closed Form Solution at p = 1/2
Here we give the closed form solutions of Eq.(17) and also
prove that sparsity condition in Theorem 1 when p = 1/2.
Setting derivative of Eq.(17) equal to zero, we obtain

z − 1 +
1
2
σz
−1/2 = 0 (21)

We are looking for solutions to this equation with z ≥ 0. Let
z

1/2 = y and µ = 1
2σ, we need to solve

y
3 − y + µ = 0, s.t. y ≥ 0 (22)

The analytic solution of this cubic equation can be written in
closed form. What is interesting here is that although the fi-
nal solution a real number, the arithmetic uses complex num-
bers in the intermediate steps. The nonzero imaginary parts
cancel out exactly at the end.

The solution is obtained by setting y = s − t and compute
s, t from

s
3 = −µ

2
+

�
µ2

4
− 1

27
, t

3 =
µ

2
+

�
µ2

4
− 1

27
(23)

When µ2/4 − 1/27 ≥ 0, s
3, t3 are real, and their cubic roots

are real Clearly the computed y is a real number. However,
it is clear that y = s − t < 0, not in the desired range y ≥ 0.
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The other two roots are complex and do not fit. This gives
the sparsity condition in Theorem 1.

When µ2/4−1/27 < 0, s
3, t3 are complex. The cubic roots

are readily computed by expressing Eq.(23) as
s

3 = αs exp(iθs), t
3 = αt exp(iθt). (24)

where αs,αt, θs, θt are all real. We need only 2 roots of each:

s1 = α
1/3
s

exp(iθs/3), s3 = α
1/3
s

exp(i(θs/3 − 2π/3)),

t2 = α
1/3
t

exp(i(θt/3 + 2π/3)), t3 = α
1/3
t

exp(i(θt/3 − 2π/3))
It can be proved that one root of Eq.(22) is always negative,
thus not feasible. The other two roots are y0 = s3 − t3, y1 =
s1 − t2. Furthermore, 0 ≤ y0 ≤ y1 ≤ 1. Also, f (z) of Eq.(17)
reaches minimum at z1 = y

2
1. Thus y1 is the desired root.

Note that although s1, s3, t2, t3 are complex with nonzero
imaginary parts, the relevant imaginary parts always cancel
exactly; thus y0 and y1 have zero imaginary parts.

We illustrate this method using one example for µ = 0.2
in Eq.(22). We calculate

s1 = 0.4394 + 0.3745i, s3 = 0.1046 − 0.5678i,

t2 = −0.4394 + 0.3745i, t3 = −0.1046 − 0.5678i,

The roots are y0 = 0.2092, y1 = 0.8788. The imaginary parts
cancel exactly. f (z) reaches minimum at z1 = y

2
1.

Numerical Solution at 0 < p < 1
We use Newton’s method to solve Eq.(17). Starting at z0 = 1,
we iterate

zt+1 = zt − g
�(z)/g��(z), (25)

where g
�(z) = z − 1 + σpz

p−1, and g
��(z) = 1 − σp(1 −

p)zp−2. This algorithm converges to the local minimum z1 >
0 if Eq.(8) does not hold. With 20 iterations, the solution is
accurate with an error less than 10−14, close to the machine
precision. To find the global solution, we need to compare
this local minima with another possible local minima z2 = 0,
see the figure in supplementary material (Zhang, Ding, and
Zhang 2014). We compute f (z1), f (z2), and then pick the one
with smaller f (·) value.

Experiments

To validate the performance of our L2,p feature selection
method, we apply it on three data sets: DNA dataset, which
belongs to the Statlog collection and used in (Hsu and Lin
2002), and two publicly available microarray datasets: the
small round blue cell tumors (SRBCT) dataset (Khan et al.
2001) and the malignant glioma (GLIOMA) dataset (Nutt
et al. 2003). The DNA dataset contains total 2000 samples
in three classes, each sample has 180 features. The SRBCT
dataset contains total 83 samples in four classes. Every sam-
ple in this dataset contains 2,308 gene expression values.
The GLIOMA dataset (Nutt et al. 2003) contains total 50
samples in four classes. Every sample in this dataset con-
tains 2,308 gene expression values. We compare the per-
formance of our method 0 ≤ p < 1 with p = 1 and five
other feature selection methods - SVM-RFE (Guyon et al.
2002), ReliefF (Kira and Rendell 1992) (Kononenko 1994),
mRMR (Peng, Long, and Ding 2005), F-Statistic method
(Ding 2002) and Mutual information (Battiti 1994).

Table 1: Residual error of selected features/dimensions,
J0(Xq) in Eq.(1), at different p values on DNA data.

different p

values
J0(Xq) with different q

q = 10 q = 20 q = 30 q = 40 q = 50
p = 1 636.698 510.696 461.988 431.647 404.883
p = 0.7 625.042 506.120 444.398 417.162 399.332
p = 0.5 621.652 487.288 443.824 417.898 396.654

p = 0.1 625.042 496.834 449.808 417.351 397.808

p = 0 621.652 492.564 446.046 416.487 399.536
SVM-RFE 1277.375 913.397 825.018 728.313 673.689
ReliefF 761.147 603.404 578.482 561.334 542.042
mRMR 778.504 521.113 456.343 434.658 410.838
F-Statistic 778.504 516.454 457.828 433.836 412.241
Mutual Info 778.504 516.454 456.343 434.658 410.838

Table 2: Residual error of selected features on SRBCT data

different p

values
J0(Xq) with different q

q = 10 q = 20 q = 30 q = 40 q = 50
p = 1 12.754 8.186 2.857 1.886 1.309
p = 0.7 9.205 4.033 2.392 1.064 0.634
p = 0.5 8.314 3.244 1.839 0.976 0.375

p = 0.1 10.848 3.681 2.276 1.833 0.398

p = 0 8.173 4.308 2.394 1.553 0.883
SVM-RFE 20.922 10.068 6.170 4.871 2.117
ReliefF 18.003 8.241 4.992 2.927 1.976
mRMR 14.831 5.976 4.208 2.637 1.942
F-Statistic 13.208 6.181 3.282 2.602 1.889
Mutual Info 19.044 12.915 4.974 2.905 1.884

Effectiveness of the Features Selected at Small p

We compare our proposed feature selection methods in
Eq.(3) at p = 0, 0.1, 0.5, 0.7, with the six methods men-
tioned above. SVM-RFE is original for 2-class. Here we im-
plemented the multi-class extension (Zhou and Tuck 2007).

For each p value, we adjust λ such that the number of
nonzero rows in W

∗ (optimal solution) is q. After we get the
q features, we use the value of J0(Xq) in Eq.(1) to validate
the effectiveness of the selected q features. if the q features
are effective to represent the original X, the value of J0(Xq)
should be small.

Table 1, 2, 3 give the value of J0(Xq) with different q fea-
tures selected by different p value on dataset DNA, SRBCT
and GLIOMA, respectively. As we can see, when 0 ≤ p < 1,
J0(Xq) is always smaller than that of p = 1 when the number
of selected features q is fixed. Notice, on GLIOMA dataset,
when q = 50, J0(Xq) = 0, that is because the number of data
points n = 50.

Classification Accuracy Comparison

For each dataset, we randomly split the dataset X into train-
ing set and testing set equally, ie, 50% of the data is training
and 50% is testing. To get good statistics, we rerun these
split process 20 times so splits are different from each run.
And for each run, we adopt cross validation to ensure the
fairness of the evaluation. Final results are the averages over
these 20 runs. We use linear regression as our classifier. Fig-
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(b) on SRBCT dataset
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(c) on GLIOMA dataset

Figure 1: Classification Accuracy by different feature selection methods on three dataset

Table 3: Residual error of selected features on GLIOMA

different p

values
J0(Xq) with different q

q = 10 q = 20 q = 30 q = 40 q = 50
p = 1 14.520 8.822 4.045 1.511 0
p = 0.7 14.442 4.853 2.295 0.364 0
p = 0.5 14.351 5.088 1.670 0.273 0
p = 0.1 14.450 7.761 1.662 0.341 0
p = 0 14.351 5.088 1.052 0.261 0
SVM-RFE 23.888 19.914 11.856 5.515 0
ReliefF 22.093 15.151 8.069 3.812 0
mRMR 22.473 16.678 8.640 4.617 0
F-Statistic 24.1803 13.782 8.396 4.725 0
Mutual Info 25.3655 15.066 7.652 2.534 0

ure 1a 1b 1c illustrate the classification accuracies using dif-
ferent p values and on the 3 datasets mentioned above. As
we can see, our proposed methods (0 ≤ p < 1) outperform
the previous method (p = 1) and other popular feature se-
lection methods in most cases.

Running Time Comparison

Our optimization strategy is efficient, W converges quickly
especially when λ is big (the number of selected features
are small). Optimizing for p < 1 is just a little bit slower
than p = 1, but can gain better results. We compare the
running time of our rank-one update(RK1U) methods with
the standard method on L2,1 norm (Argyriou, Evgeniou, and
Pontil 2007) - multi task learning algorithm (MTLA). Run-
ning time taken by different methods are listed in Table 4 (all
methods converged to the same criteria: objective of Eq.(3)
changes less than 10−6 between successive iterations), which
shows that our methods are generally faster than the multi
task learning method.

Discussion

As mentioned before, when p < 1, the optimization prob-
lem of Eq.(3) is non-convex, we cannot guarantee to find the
global minima. But a good local minima can be found using
reasonable initialization strategy. We initialize W in Eq.(7)
using two methods: (1) ridge regression, i.e., replace the L2,p

Table 4: Running time (sec) on SRBCT and GLIOMA data sets.
RK1U: our rank-one update algorithm.

Algorithm
SRBCT GLIOMA

q = 20 q = 50 q = 20 q = 50
MTLA 473.7 1211.3 6332.0 10456.9
RK1U p = 1 42.7 88.9 1534.6 1762.0
RK1U p = 0.5 205.6 607.3 3561.9 3409.8
RK1U p = 0.1 219.2 679.8 3413.0 3350.9
RK1U p = 0 150.1 130.8 2005.6 1995.5

norm in Eq.(3) with Frobenius norm. This gives closed form
solution for W. (2) global solution of W at p = 1. Our ex-
periment results show that solutions of p < 1 are the best
using these two initializations judged in terms of the objec-
tive of Eq.(1). For this reason, the residual (for fixed q) in
Tables 1,2,3 at larger p values could be smaller than those
at smaller p values. This is not inconsistent. This indicates,
we believe, that the solution at these p < 1 is not necessar-
ily the true global solution. This also reveals the difficulty,
i.e., NP-hardness of this discrete optimization problem. Ex-
periment results and theoretical arguments indicate that as p

approaches 0, feature subset selected from Eq.(3) are better
(smaller residual). This trend is clear but not strict in Tables
1,2,3. The key points in Table 1,2,3 are that p < 1 solu-
tions (selected feature subsets) are better than p = 1 case
and other popular feature selection methods.

Summary

First, we propose to use L2,p-norm regularization for feature
selection with emphasis on small p. As p → 0, feature se-
lection becomes discrete feature selection problem. Second,
we propose two efficient algorithms, proximal gradient al-
gorithm and rank-one-update algorithm to solve this discrete
feature selection problem. We provide substantial theoretical
analysis and closed form solutions to the critical algorithmic
part, the proximal operator. Extensive experiments on real
life datasets show that features selected at small p consis-
tently outperform other methods.
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